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Abstract This paper considers the offshore supply vessel (OSV) planning
problem, which consists of determining an optimal fleet size and mix of OSVs
as well as their weekly routes and schedules for servicing offshore oil and gas
installations. The work originates from a project with Statoil, the leading
operator on the Norwegian continental shelf. We present both a new arc-flow
and a voyage-based model for solving the OSV planning problem. A decision
support tool based on the voyage-based model has been used by planners in
Statoil, and cost savings from this was estimated to approximately 3 million
USD/year. Weather conditions at the Norwegian continental shelf can be
harsh; wave heights may limit both an OSV’s sailing speed and the time to
perform unloading/loading operations at the installations. Hence, we analyze
the weather impact on the execution of a schedule and propose robustness
approaches to obtain solutions that can better withstand delays due to rough
weather. Simulations indicate that such solutions both are more robust and
have lower expected costs.
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1 Introduction

Norway is among the world’s largest oil and gas producing countries, with an
oil production of more than two million barrels/day and annual natural gas
production of more than 100 000 million m3. This production takes place at
offshore installations on the Norwegian continental shelf. To ensure contin-
uous production, the offshore installations need regular supplies of products
from onshore supply depots located along the Norwegian coast. Specialized
offshore supply vessels (OSVs) are used for this purpose. Figure 1 shows the
relation between the onshore supply depot, OSVs and the offshore installa-
tions.

Fig. 1 Relationship between the onshore depot, OSVs and offshore installations.

The OSVs are one of the largest cost drivers in the upstream supply chain
of oil and gas installations: Annual time charter cost of a single OSV can be
10-15 million USD. In addition are the costs of operating the OSVs, such as
fuel costs.

OSVs are usually time chartered rather than owned by the energy compa-
nies. However, the energy companies decide and plan how the OSVs are used.
The objective of this paper is to present some main results from a project
with Statoil, the largest operator and license holder on the Norwegian con-
tinental shelf. The project’s aim was to develop mathematical models to
support planners obtaining better decisions regarding fleet composition and
the weekly schedules. This problem is denoted the OSV planning problem,
and consist of deciding how many and which types of OSVs to charter in
and operate, as well as determining their optimal weekly routes and sched-
ules. Such decisions will typically be valid for a few months depending on
when large changes in demand for supplies are observed or expected. Such
changes in demand can for example come from new exploration rigs or when
an installation goes from drilling operations to production.
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In this paper we describe the supply chain in which the OSVs operate, and
we propose a new arc-flow model for the OSV planning problem. Its perfor-
mance is compared with the voyage-based model suggested in [18]. Based on
the large costs involved, it is easy to see that proper planning with respect to
the fleet size and mix can give significant cost reductions. The environmental
aspect from improved planning is also important. Statoil estimates that if the
number of OSVs can be reduced by one, the CO2 emissions can be reduced
by about 10 000 tons/year.

The weather conditions at the Norwegian continental shelf can be harsh,
especially during the winter season. Wave heights may limit an OSV’s sailing
speed and its ability to perform unloading/loading operations at the installa-
tions. Therefore, we also aim to create robust solutions with high probability
to withstand these effects. Hence, we propose robustness approaches and a
simulation analysis illustrating the effects on the solutions.

The remainder of this paper is organized as follows: Section 2 describes
the supply chain for the distribution of products to offshore installations.
A detailed presentation of the problem we consider is given in Section 3. A
review of relevant literature is provided in Section 4. In Section 5, two different
mathematical models for the problem are proposed, before the computational
study on real problems for Statoil is summarized in Section 6. Section 7
discusses the weather impact on the operations. Here, we also present and
analyze some approaches to create more robust solutions. Finally, the paper
is concluded in Section 8.

2 Supply chain

Planning the supply chain for the distribution of products to the offshore
installations is a challenging task. In this section, we give an overview of the
different planning activities in the supply chain. This description is based on
information from [26]. Figure 2 shows the main activities in the supply chain.

Fig. 2 Supply chain for the distribution of products to offshore installations.

The activities at the offshore installations, such as drilling, well, operations
and maintenance, create a continuous demand for different products. These
products can be categorized either as deck or bulk cargoes. The deck cargoes
will be packed and loaded on the deck of the OSV, while the bulk cargoes are
kept in tanks onboard the OSV during transportation. Some of the products
may be kept in storage at the onshore supply depots, while others must
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be ordered from other suppliers when needed. Statoil’s general rule is that
demand must be registered until 4pm the day before an OSV’s departure in
order to be loaded on that vessel. In an emergency an offshore installation
can use priority for earlier deliveries. There are also significant amounts of
backload from the installations to the depot. These volumes represent about
75% of the outgoing product amount.

Government regulated licenses constrain which onshore supply depots that
are to supply which offshore installations. All products from external suppli-
ers must be handled at the depots. At the depot, the products are prepared
before transportation on an OSV. This includes that appropriate load carri-
ers, such as specialized containers, baskets, frames or tanks, must be selected.
The products are packed and secured in load carriers before the load carriers
is secured and labeled with the destination installations. Even though there
is a weekly plan with routes and schedules, the sailing plan for an individual
OSV voyage is usually adjusted before departure based on the actual regis-
tered demand and priorities from offshore installations. Before the OSV can
depart from the depot, the products must be loaded on the OSV. During
stowage planning, there are several issues to consider, such as utilization of
the vessel’s deck space and bulk tank capacity, reach of the cranes at the
offshore installations, and weight and vessel stability.

Rough weather conditions may delay the OSVs’ departures from the sup-
ply depot. After departure, the OSV continually communicates with both
planners at the depot and the offshore installations to be visited. Before an
OSV can enter the zone 500 meters around an installation it must receive
a permission to do so. After entering this zone the preparation for unload-
ing/loading operations starts at the installation.

The most critical activity in the supply chain is the lifting operation be-
tween the OSV and the installation, especially under rough weather condi-
tions. Proper planning in advance is therefore important to reduce the time,
and hence the risk, related to this operation. This planning must also con-
sider in which areas of the installation the different products are to be used
so that the products can be lifted in a sequence that avoids that the OSV
must move between the installation’s cranes during the operation. It is also
important that the backload has been registered correctly to avoid vessel ca-
pacity issues. Bulk products are unloaded/loaded by pumps through tubes.
Before the OSV departs from the offshore installation a documentation of
what has been unloaded/loaded is exchanged between the installation and
the OSV.

