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Abstract: In nature, snakes can gracefully traverse a wide range of different and complex
environments. Snake robots that can mimic this behaviour could be fitted with sensors and transport
tools to hazardous or confined areas that other robots and humans are unable to access. In order
to carry out such tasks, snake robots must have a high degree of awareness of their surroundings
(i.e., perception-driven locomotion) and be capable of efficient obstacle exploitation (i.e., obstacle-aided
locomotion) to gain propulsion. These aspects are pivotal in order to realise the large variety of
possible snake robot applications in real-life operations such as fire-fighting, industrial inspection,
search-and-rescue, and more. In this paper, we survey and discuss the state of the art, challenges,
and possibilities of perception-driven obstacle-aided locomotion for snake robots. To this end,
different levels of autonomy are identified for snake robots and categorised into environmental
complexity, mission complexity, and external system independence. From this perspective, we present
a step-wise approach on how to increment snake robot abilities within guidance, navigation, and
control in order to target the different levels of autonomy. Pertinent to snake robots, we focus
on current strategies for snake robot locomotion in the presence of obstacles. Moreover, we put
obstacle-aided locomotion into the context of perception and mapping. Finally, we present
an overview of relevant key technologies and methods within environment perception, mapping,
and representation that constitute important aspects of perception-driven obstacle-aided locomotion.

Keywords: obstacle-aided locomotion; environment perception; snake robots

1. Introduction

Bio-inspired robots have developed rapidly in recent years. Despite the great success of
bio-robotics in mimicking biological snakes, there is still a large gap between the performance
of bio-mimetic robot snakes and biological snakes. In nature, snakes are capable of performing
an astounding variety of tasks. They can locomote, swim, climb, and even glide through the air in some
species [1]. However, one of the most interesting features of biological snakes is their ability to exploit
roughness in the terrain for locomotion [2], which allows them to be remarkably adaptable to different
types of environments. To achieve this adaptability and to locomote more efficiently, biological snakes
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may push against rocks, stones, branches, obstacles, or other environment irregularities. They can also
exploit the walls and surfaces of narrow passages or pipes for locomotion.

Building a robotic snake with such agility is one of the most attractive steps to fully mimic the
movement of biological snakes. The development of such a robot is motivated by the fact that different
applications may be realised for use in challenging real-life operations, in earthquake-hit areas, pipe
inspection for the oil and gas industry, fire-fighting operations, and search-and-rescue. Snake robot
locomotion in a cluttered environment where the snake robot utilises walls or external objects other than
the flat ground as means of propulsion can be defined as obstacle-aided locomotion [3,4]. To achieve such
a challenging control scheme, a mathematical model that includes the interaction between the snake
robot and the surrounding operational environment is beneficial. This model can take into account the
external objects that the snake robot uses in the environment as push-points to propel itself forwards.
From this perspective, the environment perception, mapping, and representation is of fundamental
importance for the model. To highlight this concept even further, we adopt the term perception-driven
obstacle-aided locomotion as locomotion where the snake robot utilises a sensory-perceptual system to
exploit the surrounding operational space and identifies walls, obstacles, or other external objects
for means of propulsion [5]. Consequently, we can provide a more comprehensive characterization
of the whole scientific problem considered in this work. The underlying idea is shown in Figure 1.
The snake robot exploits the environment for locomotion by using augmented information: obstacles
are recognised, potential push-points are chosen (shown as cylinders), while achievable normal contact
forces are illustrated by arrows.

Figure 1. The underlying idea of snake robot perception-driven obstacle-aided locomotion: a snake
robot perceives and understands its environment in order to utilise it optimally for locomotion.

The goal of this paper is to further raise awareness of the possibilities with perception-driven
obstacle-aided locomotion for snake robots and provide an up-to-date stepping stone for continued
research and development within this field.
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In this paper, we survey the state of the art within perception-driven obstacle-aided locomotion for
snake robots, and provide an overview of challenges and possibilities within this area of snake robotics.
We propose the identification of different levels of autonomy, such as environmental complexity,
mission complexity, and external system dependence. We provide a step-wise approach on how
to increment snake robot abilities within guidance, navigation, and control in order to target the
different levels of autonomy. We review current strategies for snake robot locomotion in the presence
of obstacles. Moreover, we discuss and present an overview of relevant key technologies and methods
within environment perception, mapping, and representation which constitute important aspects of
perception-driven obstacle-aided locomotion. The contribution of this work is summarised by three
fundamental remarks:

1. necessary conditions for lateral undulation locomotion in the presence of obstacles;
2. lateral undulation is highly dependent on the actuator torque output and environmental friction;
3. knowledge about the environment and its properties, in addition to its geometric representation,

can be successfully exploited for improving locomotion performance for obstacle-aided locomotion.

The paper is organised as follows. A survey and classification of snake robots is given in Section 2.
Successively, the state-of-the-art concerning control strategies for obstacle-aided locomotion is
described in Section 3. Challenges related to the environment perception, mapping, and representation
are described in Section 4. Finally, conclusions and remarks are outlined in Section 5.

2. Challenges and Possibilities in the Context of Autonomy Levels for Unmanned Systems

In this section, we survey snake robots as unmanned vehicle systems to highlight challenges
and possibilities in the context of autonomy levels for unmanned systems. Moreover, we focus on
the ability of snake robots to perform a large variety of tasks in different operational environments.
When designing such systems, different levels of autonomy can be identified from an operational point
of view. Based on this idea, the so-called framework of autonomy levels for unmanned systems
(ALFUS) [6] is successively adopted and applied to provide a more in-depth overview for the
design of snake robot perception-driven obstacle-aided locomotion. Following this, the autonomy
and technology readiness assessment (ATRA) framework [7,8] is adopted and presented to better
understand the design of these systems.