After departure from the last offshore installation on the route, the OSV
reports about its status, e.g., regarding backload and delays. The OSV sails
back to the onshore supply depot, which prepares for its arrival. This prepa-
ration includes assigning cranes and a berth to the OSV, and planning to
receive the backload. When the OSV berths at the depot it will be unloaded.
Bulk tanks will be prepared for the OSV’s next voyage, which may involve
cleaning of the tanks.
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3 Problem description

The OSV planning problem consists of identifying the optimal fleet composi-
tion of OSVs that are to service a given set of offshore installations from one
common onshore supply depot while at the same time determining the weekly
routes and schedules for the OSVs. In this setting a route is a combination of
one or more voyages, starting and ending at the supply depot, that an OSV
sails during a week. The OSV may visit one or more offshore installations
during a voyage. The problem is illustrated in Figure 3 for a problem instance
with eight offshore installations. The objective of the OSV planning problem
is to minimize the costs while at the same time maintaining a reliable supply
service. The costs to be minimized are the OSV time charter costs and the
sailing costs of the voyages.

Fig. 3 Example of geographical location of supply depot and offshore installations for

an OSV planning problem. The shaded square represents the depot, circles represent the
offshore installations.

The onshore supply depot and the offshore installations have opening hours
during which OSVs can be unloaded/loaded. The depot is open for service
during regular Norwegian working hours (0800-1600). Installations are either
closed for OSV unloading/loading operations at night (1900-0700) or open
for such operations 24 hours. The turnaround time for an OSV at the supply
depot is eight hours, which coincides with the opening hours. This implies
that an OSV will need to arrive at the depot before 0800 to start on a new
voyage the same day. All voyages are assumed to start from the depot at
1600. Limited capacity at the depot sets a bound on the number of OSVs
that may be prepared for a new voyage on a given day. This number varies
during the week due to personnel availability, typically with less capacity at
weekends.

Historical data show that deck capacity is the binding capacity resource for
the OSVs. This capacity varies from about 600 to 1100 m2 for the available
OSVs. All demands from offshore installations are thus given in m2 deck
capacity. Backloads need to be transported from the offshore installations to
the onshore supply depot, but this volume will in almost every case be less
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than the demand, hence it is assumed that there will be enough capacity to
cover the backload. The installations’ demands are estimated from historical
data as weekly demands. The installations need to receive a given number of
visits during the week, thus the demand for each visit is the weekly demand
divided by the number of visits. The demand is not necessarily evenly spread
throughout the week; hence it is upscaled by a load factor of 20% to allow for
some variations. The total demand for all installations visited on a voyage
cannot exceed the capacity of the OSV sailing the voyage. The departures
from the depot to a given installation need to be evenly spread throughout
the week, i.e., not in a strict sense, but somewhat spread during the week. It
is more important to spread the departures to an installation than the visits
as the demand from an installation is reported continuously. Hence, if an
installation requires three visits a week and the OSVs visiting the installation
leave the depot on three consecutive days, a demand may be called in after
the last OSV has left and it will be up to five days until the next departure.
This may require that other OSVs must be rerouted or even in some cases
that one has to send out a helicopter to meet the demand which will in
most cases be very costly. Such situations can to a large extent be avoided
with evenly spread departures. Voyages with evenly spread departures for a
small instance with two OSVs and seven offshore installations is illustrated
in Figure 4.

Fig. 4 Example of voyages with evenly spread departures for a problem instance with two

OSVs and seven offshore installations.

The duration of a voyage is rounded up to nearest integer number of days,
and will vary depending on the number of installations visited, their service
times, the sailing distances between them, and the service speed of the OSV
sailing the voyage. Too short voyages with few visits are not desired as the
OSVs’ capacities will not be well exploited. Very long voyages should also
be avoided as they involve more uncertainty regarding sailing time. Hence,
minimum and maximum duration of voyages and number of visits for each
voyage are introduced.

A solution to the OSV planning problem with three OSVs and seven off-
shore installations (A, B,..., G) is illustrated in Figure 5. The shaded areas
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Fig. 5 A solution to the OSV planning problem with three OSVs and seven offshore

installations.

represent time spent at the onshore supply depot for preparation of next
voyage, and the white boxes represent the voyages sailed by the OSVs. The
letters in the white boxes illustrate which installations are visited at what
time during the voyages.

4 Literature review

The OSV planning problem can be considered a combined fleet composition
and periodic routing problem. It has similarities to the well-studied vehicle
routing problem (VRP), e.g., there is one common onshore supply depot
where the OSVs’ voyages start and end, similar to a depot in a VRP. However,
the OSV planning problem is more complex than a traditional VRP. The
planning horizon for a VRP is typically one day (a single time period), while
the OSV planning problem has a planning horizon of one week (multiple time
periods). Other constraints, such as opening hours at the installations and
the supply depot, installations that require more than one visit during the
planning horizon and OSVs that may sail more than one voyage complicate
the OSV planning problem further compared with the VRP. It is also a
periodic routing problem where part of the objective is to create a weekly
sailing schedule that repeats itself.

There are some papers that consider routing and logistics problems in off-
shore supply service. [1] discusses the role of OSVs in the offshore logistic
chain as these are identified as expensive resources. The focus is on ana-
lyzing the design of the OSVs to see how they can be improved to better
support operations. Supply operations in the Norwegian Sea are studied in
[11] that presents an integer programming model based on a priori genera-
tion of voyages. Their model can only be used to solve a simplified version
of the OSV planning problem as some complicating aspects such as spread
of departures, service capacity constraints for the onshore supply depot and
maximum/minimum duration of voyages are omitted. [25] proposes a large
neighborhood search heuristic for the periodic OSV planning problem, and
[21] presents a simulation model for the problem that can be used to evalu-
ate alternative vessel fleet configuration under stochastic sailing and service
times. [16] studies the routing problem arising in the supply service of off-
shore installations. The problem considered is a single vehicle pickup and
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delivery problem with capacitated customers where the backload from and
limited storage capacity at the installations also are considered. The objec-
tive is finding a least-cost voyage starting and ending at the supply depot
that visits each installation.

Some studies in the literature have addressed aspects of the OSV planning
problem discussed in Section 3. The fleet composition problem considers the
strategic decision of determining an optimal fleet of vehicles. Models for the
fleet composition problem often include routing decisions as it is necessary to
consider the underlying structure of the operational planning problem, see,
e.g., [8]. An early reference to this problem is [15] that presents a mathemati-
cal formulation for the problem and suggests several heuristic solution proce-
dures. A fleet composition problem from the maritime industry is presented
in [10]. [20] presents a literature survey on fleet composition and routing
problems in both road-based and maritime transportation. This survey pa-
per discusses industrial aspects and presents basic mathematical models for
the problem found in the literature. The authors reviewed in total about 120
scientific papers that could be classified in the category of fleet composition
and routing.

VRPs with multiple use of vehicles consider the VRP problem where each
vehicle may be assigned to more than one trip during the planning horizon.
The problem of assigning a set of trips to a heterogeneous fleet of trucks was
studied in [23]. Here, two heuristic methods to solve large sized problems
are proposed. [27] proposes a tabu search heuristic for the problem while [5]
presents a tabu search heuristic to a more complicated version of the problem.
Furthermore, in [6] the authors present a simplified version of their tabu
search algorithm to compare it with the one proposed in [27]. [2] presents an
exact algorithm for the VRP with time windows and multiple use of vehicles
using a branch-and-price approach.

The periodic vehicle routing problem (PVRP) is a generalization of the
VRP where vehicle routes are constructed over a planning horizon that can
be more than one day, see, e.g., [14]. Decisions to be made are when to visit
the customers during the planning horizon (and there can be multiple visits
to each customer), assigning visits to vehicles, and optimizing the routes for
each vehicle. The OSV planning problem has an extra challenge: A route
(voyage) may last more than one day. Therefore it is necessary to ensure that
an OSV is not assigned to overlapping voyages. An early study, [4], proposed
a heuristic for a PVRP for municipal waste collection. A heuristic algorithm
for the PVRP based on an algorithm designed for the VRP (see [12]) can be
found in [28]. Some later references are [3] that presents a two-stage heuristic
for a real PVRP for the collection of recycling paper containers, and [19]
that proposes a heuristic based on variable neighborhood search. A two-
phase approach for the tactical problem of deciding dates to visit customers
and assigning them to vehicles is presented in [22], leaving the sequencing
decisions to be decided on an operational level. Literature on the PVRP
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where one single route may last more than one day is scarce. Two relevant
papers are [10] and [11], where there are also multiple use of vehicles.

5 Mathematical models

This section presents two mathematical model formulations for the OSV plan-
ning problem: A new arc-flow model formulation is presented in Section 5.1,
followed by a voyage-based model approach in Section 5.2.

5.1 Arc-flow model

In the following we present the arc-flow model for the OSV planning problem.
We start by introducing the notations before the general model formulation
is presented. Some additional constraints are then introduced.

In the underlying network for the problem, a node represents an offshore
installation or the onshore supply depot. Let set N contain all nodes. Set
V contains all available OSVs that can be time chartered. Set T contains
all time periods (days). The length of the planning horizon is defined as |T |
(seven days/one week).

CTC
v is the weekly time charter cost for OSV v, v ∈ V. Then, CS

vij is all
costs associated with OSV v servicing installation i and then sailing to start
the service of installation j, i, j ∈ N . Tvij is the time used by OSV v to service
installation i and sail from installation i to j, in hours. Index o represent
the onshore supply depot, o ∈ N . The service time for the onshore supply
depot is defined as the turnaround time. Si is the weekly visit frequency for
installation i. TMN and TMX are the minimum and maximum duration of a
voyage in days, and RMN and RMX represent the minimum and maximum
number of installation visits on a voyage, respectively. Di is the demand for
deck capacity on an OSV for a visit to installation i, and Qv is the loading
capacity of OSV v. H is the length of a time period in hours (24), and Bt is
the maximum number of OSVs that can be serviced at the onshore supply
depot at day t, t ∈ T .

The binary variable δv equals 1 if OSV v is used, and 0 otherwise. The
binary flow variable yvijt equals 1 if OSV v starts on a voyage on day t
and sails directly from i to j on that voyage, and 0 otherwise. The support
variable zvit equals 1 if OSV v visits node i on a voyage starting on day t,
and 0 otherwise. The continuous variable ωvjt is the waiting time variable,
and equals the number of hours OSV v, starting on a voyage on day t, waits
before start of service at installation j upon arrival at the installation. Finally,
variable dvt is the duration of a voyage (in whole days) sailed by OSV v
starting on day t.
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The arc-flow model for the OSV planning problem can be formulated as
follows:

min
∑
v∈V

CTC
v δv +

∑
v∈V

∑
i∈N

∑
j∈N|j ̸=i

∑
t∈T

CS
vijyvijt, (1)

subject to

zvit =
∑

j∈N|j ̸=i

yvijt, v ∈ V, i ∈ N , t ∈ T , (2)

∑
v∈V

∑
t∈T

zvit ≥ Si, i ∈ N\{o} , (3)∑
j∈N

yvjit −
∑
j∈N

yvijt = 0, v ∈ V, i ∈ N , t ∈ T , (4)

∑
j∈N

yvojt − zvit ≥ 0, v ∈ V, i ∈ N , t ∈ T , (5)

∑
j∈N

yvjot − zvit ≥ 0, v ∈ V, i ∈ N , t ∈ T , (6)

∑
j∈N

yvijt ≤ δv, v ∈ V, i ∈ N , t ∈ T , (7)

dvt =


∑

i∈N

∑
j∈N|j ̸=i

Tvijyvijt +
∑
j∈N

ωvjt

 1

H

 , v ∈ V, t ∈ T , (8)

TMNzvot ≤ dvt ≤ TMXzvot, v ∈ V, t ∈ T , (9)

RMNzvot ≤
∑

i∈N\{o}

zvit ≤ RMXzvot, v ∈ V, t ∈ T , (10)

∑
i∈N\{o}

Dizvit ≤ Qv, v ∈ V, t ∈ T , (11)

∑
v∈V

zvot ≤ Bt, t ∈ T , (12)