2.1. Classification of Snake Robots as Unmanned Vehicle Systems

An uncrewed or unmanned vehicle (UV) is a mobile system not having or needing a person,
a crew, or staff operator on board [9]. UV systems can either be remote-controlled or remote-guided
vehicles, or they can be autonomous vehicles capable of sensing their environment and navigating
on their own. UV systems can be categorised according to their operational environment as follows:
unmanned ground vehicle (UGV; e.g., autonomous cars or legged robots); unmanned surface vehicle
(USV; i.e., unmanned systems used for operation on the surface of water); autonomous underwater
vehicle (AUV) or unmanned undersea/underwater vehicle (UUV) for the operation underwater;
unmanned aerial vehicle (UAV), such as unmanned aircraft generally known as “drones”; unmanned
spacecraft, both remote-controlled (“unmanned space mission”) and autonomous (“robotic spacecraft”
or “space probe”).

According to this terminology, snake robots can be classified as uncrewed vehicle (UV) systems.
In particular, a snake robot constitutes a highly adaptable UV system due to its potential ability
to perform a large variety of tasks in different operational environments. Following the standard
nomenclature for UV systems, snake robots can be classified as shown in Figure 2, where some of the
most significant systems are reported based on the literature for the sake of illustration. Several snake
robots are implemented as unmanned ground vehicle (UGV) systems that are capable of performing
the following tasks:
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• locomotion on flat or slightly rough surfaces, such as the ACM III snake robot [10], which was the
world’s first snake robot, or the toroidal skin drive (TSD) snake robot [11], which is equipped with
a skin drive propulsion system;

• climbing slopes, pipes, or trees, such as the Creeping snake Robot [12], which is capable of obtaining
an environmentally-adaptable body shape to climb slopes, or the PIKo snake robot [13], which
is equipped with a mechanism for navigating complex pipe structures, or the Uncle Sam snake
robot [14], which is provided with a strong and compact joint mechanism for climbing trees;

• locomoting in the presence of obstacles, such as the Aiko snake robot [3], which is capable of
pushing against external obstacles apart from a flat ground, or the Kulko snake robot [15], which is
provided with a contact force measurement system for obstacle-aided locomotion.
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Figure 2. The variety of possible application scenarios for snake robots. AUV: autonomous underwater
vehicle; TSD: toroidal skin drive snake robot; UAV: unmanned aerial vehicle; UGV: unmanned ground
vehicle; USV: unmanned surface vehicle; UUV: unmanned undersea/underwater vehicle.

To better assess the different working environments in which these robotic systems operate,
we may consider various metrics. For instance, the environmental complexity (EC)—a measure of
entropy and the compressibility of the environment as seen by the robot’s sensors [16]—may be used.
Another useful metric is the mission complexity (MC), which is an estimation of the complicatedness
of the environment as seen by the robot’s perception system [6]. Both environmental complexity EC
and MC gradually increase when moving from the former examples to the last ones. With a slight
additional increase in terms of EC and MC, other snake robot systems are designed as unmanned
surface vehicle (USV), autonomous underwater vehicle (AUV), or unmanned undersea/underwater
vehicle (UUV) systems. An example of such systems is the Mamba snake robot [17], which is capable
of performing underwater locomotion. Another notable example of such systems is the ACM-R5 snake
robot [18], which is an amphibious snake-like robot characterised by its hermetic dust and waterproof
body structure.

With an additional increase in terms of both EC and MC, flying or gliding snake robots may be
designed as unmanned aerial vehicle (UAV) systems. These systems can be inspired by the study and
analysis of the gliding capabilities in flying snakes, such as the Chrysopelea, more commonly known as
the flying snake or gliding snake [19]. This category of snake robot still does not exist, but perhaps one
day it will be realised when the necessary technological advances become a reality. However, other
designs may be more practical for flying.
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2.2. Similarities and Differences between Traditional Snake Robots and Snake Robots for Perception-Driven
Obstacle-Aided Locomotion

Some similarities can be identified between traditional snake robots and snake robots specifically
designed to achieve perception-driven obstacle-aided locomotion. Both have a number of links
serially attached to each other by means of joints that can be moved by some type of actuator.
Therefore, they share similar structures from a kinematic point of view. However, snake robots
specifically designed for obstacle-aided locomotion must be capable to exploit roughness in the terrain
for locomotion. To achieve this, both their sensory system and their control system fundamentally
differ with respect to the systems of traditional snake robots, which instead aim at avoiding or at most
accommodating obstacles. The design guidelines for snake robot perception-driven obstacle-aided
locomotion are described in the following sections of the paper.

2.3. The ALFUS Framework for Snake Robot Perception-Driven Obstacle-Aided Locomotion

In this work, the focus is on snake robots designed as unmanned ground vehicle (UGV) systems
with the aim of achieving perception-driven obstacle-aided locomotion. To the best of our knowledge,
little research has been done in the past concerning this topic. When designing such systems, different
levels of autonomy can be identified from an operational point of view. In Section 2.1, we have already
briefly touched upon the concepts of environmental complexity (EC) and mission complexity (MC) to
better categorise existing snake robots. By additionally considering the external system independence
(ESI) metric, which represents the independence of snake robots from other external systems or
from human operators, the so-called ALFUS framework [6] can be adopted and applied to provide
a more in-depth overview for the design of snake robot perception-driven obstacle-aided locomotion,
as shown in Figure 3.
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Figure 3. The autonomy levels for unmanned systems (ALFUS) framework [6] applied to snake robot
perception-driven obstacle-aided locomotion.

The levels of autonomy for a system can be defined for various aspects of the system and
categorised according to several taxonomies [20]. Regarding the external system independence
for snake robots, we introduce the following autonomy levels (AL) according to gradually
increased complexity:
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• All guidance performed by external systems. In order to successfully accomplish the assigned
mission within a defined scope, the snake robot requires full guidance and interaction with either
a human operator or other external systems;

• Completely predetermined guidance functions. All planning, guidance, and navigation actions
are predetermined in advance based on perception. The snake robot is capable of very low
adaptation to environmental changes;

• Situational awareness [21]. The snake robot has a higher level of perception and autonomy with
high adaptation to environmental changes. The system is not only capable of comprehending and
understanding the current situation, but it can also make an extrapolation or projection of the
actual information forward in time to determine how it will affect future states of the operational
environment;

• Cognition and decision making. The snake robot has higher levels of prehension, intrinsically
safe cognition, and decision-making capacity for reacting to unknown environmental changes;

• Autonomous operation. The snake robot is capable of fully autonomous capabilities. The system
can achieve its assigned mission successfully without any intervention from human or any other
external system while adapting to different environmental conditions.

Concerning the environmental complexity (EC), the following autonomy levels (AL) can be
identified according to gradually increased complexity:

• No external perception. The snake robot executes a set of preprogrammed or planned actions in
an open loop manner;

• Reactive—no representation. The snake robot does not generate an explicit environment
representation, but the motion planner is able to react to sensor input feedback;

• Geometrical information (2D, 3D). Starting from sensor data, the snake robot can generate
a geometric representation of the environment which is used for planning—typically for
obstacle avoidance;

• Structural interpretation. The environment representation includes structural relationships
between objects in the environment;

• Environmental affordance and dynamics. Higher-level entities and properties can be derived
from the environment perception, including separate treatment for static and dynamic elements;
different properties from the objects which the snake robot is interacting with might be of interest
according to the specific task being performed.

With reference to mission complexity (MC), the following autonomy levels (AL) can be identified
according to gradually increased complexity:

• No adaptation to mission changes. The mission plan is predetermined, the snake robot is not
capable of any adaptation to mission changes;

• Limited local mission adaptation. The snake robot has low adaptation capabilities to small,
externally-commanded mission changes;

• Full-adaptation to mission based on sensor inputs. The snake robot has high and independent
adaptation capabilities.

Clearly, in all three cases, an increase of the complexity generates more challenging problems to
solve; however, it opens new possibilities for snake robot applications as autonomous systems.

2.4. A Framework for Autonomy and Technology Readiness Assessment

To better understand the design of snake robot perception-driven obstacle-aided locomotion,
some design examples of similarly demanding systems can be considered as sources of inspiration and
prototyping purposes. For instance, the design of autonomous unmanned aircraft systems (UAS) may
provide solid directions for establishing a flexible design and prototyping framework. In particular,
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to systematically evaluate the autonomy levels (AL) of a UAS and to correctly measure the maturity of
their autonomy-enabling technologies, the autonomy and technology readiness assessment (ATRA)
framework may be adopted [7,8]. The ATRA framework combines both autonomy levels (AL) and
technology readiness level (TRL) metrics. Borrowing this idea from UAS, the same framework concept
can be used to provide a comprehensive picture of how snake robot perception-driven obstacle-aided
locomotion may be realised in a realistic operational environment, as shown in Figure 4.
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Figure 4. The ATRA framework [7,8] applied to snake robot perception-driven obstacle-aided
locomotion with the different levels of external system independence (ESI), of environmental complexity
(EC) and of mission complexity (MC). ES refers to “External System”.

When considering snake robot perception-driven obstacle-aided locomotion, identifying and
differentiating between consecutive autonomy levels is very challenging from a design point of view.
Nevertheless, it is crucial to clearly distinguish autonomy levels during the design process in order to
provide the research community with a useful evaluation and comparison tool. Inspired by similarly
demanding systems [7], a nine-level scale is proposed based on gradual increase (autonomy as a
gradual property) of guidance, navigation, and control (GNC) functions and capabilities. Referring
to Figure 4, the key GNC functions that enable each autonomy level are verbally described along
with their correspondences with mission complexity (MC), environmental complexity (EC), and
external system independence (ESI) metrics (illustrated with a colour gradient). It should be noted
that the motion planner is assumed to take the environment representation as input (i.e., a map of the
environment built as a fusion between different sensor data and previous stored knowledge). Then,
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the control function is supposed to compensate with adjustments for any possible deviations between
map and actual environment.

To a certain degree, the three key GNC functions can be independently considered with respect to
the information flow, as shown in Figure 5a. The snake robot’s sensory-perceptual data and external
system commands are used to provide an input for the guidance system, which is responsible for
decision-making, path-planning, and mission planning activities. The navigation system is responsible
for achieving all the functions of perception, mapping, and localisation. The processed information is
then adopted by the control system, which is responsible for low-level adaptation and control tasks.
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Figure 5. (a) Information flow through the different functions and capabilities of guidance, navigation,
and control (GNC); (b) the possible design levels depicted in Figure 4 are represented in a
three-dimensional space.

This design approach allows for the achievement a good level of modularity. For instance,
concerning level 6 (global planning), the expected guidance function could first be carried out for
a map which only includes a geometrical representation. At a later stage of the prototyping process,
some structural properties of the environment may be gradually considered, such as stiffness, friction,
and other parameters. Different combinations are possible, and they depend upon the particular
prototyping approach that designers can adopt. The possible design levels depicted in Figure 4 are
only provided for the sake of illustration. Our goal is to provide an overview of some of the main
combinations of the three key GNC functions which we think are the most important steps in order to
achieve fully autonomous snake robot operations.
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Regarding our choice of describing a nine-level scale, it should be noted that the amount of effort
needed in order to transit from one level to the next is far from equal for all levels. In particular,
a significant and more challenging leap in functionality will be required to transit from level 7 to
level 8, and from level 8 to level 9. We have chosen not to further refine the potentially existing
sub-levels between these main levels (i.e., levels 7–9) in this paper. Instead, we have chosen an agile
development-based and rapid-prototyping approach where we currently focus on refining the steps
necessary in order to transit to the next immediate levels (compared to the state-of-the-art), and then
leave the details for the higher levels until more information is available on the exact requirements and
functionalities needed for these levels.

To provide a more intuitive overview of the design guidelines depicted in Figure 4, the same
design levels can be represented in a three-dimensional space as shown in Figure 5b. It should be noted
that control level 4 enables levels 4–8 concerning both guidance and navigation. The possible path that
can be followed to achieve the desired level of independence is highlighted in the same figure.