ωvjt ≥ 0, v ∈ V, j ∈ N , t ∈ T , (13)

δv ∈ {0, 1} , v ∈ V, (14)

yvijt ∈ {0, 1} , v ∈ V, i, j ∈ N , t ∈ T , (15)

zvit ∈ {0, 1} , v ∈ V, i ∈ N , t ∈ T . (16)

The objective function (1) minimizes the time charter costs for the OSVs
and the sailing costs for the voyages. Constraints (2) define the support vari-
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ables, zvit, to be 1 if OSV v sails to installation i on a voyage starting on
day t. Constraints (3) ensure that installations get the required number of
visits during the planning horizon. Constraints (4) are the flow conservation
constraints, and constraints (5)-(6) ensure that voyages start and end at the
supply depot. The two constraint sets (4) and (5) will alone ensure that an
OSV that sail from the supply depot once also has to sail into the depot once.
Hence, constraints (6) are redundant but are kept in the model formulation
for consistency. Constraints (7) ensure that there will be a maximum of one
departure from the supply depot on a given day for an OSV, and maximum
one visit to any given installation during a voyage. The constraints also en-
sure that if OSV v sails a voyage, δv must equal 1. Constraints (8) set the
value of the voyage duration variables dvt to the sum of all service, sailing and
waiting times rounded up to nearest whole time period (day). Constraints (9)
limit the duration of voyages to be within a minimum and maximum number
of days, and ensure that dvt is 0 if OSV v does not start on a voyage on day
t. Constraints (10) limit the number of installation visits on a voyage to be
within a minimum and maximum, constraints (11) are the OSVs’ capacity
constraints, and constraints (12) are the supply depot capacity constraints
limiting the number of OSVs that may be prepared for a voyage starting on
day t. The non-negativity requirements for the waiting variables are set by
constraints (13), and constraints (14)-(16) set the binary requirements for
variables δv, yvijt and zvit, respectively.

To avoid OSVs sailing overlapping voyages, these constraints need to be
added:

t
∑
j∈N

yvojt + dvt ≤ ((t+ p) mod |T |)
∑
j∈N

yvoj,((t+1) mod |T |)

+Mt

1−
∑
j∈N

yvoj,((t+p) mod |T |)

 , p ∈ {1, 2} , v ∈ V, t ∈ T ,

(17)

For p = 1, constraints (17) ensure that if OSV v starts on a voyage on day t,
it cannot start on a new voyage on day t+ 1 if the duration of the voyage is
more than one day, and for p = 2 they ensure that an OSV cannot start on a
new voyage on day t+2 if the duration of the voyage is more than two days.
The expression multiplied by Mt ensures that the constraints are valid if no
voyages start on day t + 1 or t + 2. The value of Mt is t + TMX as the left
hand side of the constraints can never be greater than t+ dvt and dvt cannot
exceed TMX . The modulus function (mod) is used since the OSV planning
problem is a periodic routing problem where the schedule repeat itself every
|T | day. Hence, the modulus function provides that if t = |T |, t+ 1 = 1 and
so on.

To prevent subtours and introduce time windows for when installations
may be serviced, time variables are added. Let LE

iu and LL
iu be the earliest

and latest time for start of service at installation i if start of service takes place
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on day u, respectively, u ∈ T . Let variable αvitu equal one if installation i is
serviced by OSV v on day u on a voyage starting at day t, and zero otherwise.
This variable can only be non-zero if binary variable zvit equals one. The time
variable τvit is the time for start of service at installation i by OSV v on a
voyage starting on day t. Then the following constraints can be introduced:

yvijt (τvit + Tvij + ωvjt − τvjt) = 0, v ∈ V, i, j ∈ N , t ∈ T , (18)

2∑
µ=0

αvit,((u+µ) mod |T |)L
E
i,((u+µ) mod |T |) ≤ τvit ≤

2∑
µ=0

αvit,((u+µ) mod |T |)L
L
i,((u+µ) mod |T |), v ∈ V, i ∈ N , t ∈ T , u = t,

(19)

2∑
µ=0

αvit,((u+µ) mod |T |) = zvit, v ∈ V, i ∈ N , t ∈ T , u = t. (20)

Constraints (18) ensure that if an OSV sails from installation i to j on a
voyage, the service on installation j cannot start until the OSV has had time
to service installation i and sail from installation i to j. These are equality
constraints, and waiting before the start of service is allowed by giving the
waiting time variable, ωvjt, a value greater than zero. The constraints are
nonlinear, but they can easily be linearized following the procedure described
in [30], pp. 157-158. The linearized constraints are then expressed as follows:

(τvit + Tvij + ωvjt − τvjt) +M1yvijt ≥ M1 (21)

(τvit + Tvij + ωvjt − τvjt) +M2yvijt ≤ M2 (22)

The constants M1 and M2 are lower and upper bounds on the expression
τvit + Tvij + ωvjt − τvjt, respectively.

Constraints (19) are time window constraints, and ensure that the service
at an installation starts within the time window on the day the service begins.
Constraints (20) ensure that a service at an installation can only start on one
specific day if the installation is visited on the voyage.

Constraints (17)-(20) are sufficient if maximum duration of voyages is three
days and additional constraints must be added if longer durations are ac-
cepted.

To ensure evenly spread departures, we introduce the following sets and
parameters: Set K contains potential weekly installation visit frequencies.
Then subset Nk ⊆ N contains the installations that require k weekly visits.
Gk ∈ [0, |T |] represent the length of a sub-horizon for installations with visit
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frequency k, and P k and P k are lower and upper bounds on the number of
visits during a sub-horizon of length Gk. Then the following constraints are
defined for evenly spread departures:∑
v∈V

zvit ≤ 1, i ∈ N\{o} , t ∈ T , (23)

P k ≤
∑
v∈V

Gk∑
µ=0

zvi,((t+µ) mod |T |) ≤ P k, k ∈ {2, 3, 4, 5} , i ∈ Nk, t ∈ T . (24)

Constraints (23) ensure that there will be maximum one voyage starting
on day t that is to visit any installation i. They also ensure that there will
be no more than one visit to any installation visited on a voyage, and hence
make constraints (7) redundant except from the case where i = o. These
constraints are sufficient for installations that require six or seven visits a
week. Constraints (24) ensure that during a given number of consecutive
departure days there is a minimum and/or maximum number of visits to an
installation with visit frequency k. P k is 0 for visit frequency 2, 1 for visit
frequencies 3 and 5, and 2 for visit frequency 4. P k is 1 for visit frequency 2,
and set to a high number for all other visit frequencies. The constraints (23)-
(24) do not ensure evenly spread departure in a strict sense, but they ensure
that the departures are somewhat spread during the week. These constraints
were chosen as they were the ones preferred by Statoil.

Constraints (23)-(24) do not ensure that the actual visits to an installation
is spread. Hence, two visits to an installation can be very close, or may even
be planned at the same time, if an installation is visited late on a voyage
starting on one day and early on a voyage starting on the next day. This
can be avoided by adding so-called collision constraints. An example of such
constraints applied for the voyage-based model can be found in [18]. For the
arc-flow formulation, the αvitu variables can be used to express conditions
that will avoid planned visits to an installation by two OSVs at the same
day.

5.2 Voyage-based model

The OSV planning problem can be reformulated using a voyage-based model
in which the variables represent feasible single OSV voyages. The solution
determines which OSVs should sail which voyages on what days, and hence
the vessel fleet is also decided. A method based on such a model with all
feasible voyages generated a priori is proposed in [18] and is summarized in
the following. This method is an extension of the one proposed in [7] and [13]
for real maritime routing problems. The difference is that in [7] and [13], full
ship routes that usually consist of several subsequent voyages are generated
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a priori, whereas here, the routes will be determined by solving the voyage-
based model that chooses and packs voyages for all OSVs. An overview of
the method is shown in Figure 6.

Fig. 6 Voyage-based solution method, schematic overview.

The voyage generator is a program that generates all candidate voyages.
These voyages satisfy constraints (4)-(11) and (18)-(20) from Section 5.1. The
procedure consists of generating all possible subsets of offshore installations
that may be visited during a voyage. Then, for each subset, a traveling sales-
man problem (TSP) with multiple time windows is solved. Due to the limited
sizes of the TSPs they are solved by a full enumeration procedure. For each
subset, the voyage with shortest duration is chosen, which in most cases also
will be the one with shortest travel distance and least-cost. When the voyage
with shortest duration is not the one with shortest travel distance and the
one with shortest travel distance is marginally longer, the voyage with the
shortest travel distance will be picked. A detailed description of the voyage
generation procedure is given in [18]. The set of voyages generated by the
voyage generator, R, is input to the voyage-based model.

Let sets V, N , T , K, Nk, parameters Gk, P k and P k and variable δv be
defined as in Section 5.1. Further, let set Rv be the set of candidate voyages
that OSV v may sail and L a set containing all possible voyage durations in
days (two or three). Then set Rvl contains all candidate voyages of duration l
that OSV v may sail,Rvl ⊆ R, l ∈ L. CTC

v represents the weekly time charter
cost for OSV v, CS

vr the sailing cost for OSV v sailing voyage r, r ∈ R, while
Dvr is the duration of voyage r sailed by OSV v in days, rounded up to nearest
integer. Si is the required weekly visit frequency to offshore installation i, Fv

the number of days OSV v can be in service during a week, Bt the number
of OSVs that may be serviced at the onshore supply depot on day t, and the
binary parameter Avir is 1 if vessel v visits offshore installation i on voyage
r, and 0 otherwise. Finally, we define binary variable xvrt that equals 1 if
OSV v sails voyage r on day t, 0 otherwise.

The mathematical formulation for the voyage-based model then becomes:
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min
∑
v∈V

CTC
v δv +

∑
v∈V

∑
r∈Rv

∑
t∈T

CS
vrxvrt, (25)

subject to

∑
v∈V

∑
r∈Rv

∑
t∈T

Avirxvrt ≥ Si, i ∈ N , (26)

∑
r∈Rv

∑
t∈T

Dvrxvrt − Fvδv ≤ 0, v ∈ V, (27)

∑
v∈V

∑
r∈Rv

xvrt ≤ Bt, t ∈ T , (28)

∑
r∈Rvl

xvrt +
∑
r∈Rv

l−1∑
µ=1

xvr,((t+µ) mod |T |) ≤ 1, v ∈ V, t ∈ T , l ∈ L (29)

P k ≤
∑
v∈V

∑
r∈Rv

Gk∑
µ=0

Avirxvr,((t+µ) mod |T |) ≤ P k, k ∈ K, i ∈ Nk, t ∈ T ,

(30)

δv ∈ {0, 1} , v ∈ V, (31)

xvrt ∈ {0, 1} , v ∈ V, r ∈ Rv, t ∈ T . (32)

The objective function (25) is similar to the objective function for the arc-
flow model (1) and minimizes time charter costs and sailing costs. Then con-
straints (26) like (3) ensure that the installations get their required number
of weekly visits, and constraints (27) ensure that an OSV is not in service
more days than it is available during a week. These constraints also ensure
that δv equals one if an OSV is in service. Constraints (28) like (12) limit
the number of OSVs that can be serviced at the onshore supply depot on a
given weekday, and constraints (29) ensure that an OSV does not start on
a new voyage before it has returned to the onshore supply depot after last
voyage, as constraints (17). Constraints (30) ensure that the visits to the
offshore installations are evenly spread throughout the week, and correspond
to (23)-(24). Constraints (31) and (32) set the binary requirements for the δv
and xvrt variables, respectively.

6 Numerical analysis

The arc-flow model formulation and voyage-based solution method presented
in Section 5 have been implemented and tested on problem instances based
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on a real OSV planning problem faced by Statoil. The problem instances are
described in Section 6.1, followed by numerical results in Section 6.2.

6.1 Problem instances

The problem instances are generated from real data provided by Statoil. The
data set contains eleven offshore installations that are permanently serviced
from Mongstad supply depot, and three floating rigs that at a point in time
were also serviced from Mongstad. This is Statoil’s largest OSV planning
problem.

A total of 22 problem instances were generated. These are the same in-
stances used in [18]. They are numbered after how many offshore installations
there are and how many of them that have opening hours (time windows) for
when to receive service: Problem instance 3-0 has three installations where
none have opening hours, and 14-3 has a total of 14 installations where three
have opening hours. The opening hours are equivalent to installations hav-
ing (multiple) time windows for when to receive service, and they are always
between 0700 and 1900 every day.