It should be noted that the framework discussed in this work provides possible guidelines on
how to design a system capable of adapting to more difficult terrains as the autonomy level of the
robot increases. In particular, in Figure 4, the environmental complexity (EC) increases with the rise of
complexity of the different design levels in the ATRA framework. Note that these design levels are
also visualised in 3D in Figure 5b.

Referring to Figures 4 and 5b, the current cutting edge technology for snake robots can exhibit
level 4 or at most level 5 characteristics to the best of the authors’ knowledge. In fact, the authors
believe that the current technology for snakes falls a little behind with respect to the advances of the
current cutting-edge technology of non-snake-type robots.

3. Control Strategies for Obstacle-Aided Locomotion

The greater part of the existing literature on the control of snake robots considers motion across
smooth—usually flat—surfaces. Different research groups have extensively investigated this particular
operational scenario. Various approaches to mathematical modelling of the snake robot kinematics
and dynamics have been presented as a means to simulate and analyse different control strategies [22].
In particular, many of the models presented in the early literature focus purely on kinematic aspects of
locomotion [23,24], while more recent studies also include the dynamics of motion [25,26].

Among the different locomotion patterns inspired by biological snakes, lateral undulation is
the fastest and most commonly implemented locomotion gait for robotic snakes in the literature [27].
This particular pattern can be realised through phase-shifted sinusoidal motion of each joint of the
robotic snake [28]. This approach has been investigated for planar snake robots with metallic ventral
scales [29] placed on the outer body of the robot, passive wheels [30], or for snake robots with
anisotropic ground friction properties [31].

Even though these previous studies have provided researchers with a better understanding of
snake robot dynamics, most of the past works on snake robot locomotion have almost exclusively
considered motion across smooth surfaces. However, many real-life environments are not smooth, but
cluttered with obstacles and irregularities. When the operational scenario is characterised by a surface
that is no longer assumed to be flat and which has obstacles present, snake robots can move by sensing
the surrounding environment. In the existing literature, not much work has been done to develop
control tools specifically designed for this particular operational scenario. Next, we analyse and group
relevant literature for snake robot locomotion in environments with obstacles, as shown in Table 1.

3.1. Obstacle Avoidance

A traditional approach to dealing with obstacles consists of trying to avoid them. Collisions may
make the robot unable to progress and cause mechanical stress or damage to equipment. Therefore,
different studies have focused on obstacle avoidance locomotion. For instance, principles of artificial
potential field (APF) theory [32] have been adopted to effectively model imaginary force fields around
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objects that are either repulsive or attractive on the robot. The target position emits an attractive force
field while obstacles, other robots, or the robot itself emits repulsive force fields. The strength of these
forces may increase as the robot gets closer. Based on these principles, a controller capable of obstacle
avoidance was presented in [33]. However, the standard APF approach may cause the robot to end
up trapped in a local minima. In this case, the repulsive forces from nearby obstacles may leave the
robot unable to move. To escape local minima, a hybrid control methodology using APF integrated
with a modified simulated annealing (SA) optimization algorithm for motion planning of a team of
multi-link snake robots was proposed in [34]. An alternative methodology was developed in [35].
Central pattern generators (CPGs) were employed to allow the robot to avoid obstacles or barriers by
turning the robot’s body from its trajectory. A phase transition method was also presented in the same
work, utilising the phase difference control parameter to realise the turning motion. This methodology
also provides a way to incorporate sensory feedback into the CPG model, allowing for the detection of
possible collisions.

3.2. Obstacle Accommodation

By using sensory feedback, a more relaxed approach to obstacle avoidance can be considered.
Rather than absolutely avoiding collisions, the snake robot may be allowed to collide with obstacles,
but collisions must be controlled so that no damage to the robot occurs. This approach was first
investigated in [36], where a motion planning system was implemented to provide a snake-like robot
with the possibility of accommodating environmental obstructions by continuing the motion towards
the target while in contact with the obstacles. In [37], a general formulation of the motion constraints
due to contact with obstacles was presented. Based on this formulation, a new inverse kinematics
model was developed that provides joint motion for snake robots under contact constraints. By using
this model, a motion planning algorithm for snake robot motion in a cluttered environment was
also proposed.

3.3. Obstacle-Aided Locomotion

Even though obstacle avoidance and obstacle accommodation are useful features for snake
robot locomotion in unstructured environments, these control approaches are not sufficient to fully
exploit obstacles as means of propulsion. As observed in nature, biological snakes exploit the
terrain irregularities and push against them so that a more efficient locomotion gait can be achieved.
In particular, the entire snake’s body bends itself, and all sections consistently follow the path taken
by the head and neck [2]. Snake robots may adopt a similar strategy. A key aspect of practical snake
robots is therefore obstacle-aided locomotion [3,4]. To understand the mechanism underlying the
functionalities of biological snakes on the basis of a synthetic approach, a model of a serpentine robot
with viscoelastic properties was presented in [38,39]. It should be noted that the authors adopted the
term scaffold-assisted serpentine locomotion, which is conceptually similar to the idea of obstacle-aided
locomotion. The authors also designed an autonomous decentralised control scheme that employs
local sensory feedback based on the muscle length and strain of the snake body, the latter of which is
generated by the body’s softness. Through modelling and simulations, the authors demonstrated that
only two local reflexive mechanisms which exploit sensory information about the stretching of muscles
and the pressure on the body wall, are crucial for realising locomotion. This finding may help develop
robots that work in undefined environments and shed light on the understanding of the fundamental
principles underlying adaptive locomotion in animals.

Table 1. Snake locomotion in unstructured environments.

Obstacle Avoidance Obstacle Accommodation Obstacle-Aided Locomotion

[32–35] [36,37] [3,4,40–48]
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However, to the best of our knowledge, little research has been done concerning the possibility
of applying this locomotion approach to snake robots. For instance, a preliminary study aimed at
understanding snake-like locomotion through a novel push-point approach was presented in [40].