The problem instances have from three to fourteen installations. The num-
ber of weekly required visits for installations varies from one to six, and total
number of weekly visits for the problem instances varies from 16 to 59. The
installations weekly demands vary from 250 to 960 m2. The demand for each
visit vary from 50 to 334 m2. The service times at the installations are be-
tween 2.25 and 7 hours.

Five OSVs are available for time charter. Their loading capacities vary
from 900 to 1090 m2. Time charter rates are above USD 100 000 per week
for all OSVs. The rates vary depending on the OSVs’ loading capacities, the
OSV with least capacity having the lowest rate. The service speed for all
OSVs is 12 knots.

The duration of voyages is two or three days. Minimum number of visits
on a voyage is limited by the minimum duration of two days, and maximum
number of visits is eight installations. The capacity at the supply depot is
three OSVs each day Monday to Saturday, and zero on Sunday when the
supply depot is closed.

All results were obtained on a 2.16 GHz Intel Core 2 Duo PC with 2
GB RAM. The arc-flow and voyage-based model formulations were imple-
mented in Xpress-IVE 1.19.00 with Xpress-Mosel 2.4.0 and solved by Xpress-
Optimizer 19.00.00. Maximum CPU time when solving the Xpress-MP mod-
els was set to 10 000 seconds. The voyage generator was written in C++
using Visual Studio 2005.
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6.2 Numerical results

Table 1 shows the results from running the 22 problem instances by the arc-
flow and voyage-based models. Reported in the tables are the CPU times
in seconds, optimality gap (gap between the solution and best known lower
bound), number of vessels used in the solution (#vess) and the total num-
ber of voyages they sail (#voy). For the voyage-based model we only report
CPU times from running the model in Xpress-MP, and not from the voyage
generation procedure. The CPU times for generating voyages varied from 0
seconds for the smallest instance to just over an hour for the largest instance.

Table 1 Results, arc-flow and voyage-based models. Letter A and V indicate that the
numbers are for the arc-flow and voyage-based models, respectively. O-gap is the optimality
gap reported by Xpress-MP. Gap is the percentage gap in objective value between the

solutions from the two models, a positive gap means that the objective value of the voyage-
based model is lower than that for the arc-flow model.

Prob. CPU CPU O-gap O-gap Gap #ves #ves #voy #voy

inst. A [s] V [s] A [%] V [%] [%] A V A V

3-0 1.7 0.0 0.0 0.0 0.0 2 2 6 6
4-0 8906.2 0.1 0.0 0.0 0.0 3 3 6 6
5-0 10 000 1.3 0.3 0.0 0.0 3 3 6 6
6-0 10 000 0.9 0.4 0.0 0.0 3 3 6 6

7-0 5265.5 2.5 0.0 0.0 0.0 3 3 6 6
8-0 10 000 2.3 0.3 0.0 0.0 3 3 6 6
9-0 10 000 36.7 0.0 0.0 0.0 3 3 6 6
10-0 10 000 229.7 0.4 0.0 0.0 3 3 7 7

11-0 10 000 2596.9 1.9 0.0 0.3 3 3 8 8
12-0 10 000 1583.1 24.8 0.0 22.7 4 3 8 8
13-0 10 000 10 000 26.4 13.0 2.0 4 4 9 8
14-0 10 000 10 000 24.5 0.8 2.0 4 4 9 9

5-1 10 000 0.3 0.2 0.0 0.0 3 3 6 6
6-2 10 000 0.6 0.5 0.0 0.0 3 3 6 6
7-2 10 000 1.4 0.1 0.0 0.0 3 3 6 6

8-2 10 000 15.1 0.3 0.0 0.0 3 3 6 6
9-2 10 000 38.7 0.1 0.0 0.0 3 3 6 6
10-3 10 000 253.8 0.7 0.0 0.2 3 3 7 7
11-3 10 000 2004.8 25.2 0.0 23.2 4 3 8 8

12-3 10 000 554.3 26.6 0.0 24.2 4 3 9 8
13-3 10 000 10 000 24.0 0.3 2.7 4 4 9 8
14-3 10 000 10 000 40.2 0.9 20.2 5 4 9 9

The results show that the arc-flow model solves only the smallest problem
instances within short CPU times. For most other problem instances, the
CPU time limit of 10 000 seconds was reached before an optimal solution
was found or proven. We do observe, however, that for many of the problem
instances the solutions reported are the optimal ones: The percentage gaps
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from the solution found from using the voyage-based solution method are
small or zero for most of the problem instances with no time windows.

With time windows, we observe that the percentage gaps between the so-
lutions found by the two models are large for some of the large-sized problem
instances. The arc-flow model formulation becomes harder to solve when time
windows are introduced, while there is no impact on the voyage-based model
as these additional constraints only affect the voyage generation procedure.
We observe that the problem instances with the highest gaps between solu-
tions from the arc-flow and voyage-based models are the real sized problem
instances 11-3 to 14-3. These results indicate that the voyage-based model
formulation outperforms the arc-flow model. Still, the arc-flow model has
some value: It provides a more precise description of the problem compared
to the voyage-based model, in which some of the problem details are hid-
den in the voyage generation. The arc-flow model’s performance can also be
improved by adding cuts, e.g., in a branch-and-cut scheme.

We observe that the voyage-based solution method gives optimal solutions
within the CPU time limit for all but the largest problem instances, and that
the optimality gap is less than 1% for all but one problem instance. For this
instance we observe that the gap is still small enough to conclude that it is
not possible to reduce the size of the fleet, i.e., the optimal fleet composition
is found, which is the main objective for the OSV planning problem.

The problem instances developed represent a good span of the real-life
OSV planning problem Statoil needs to solve, and for all practical purposes
we obtain good results for all of them with the voyage-based solution method.
This indicates that this solution method is well suited for solving the OSV
planning problem faced by Statoil.

A decision support tool based on the voyage-based model is implemented
and used by planners in Statoil. [18] reports how the model has been extended
to deal with a number of additional practical constraints. Examples of such
constraints are that some offshore installations require departures on specific
days and that the planners prefer voyages with maximum duration of two
days except from departures on Fridays and Saturdays, for which they also
allow three days voyages. Furthermore, [18] discusses how the visits at the
installations can be spread during the week (and not only the departures).
The paper also present various what-if analysis for which the model has been
used to provide decision support.