Remark 1. In [40], an overview of the lateral undulation as it occurs in nature was first formalised according
to the following conditions:

• it occurs over irregular ground with vertical projections;
• propulsive forces are generated from the lateral interaction between the mobile body and the vertical

projections of the irregular ground, called push-points;
• at least three simultaneous push-points are necessary for this type of motion to take place;
• during the motion, the mobile body slides along its contacted push-points.

Based on the conditions described in Remark 1, the authors of the same work considered
a generic planar mechanism and a related environment that suit to satisfy the fundamental mechanical
phenomenon observed in the locomotion of terrestrial snakes. A simple control law was applied and
tested via dynamic simulations with the purpose of calculating the contact forces required to propel
the snake robot model in a desired direction. Successively, these findings were tested with practical
experiments in [41], where closed-loop control of a snake-like locomotion through lateral undulation
was presented and applied to a wheel-less snake-like mobile mechanism. To sense the environment
and to implement this closed-loop control approach, simple switch sensors located on the side of each
module were adopted. A more accurate sensing approach was introduced in [42], where a design
process for the electrical, sensing, and mechanical systems needed to build a functional robotic snake
capable of tactile and force sensing was presented. Through manipulation of the body shape, the robot
was able to move in the horizontal plane by pushing off of obstacles to create propulsive forces. Instead
of using additional hardware, an alternative and low-cost sensing approach was examined in [43],
where robot actuators were used as sensors to allow the system to traverse an elastically deformable
channel with no need for external tactile sensors.

Some researchers have focused on asymmetric pushing against obstacles. For instance, a control
method with a predetermined and fixed pushing pattern was presented in [44]. In this method,
the information of contact affects not only adjacent joints but also a couple of neighboring joints
away from a contacting link. Furthermore, the distribution of the joint torques is empirically set
asymmetrically in order to propel the snake robot forward. Later on, a more general and randomised
control method that prevents the snake robot to get stuck in crowded obstacles was proposed by the
same research group in [45].

When locomoting through environments with obstacles, it is also important to achieve body shape
compliance for the snake robot. Some researchers have focused on shape-based control approaches,
where a simple motion pattern is propagated along the snake’s body and dynamically adjusted
according to the surrounding obstacles. For instance, a general motion planning framework for
body shape control of snake robots was presented in [46]. The applicability of this framework was
demonstrated for straight line path following control, and for implementing body shape compliance
in environments with obstacles. Compliance is achieved by assigning mass-spring-damper dynamics
to the shape curve defining the motion of the robot.

The idea of adopting a shape-based control approach to achieve compliance is particularly
challenging when considering snake robots with many degrees of freedom (DOF). In fact, having
many DOF is both a potential benefit and a possible disadvantage. A snake robot with a large number
of DOF can better comply to and therefore better move in complex environments. Yet, possessing
many degrees of freedom is only an advantage if the system is capable of coordinating them to
achieve desired goals in real-time. In practice, there is a trade-off between the capability of highly
articulated robots to navigate complex unstructured environments and the high computational cost
of coordinating their many DOF. To facilitate the coordination of many DOF, the robot shape may



Appl. Sci. 2017, 7, 336 12 of 22

be used as an important component in creating a middle layer that links high-level motion planning
to low-level control for the robust locomotion of articulated systems in complex terrains. This idea
was presented in [47], where shape functions were introduced as the layer of abstraction that formed
the basis for creating this middle layer. In particular, these shape functions were used to capture
joint-to-joint coupling and provide an intuitive set of controllable parameters that adapt the system to
the environment in real-time. This approach was later extended to the definition of spatial frequency
and temporal phase serpenoid shape parameters [48]. This approach provides a way to intuitively
adapt the shape of highly articulated robots using joint-level torque feedback control, allowing a robot
to navigate its way autonomously through unknown, irregular environment scenarios.

Remark 2. Most of the previous studies highlight the fact that lateral undulation is highly dependent on the
actuator torque output and environmental friction.

Based on Remark 2, interesting approaches were discussed in [4,49,50]. The authors focused
on how to optimally use the motor torque inputs, which result in obstacle forces suitable to achieve
a user-defined desired path for a snake robot. Less importance was given to the forces generated by the
environmental friction. In detail, assuming a desired snake robot trajectory and the desired link angles
at the obstacles in contact, the contribution was on how to map the given trajectory to obstacle contact
forces, and these forces to control inputs. Based on a 2D-model of the snake robot, a convex quadratic
programming problem was solved, minimizing the power consumption and satisfying the maximum
torque constraint and the obstacle constraints. To implement this strategy in practice, the optimization
problem needs to be solved on-line recursively. In addition, when the configuration of the contact
points changes, some of the parameters need to be updated accordingly. Finally, as the authors pointed
out, there are two main issues to practically using their method for obstacle-aided locomotion. The first
is the definition of an automatic method for finding the desired link angles at the obstacles. The second
is the automatic calculation of the desired path. However, an interesting result is that one could use
the approach in [4] to check the quality of a given path by verifying if useful forces can be generated
by the interaction with a number of obstacles for that path, and this could be done off-line.

4. Environment Perception, Mapping, and Representation for Locomotion

In order for robots to be able to operate autonomously and interact with the environment in any
of the ways mentioned in Section 3 (obstacle avoidance, obstacle accommodation, or obstacle-aided
locomotion), they need to acquire information about the environment that can be used to plan their
actions accordingly. This task can be divided into three different challenges that need to be solved:

1. sensing, using the adequate sensor or sensor combinations to capture information about
the environment;

2. mapping, which combines and organises the sensing output in order to create a representation
that can be exploited for the specific task to be performed by the robot;

3. localisation, which estimates the robot’s pose in the environment representation according to the
sensor inputs.

These topics are well studied for different types of robots and environments, and are tackled
by the Simultaneous Localisation And Mapping (SLAM) community which has been the foremost
research area for the last years in robotics [51]. However, comparatively little work has been done in
this field for snake robots, as research has been focused on understanding the fundamentals of snake
locomotion, and on the development of the control techniques.