7 Weather impact and robust planning

The main objective for the OSV planning problem is to determine the optimal
fleet composition. To obtain this objective, voyages and schedules also need
to be considered. The sailing schedule should represent a schedule that real-
istically can be executed. However, the actual sailed schedule will often differ
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from the planned one as the operational problem involves many uncontrol-
lable factors that can result in rescheduling. In this section we demonstrate
how the weather impact may be taken into account leading to more robust
planning.

The prevailing weather conditions affect the OSVs’ sailing speed and the
unloading/loading operations at the offshore installations. This may have
huge consequences for the offshore supply service, especially during the winter
season in the North Sea. The significant wave height is the critical factor
(the average wave height, trough to crest, of the one-third largest waves).
Table 2 classifies four weather states based on the significant wave height
and shows the reduction in sailing speed (in knots based on a service speed
of 12 knots) and percentage increase in service time for unloading/loading
operations at offshore installations in each state. Statoil acts in accordance
with these states in their supply vessel service. WOW stands for waiting
on weather and means that OSVs cannot execute offshore unloading/loading
operations and will have to wait for better weather conditions. This condition
occurs when significant wave heights are above the critical limit of 4.5m.

Table 2 Weather states.

Weather state Wave height [m] Sailing speed Service time

1 < 2.5 0 kn 0%

2 < 2.5,3.5 ] 0 kn 20%
3 < 3.5,4.5 ] - 2 kn 30%
4 > 4.5 - 3 kn WOW

Other uncertain parameters than weather may also affect the OSV plan-
ning problem, but weather is the major one. Hence, we choose to consider
weather conditions when creating robust solutions to the OSV planning prob-
lem. Figure 5 illustrates a solution where a small decrease in sailing speed
or increase in service time may result in delays that will affect later voyages.
This is especially critical for the voyages sailed by OSV 1 on Tuesdays and
OSV 2 on Wednesdays.

7.1 Robustness approaches

The two models presented in Section 5 find the optimal solution assuming
deterministic OSV service speeds and service times at offshore installations.
Here we present some robustness approaches that can be incorporated with
the voyage-based solution method from Section 5.2 to create robust sched-
ules that can better withstand uncertainties in weather conditions. These are
compiled from [17].
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7.1.1 Adding slack

We define slack as an OSV’s idle time after ending a voyage and before the
start of preparation for next voyage. Hence, a voyage where an OSV returns
to the supply depot at 0430, assuming the OSV needs to start preparation
for next voyage at 0800, has slack of 3.5 hours. When voyages are joint in a
weekly schedule, a voyage may have more than 24 hours slack if an OSV has
one or more idle days before starting on next voyage.

Slack in a schedule gives the OSVs time to catch up when they are delayed.
Therefore slack can be used as a robustness approach. Two approaches are
identified that introduce and value slack in a schedule. These can easily be
incorporated with the voyage-based solution method.

1. Require a given number of slack hours for each voyage: All generated
voyages with less slack than required are either discarded (if the duration
of the voyage is maximum duration) or are transferred into longer voyages
by adding 24 hours slack. Every voyage will then allow for some delays
due to reduced sailing speed or increased service time at the offshore
installations.

2. Give value to idle days for the OSVs in the schedule: Add a robustness
profit to OSVs with idle days. This can for example be to add a robustness
profit for each OSV that sails no more than two voyages during the week
(which, with maximum duration of voyages of three days means that the
OSV will have minimum one idle day).

Figure 5 can be used to illustrate the value of approach two: OSV 3 sails
one voyage with duration of two days during the week and has five idle days.
OSVs 1 and 2 have no idle days. Hence, a more robust schedule would be if,
for example, the voyage sailed by OSV 1 starting on Thursdays was sailed
by OSV 3.

The idea of using slack to create robust solutions has been proposed for
other planning problems. E.g., to create robust crew schedules for the airline
industry, [9] and [29] penalize short ground times when aircrew are changing
aircrafts.

7.1.2 An optimization and simulation framework

To create robust and resilient schedules to the OSV planning problem, we
propose a solution method that combines optimization and simulation. The
method consists of three steps:

Step 1 Generate all candidate voyages the OSVs can sail
Step 2 Simulate each candidate voyage and assign a robustness measure
Step 3 Solve voyage-based model with voyage robustness measures

Steps 1 and 3 are equivalent to the two phases for the voyage-based model.
In Step 2 we use statistical weather data to calculate robustness measures
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for each candidate voyage. These are then used to create a robust weekly
schedule for the OSV planning problem by adding a penalty cost in the
objective function.

Figure 7 shows a flow chart of the simulation procedure. For each sim-
ulation a set of consecutive weather states is drawn from the probability
distribution. Four weather states are defined as shown in Table 2. A time
interval of six hours is used, which means that each weather state lasts for
six hours before weather conditions may change. Each weather state has a
start state probability as shown in the last column of Table 3. Next weather
state will be dependent only on the current weather state, a random process
recognized as a Markov chain, see, e.g., [24]. The probability of moving from
one weather state to another, the transition probability matrix, is also pro-
vided in Table 3. All probabilities are calculated from historical weather data
provided by Statoil for the winter season in the North Sea.

Table 3 Transition probability matrix and start state probabilities

State 1 2 3 4 Start

1 82.5% 16.9% 0.6% 0.0% 22.7%
2 14.0% 60.6% 20.7% 4.7% 27.1%
3 0.5% 23.9% 57.7% 17.9% 28.2%

4 0.0% 0.6% 27.9% 71.5% 22.0%

When weather states are drawn, a voyage is simulated according to the re-
duction in sailing speed and increase in service times imposed by the weather
states. If the voyage cannot be completed within the maximum duration of
that voyage, i.e., if the voyage has two day duration and the voyage in the
simulation has not returned to the supply depot by the end of day two, the
installation with the least demand is removed from the voyage. The procedure

Fig. 7 Flow chart of the simulation procedure.
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continues until the voyage can be completed. The sum of the demand from
the removed installations, the total demand in m2 not delivered, is stored
and a new simulation executed. The average demand not delivered over all
simulations for each candidate voyage is the output from the simulation pro-
cedure.