Table 2 summarises the sensors most commonly found in the robotics literature for environment
perception aimed at navigation. The table also contains some basic evaluation of the suitability of the
specific sensor or sensing technology for the requirements and limitations of snake robots. For the sake
of completeness, we have included references to representative robots different from snake robots for
those technologies where we were not able to find examples of applications involving snake robots.



Appl. Sci. 2017, 7, 336 13 of 22

Table 2. Sensors for environment perception

Sensor/Sensing
Technology Pros Cons References

Proprioceptive No need for additional payload.
Depends on accuracy of the robot’s model.
Low level of detail.
Does not allow to plan in advance.

[52,53]

Contact/Force Bioinspired.
Suitable for simple obstacle-aided locomotion.

Low level of detail.
Reactive, does not allow to plan in advance. [10,15,54–58]

Proximity
(US and IR)

Suitable for simple obstacle-aided locomotion.
Allows for some lookahead planning.

Low level of detail.
Additional payload. [59–62]

LiDAR Well-known sensor in robotics community.
Provides dense information about environment.

Usually requires sweeping and/or rotating
movement for full 3D perception. [62–67]

Laser triangulation Provides high accuracy measurements.
Very limited measurement range.
Requires sweeping movement.
Limitations in dynamic environments.

[68]

ToF camera Provides direct 3D measurements. Low resolution, low accuracy.
Not suitable for outdoor operation. [69,70]

Structured
light—Temporal
coding

Provides direct 3D measurements.
High accuracy, high resolution.

Limited measurement range.
Not suitable for outdoor operation.
Limitations in dynamic environments.
Sensor size.

Non-snake: [71]

Structured
light—Light coding

Provides direct 3D measurements.
Small sensor size.

Noisy measurements.
Not suitable for outdoor operation. Non-snake: [72]

Stereovision High accuracy, high resolution, wide range.

Measuring range limited by
available baseline.
Computationally demanding.
Dependent on texture.

Non-snake: [73]

Monocular—SfM
Small sensor, lightweight, low power.
Wide measurement range.
No active lighting.

Computationally demanding.
Dependent on texture.
Scale ambiguity.

Non-snake: [74]

Radar (e.g., UWB) Sense through obstacles.
Mechanical or electronic
sweeping required.
Computationally demanding.

Non-snake: [75]

4.1. Sensor Technologies for Environment Perception for Navigation in Robotics

The classification of sensors in Table 2 considers both the measuring principles and sensing
devices involved. For more clarity, Figure 6 summarises the sensor technologies that have been taken
into account as the most representative ones found in literature regarding environment perception
for navigation.

The qualifier proprioceptive applied to sensors is used in robotics to distinguish between those
measures of values internal to the robot (e.g., motor speed) from other sensors that obtain information
from the robot’s environment (e.g., distance to objects)—that is, exteroceptive. Contact sensors can
inform whether the robot is touching elements from the environment in some specific locations, or even
measure the pressure being applied. Range sensors provide distance measurements to nearby objects.

Proximity sensors [76] are intended for short-range distance measurements. They are active
sensors that emit either an ultrasound (US) or infrared (IR) pulse and calculate the distance to the
closest obstacle based on the time-of-flight principle; i.e., measuring the time it takes for the pulse to
travel from the emitter to the obstacle, and then back to the receiver. In the case of infrared-based
sensors, in order to simplify the electronics, in some cases instead of measuring the actual travelling
time, the emitted pulse is modulated, and the basics for estimating the distance is the shift in the phase
of the received signal with respect to the emitted one. Light detection and ranging (LiDAR) sensors
are also based on the time-of-flight principle, emitting pulsed laser which is deflected by a rotating
mirror. In this way, instead of obtaining a single measurement, the LiDAR system is able to scan the
surroundings and provide measurements in a plane at specified angle intervals. Often in literature,
LiDARs are mounted on an additional rotating element [77] that allows a full 3D reconstruction to
be produced by aligning the subsequent scans in a single point cloud. Radars actuate under similar
principles to LiDARs, but use electromagnetic waves instead of relying on optical signals.
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Figure 6. A taxonomy of sensors for environment perception for navigation in robotics.

Active 3D imaging techniques are also referred to as structured light [78]; the term “active” is
used here in opposition to “passive” to denote that a controlled light source is projected onto the
scene. In Table 2, we distinguish between laser triangulation, structured light, and light coding.
Laser triangulation sensors consist of a laser source calibrated with respect to a camera or imaging
sensor (position and orientation). The laser generates a single-point or narrow stripe that is projected
onto the scene or object being inspected. The projected element is deformed according to the shape
of the scene; this deformation can be observed by the imaging sensor, and then the depth profile
is estimated by simple triangulation principle. By providing an additional scanning movement,
the different scans can be stuck together to generate a point cloud representation. In order to avoid
the scanning movement, bi-dimensional patterns of non-coherent light are used. In literature there
are multiple proposals for ways of designing the projected patterns to achieve better reconstructions
(e.g., binary codes, gray codes, phase shifting). A clear distinction can be made between methods that
perform a temporal coding (which require a sequence of patters that are successively projected onto
the scene) versus spatial coding methods which concentrate all the coding scheme in a unique pattern.
Following some rather extended nomenclature, we denote temporal coding methods just by structured
light, and spatial methods by light coding [79]. Light coding methods have been popularized in the last
years by the introduction of low-cost devices in the consumer market, such as the Microsoft Kinect.
Those devices are also often referred to as RGB-D cameras. Despite the name, most commercially
available time-of-flight cameras (ToF camera) [80] operate by measuring the phase shift of the modulated
infrared signal bounced back. The main difference with respect to LiDAR systems is that in ToF cameras
the whole scene is captured with each pulse, as opposed to one-point measurements in the case of
LiDARs. ToF cameras can provide 3D measurements at high rates, but at the cost of low resolutions
and accuracies in the range of a few centimetres.

Referring to passive 3D imaging techniques, stereovision [81] consists of two calibrated cameras
that acquire images of a scene from two different viewpoints. Calibration involves both the optical
characteristics of the cameras, but also the relative position and orientation between them. Points in
the scene need to be recognized or matched across the images from the two cameras, and then their
position is triangulated to calculate the depth. Stereovision methods can be classified as sparse or dense,
according to the nature of the point cloud generated: sparse methods select certain interest points
from the images to be triangulated, while dense methods operate on a per-pixel basis. A single camera
can also be used to recover the 3D structure of an environment: structure from motion (SfM) [82] or
visual SLAM (vSLAM) [83] methods use different images from a moving camera (or images taken from
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different viewpoints) to simultaneously estimate the positions from where the images were taken and
the 3D structure of the environment.

4.2. Survey of Environment Perception for Locomotion in Snake Robots

Many of the snake robots found in literature are equipped with a camera located in the head
of the robot and pointing in the same direction as the navigation direction. However, in most cases,
the images captured by the camera are not used for visual feedback for the robot’s control, but sent to
the operator for her/him to plan the robot’s trajectory or to solve the high level applications, which in
the case of snake robots are usually inspection or search-and-rescue operations.

One way a snake robot can have a very simple perception of the surrounding environments is by
using proprioception; i.e., using the robot’s own internal state (e.g., joint angles, motor current levels,
etc.) to derive some properties of the environment. As an example, [53] showed that the tilt angle of
a slope can be inferred by only using the snake robot’s state estimated from the joint angles, and used
this information to adapt the behaviour of sidewinding and maximise the travelling speed. In [52],
a heavily bioinspired method was developed based on the mechanics and neural control locomotion
of a worm which also uses a serpentine motion. The objective in this case is to react and adapt to
obstacles in the environment. The work in [58] implements strain gauges measuring the deformation
in the joint actuators; from these measurements, the contact forces applied to a waterproof snake robot
are calculated.

The sensing modality that is most commonly explored in snake robots for environment perception
is force or contact sensors. The first snake robot in 1972 [10] already used contact switches along the
body of the snake robot, and demonstrated lateral inhibition with respect to external obstacles. Apart
from reacting to contact with obstacles, the main use of force sensors is to adapt the body of the
snake robot to the irregularities of the terrain [56,57]. The authors in [54] claim to feature the first
full-body 3D-sensing snake. The robot is equipped with 3-DOF force sensors integrated in the wheels
(which are also actuated), and uses this data to equally distribute the weight of all the segments, apart
from moving away from obstacles at the sides. In [55], a different application of contact sensors is
shown, in which lateral switches distributed along the body of the snake are used as touch sensors
to guarantee that there are enough push-point contacts so that propulsion can be performed. In case
the last contact point was lost, the robot performs an exploratory movement. The snake robot in [15]
is already designed aimed at obstacle-aided locomotion, by including two main features: a smooth
exterior surface that allows the robot to glide, and contact force sensing by using four force-sensing
resistors on each side of the joint module, and assuming that in locomotion on horizontal surfaces it is
enough to know on which side of the robot the contact happens.

Robots that base their environment perception on contact-based sensors exclusively allow for
limited motion planning. For example, when aiming at obstacle avoidance, it is impossible to achieve
full avoidance, as the robot needs to make contact with the obstacle in order to realise its presence.
However, in [84,85], it is demonstrated that environment representation can be achieved purely
by contact sensors. In this case, whisker-like contact sensors were used in a SLAM framework to
produce an environment representation that could potentially be used for planning and obstacle-aided
locomotion purposes.

The use of range or proximity sensors allows snake robots to not rely on contact in order
to perceive the environment, and thus perform obstacle avoidance. The works in [60,61] feature
active infrared sensors used to implement reactive behaviours for avoiding obstacles, either by
selecting an obstacle-free trajectory in the first case, or by adapting the undulatory motion for narrow
corridor-like passages in the second one. It is worth noting that the snake robot in [60] is equipped
with actively-driven tracks for propulsion in slippery terrains. Ultrasound sensors are used in a similar
fashion, and their data can also be used to estimate the snake robot’s speed in case it is approaching an
obstacle [59]. A combination of ultrasound sensors for mapping and obstacle avoidance and passive
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infrared sensors for the detection of human life in urban search-and-rescue applications is proposed
in [63], though details on how the sensor information is exploited is not provided.

A more detailed and accurate representation of the environment can be achieved by the use of
LiDAR sensors, sometimes combined with ultrasound sensors as in [62]. The use of LiDAR even allows
for the generation of richer and more complete maps. The use of such sensors in a SLAM framework
is demonstrated in [64]: the snake robot is equipped with a LiDAR sensor in the head, and a camera
and infrared sensors in the sides. The camera is used to provide position information to the remote
operator who controls the desired velocity of the snake robot using a joystick. The snake then uses the
LiDAR to perform SLAM, producing a map and an estimated position of the robot itself in that map.
The robot then uses the output from the SLAM to navigate the environment, while using the infrared
sensor information in a reactive way to avoid obstacles not detected by the LiDAR and overcome
the errors in the SLAM. The work in [66] studies the use of SLAM in snake robots. It emphasizes
two important challenges of SLAM in this type of robot in comparison with existing approaches of
SLAM: on one hand, the use of odometry-less models, and on the other hand, the lack of features or
landmarks that characterizes navigation environments such as the inside of tunnels and pipes, which is
a typical focus for snake robots. A rotating LiDAR is used in [65] to scan the environment and generate
a 2.5 dimensional map that then can be used to perform motion planning in 3D. The main objective
of this system is to overcome challenging obstacles such as stairs, for which the robot also relies on
active wheels. The point clouds generated by the LiDAR are also matched across time, estimating the
relative localisation that is then used to correct the robot odometry. The work in [67] also approaches
step climbing using a LiDAR sensor, which is used to calculate the relative position of the snake’s head
to the step and its height. Several measurements of the LiDAR are fused through an Extended Kalman
Filter in order to reduce the measurement’s uncertainty and detect the line segments that correspond
to the different planes of the step. This information is then fed into a model predictive control (MPC)
algorithm to generate a collision-free trajectory. In [66], the influence of two different SLAM algorithms
using serpentine locomotion in a featureless environment is presented.

The use of onboard vision systems to perceive the environment and influence the snake robot’s
motion is limited in the literature. In a simplified example [86], a camera mounted in the head of the
snake robot is adopted to detect a black tape attached on the ground and then use that information
as the desired trajectory for the snake. Time-of-flight (ToF) cameras provide 3D information of the
environment in the form of depth images or point clouds, without requiring any additional scanning
movement. A modified version of the iterative closest point (ICP) algorithm is used in [69] to combine
the information of an inertial measurement unit (IMU) with a ToF camera. The ICP [87] is a well-known
algorithm that calculates the transformation (translation and rotation) to align two point clouds that
minimises the mean squared error between the point pairs of the point clouds. The modifications
proposed for the ICP are intended to speed up and increase the robustness. The objective of this
process is to perform localisation and mapping. Localisation is demonstrated at four frames per
second, while map construction was done offline. The concept is demonstrated in a very challenging
scenario, which is the Collapsed House Simulation Facility, and adopting the IRS Souryu snake robot
which uses actively driven tracks for propulsion. The use of ToF cameras is also demonstrated in [70]
in a pipe inspection snake robot. The camera is used to detect key aspects of the pipe geometry, such as
bends, junctions, and pipe radius. The snake robot’s shape can then be adapted to the pipe’s features,
and navigate that way efficiently, even through vertical pipes.

Laser triangulation is a well-known sensing technology in industry, providing very high resolution
and high accuracy measurements. The work in [68] focuses on increasing the snake robot’s autonomy,
which is demonstrated by autonomous pole climbing. This is a complex behaviour to be achieved by
teleoperation. The authors have custom-designed a laser triangulation sensor to fit into the size and
power constraints of the snake robot. The robot adopts a stable position with the head raised, and
rotates the head to perform environment scanning. The resulting point cloud is filtered and processed
to detect pole-like elements in the environment that the snake robot can climb. Once the pole and
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relative positioning is calculated, the robot pose is estimated by using the forward kinematics and
IMU data.

For the sake of completeness, we can refer to vision systems offboard, which might not be applicable
to more realistic applications such as exploration, search-and-rescue, or inspection. In [88], two cameras
with a top-down view of the operating area are used to detect the obstacles and calculate the snake
robot’s pose. The pose estimation is simplified by placing fiducials in the snake robot (10 orange blocks
along the snake robot’s length). In a similar setup, [89] uses a stereovision system to measure the
head’s position of the robot and target coordinates.

4.3. Other Relevant Sensor Technologies for Navigation in Non-Snake Robots

Multiple examples of robots with shapes and propulsion mechanisms others than snake robots,
and which use different sensor modalities from the ones introduced above, are common in literature.
Structured light sensors based on temporal coding are seldom used for navigation because of their
limitations to cope with movement, either due to dynamic elements in the environment or with
a moving sensor. However, an example of a moving robot for search-and-rescue applications is
introduced in [71]. The work in [72] focuses on improving the performance of SLAM using RGB-D
sensors in large-scale environments. The use of stereovision for mapping and navigating in very
challenging outdoor scenarios is shown in [73]. A single camera together with an IMU is demonstrated
to be enough to produce a map and calculate a pose estimate at 40 Hz in a micro aerial vehicle (MAV)
in [74]. One of the most relevant limitations in MAVs is the constraints to the size, power, and weight
of the payload. These constraints are addressed by [75] by designing and building a radar sensor based
on ultra-wide band (UWB), used for mapping and obstacle detection.

Remark 3. Knowledge about the environment and its properties, in addition to its geometric representation,
can be successfully exploited for improving locomotion performance for obstacle-aided locomotion.

While knowledge about the environment’s geometry might seem an obvious requirement for
obstacle avoidance, other kinds of interaction with the environment—including obstacle-aided
locomotion—require some further task-relevant knowledge about the environment. From a
cognitive perspective, this has been acknowledged by the robotics community by the creation of
semantic maps [90], which capture higher-level information about the environment, usually linked or
grounded to knowledge from other sources. For the T2 Snake-2s robot [64], the authors also claim
that for planning the trajectory, they require the nature of the surrounding obstacles to be considered,
as contact with some elements (e.g., fragile, high heat, electrically-charged, or sticky obstacles) might
pose a safety risk to the robot and must then be completely avoided. However, safety is not the
only reason. The biologically-inspired hexapod robot in [91] represents a good example of how
knowledge about the environment is exploited for enhanced navigation. Information about certain
terrain characteristics is captured in the environment model, and later adopted as part of the cost
function used by the RRT* planner [92]. This way, the planned trajectory considers factors such as
terrain roughness, terrain inclination, or mapping uncertainty.

5. Concluding Remarks

In this paper we have surveyed and discussed the state-of-the-art, challenges, and possibilities
with perception-driven obstacle-aided locomotion. We have proposed a division of levels of
autonomy for snake robots along three main axes: environmental complexity, mission complexity,
and external system independence. Moreover, we have further expanded the description to suggest
a step-wise approach to increasing the level of autonomy within three main robot technology areas:
guidance, navigation, and control. We have reviewed existing literature relevant for perception-driven
obstacle-aided locomotion. This includes snake robot obstacle avoidance, obstacle accommodation,
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and obstacle-aided locomotion, as well as methods and technologies for environment perception,
mapping, and representation.

Perception-driven obstacle-aided locomotion is still in its infancy. However, there are strong
results within both the snake robot community in particular, and the robotics community in general,
which can be used to build further upon. One of the fundamental targets of this paper is to further
increase global efforts to realise the large variety of application possibilities offered by snake robots
and to provide an up-to-date reference as a stepping-stone for new research and development within
this field.
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