The objective function (25) from Section 5.2 is replaced with:

min
∑
v∈V

CTC
v δv +

∑
v∈V

∑
r∈Rv

∑
t∈T

CS
vrxvrt +

∑
v∈V

∑
r∈Rv

∑
t∈T

CPEvrxvrt (33)

Here, Evr is the average demand (in m2) not delivered for voyage r sailed by
OSV v, and CP is the penalty cost for each m2 not delivered. The penalty
cost is estimated based on the real cost of not delivered volume: The volume
will have to be delivered by a different OSV at a later time, either as re-
routing of an OSV in the fleet or by an additional OSV on short term charter
at a higher cost, or by a helicopter at a very high cost. Hence, the penalty
cost is calculated as the cost of a three day voyage sailed by an OSV time
chartered at a somewhat higher rate divided by the OSV’s capacity (in m2).

To test the weekly fleet schedules obtained with the robustness approaches,
a schedule simulation model has been developed. In the simulation model, a
sequence of weather states for the whole planning horizon of the schedule is
drawn, and for each individual voyage in the schedule the consequences, i.e.,
the penalty cost for average not delivered volume, is calculated. Idle days for
OSVs are added as slack to the voyage sailed prior to the idle day(s), giving
the voyage 24 hours (or more) of extra slack.

7.2 Results from applying robustness approaches

To test the robustness approaches, 8 problem instances are generated based
on the problem instances from Section 6. As before, there are five OSVs
available for time charter. The problem instances have 10 and 13 offshore
installations, where 1, 3, 5, or 7 have time windows for service. The total
numbers of visits are 43 and 55, and the total weekly demands are 5995 and
7429 for the instances with 10 and 13 offshore installations, respectively. The
onshore supply depot has capacity to service three OSVs Monday to Saturday
and is closed for service on Sunday.

The voyage and schedule simulation models were both written in C++.
Results are all obtained with the same computer setup as in Section 6 with
a CPU time limit of 3600 seconds for the voyage-based model.

The problem instances have been solved using five different solution ap-
proaches:

Basic Voyage-based model described in Section 5.2
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4h Voyage-based model where each voyage requires minimum 4
hours slack

Max2 Voyage-based model with an extra robustness profit if an OSV
sails no more than two voyages

SimSol Optimization-simulation framework described in Section 7.1.2
with robustness cost for each m2 not delivered

Combined Combination of SimSol and Max2, with reduced robustness cost
for each m2 not delivered to 1/3 of the cost used in SimSol

The robustness cost in SimSol and Combined is calculated as described
in Section 7.1.2. The robustness profit in Max2 and Combined is set to the
average weekly time charter rate divided by 14.

Each candidate voyage is simulated 100 times in the simulation program
for problem instances with 10 offshore installations, and 20 times for the
instances with 13 offshore installations due to time restrictions. The total
CPU times for the simulations were 1-2.5 hours, and 33-50 hours for instances
with 10 and 13 offshore installations, respectively.

For a given solution’s weekly fleet schedule, we calculated the extra cost
for not delivered volume by running the schedule simulation model. Since
the schedule simulation model runs simulations on only a small number of
voyages the CPU times are low. Hence, we ran 10 000 simulations on each
weekly fleet schedule. The total CPU time for 10 000 simulations was up to
90 seconds.

Table 4 Results robustness approaches. Costs are given in NOK/week for the Basic ap-
proach and in % relative to the corresponding cost of the Basic solution for all other
approaches.

Problem instance 10-1 10-3 10-5 10-7 13-1 13-3 13-5 13-7 Total

Basic PlanCost 626959 627097 628785 819845 640273 641197 645143 651859 5281158

ExtraCost140354 210929 276458 223263 277830 303550 338389 385235 2156008
Total 767313 838026 905243 1043108 918103 944747 983532 1037094 7437166

4h PlanCost 100.08 100.24 100.98 100.00 102.14 102.09 101.57 123.07 103.71
ExtraCost119.22 73.93 83.77 95.61 89.02 90.47 98.19 63.10 86.53
Total 103.58 93.62 95.73 99.06 98.17 98.36 100.41 100.79 98.73

Max2 PlanCost 100.00 100.00 100.00 100.00 100.08 99.92 99.88 100.00 99.99
ExtraCost129.41 84.99 84.94 86.79 85.52 93.77 85.80 92.50 90.83

Total 105.38 96.22 95.40 97.17 95.68 97.95 95.03 97.22 97.33

SimSol PlanCost 103.25 103.48 103.71 101.23 103.00 103.54 102.74 101.97 102.81
ExtraCost101.46 79.25 70.28 76.97 81.39 82.46 82.36 83.78 81.33
Total 102.93 97.38 93.50 96.04 96.46 96.77 95.73 95.21 96.58

CombinedPlanCost 100.27 100.36 101.19 100.41 100.29 101.32 100.98 100.87 100.70
ExtraCost 96.49 89.05 74.08 77.77 91.50 90.19 82.44 96.02 87.13
Total 99.58 97.51 92.91 95.56 97.63 97.74 94.60 99.07 96.77
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Table 4 shows the results. A bold solution cost indicates that the Xpress-
MP optimizer did not prove optimality within the CPU limit time of 3600
seconds (gaps from optimal solutions are, however, less than 1% for all in-
stances). The Basic schedule is good for problem instance 10-1 but poor for
all other problem instances. The SimSol weekly fleet schedules have the over-
all best results, 3.42% better on average than the Basic ones. The SimSol
weekly fleet schedules beat the Basic ones for all problem instances but 10-1,
while the Combined weekly fleet schedules outperform the Basic ones for all
problem instances.

In general we see that addressing robustness give added value as the so-
lutions obtained have a higher potential of being successfully executed. The
planned cost of the weekly fleet schedule will be somewhat higher than if
robustness is not considered, but the simulated extra costs, that represent a
better estimate for the real costs, will be less and hence provide a reduction
in total cost. However, as the schedules are created by uniting individual
voyages in the voyage-based solution method, and we address robustness to
individual voyages, a schedule created without considering robustness can
potentially perform well with respect to robustness cost, as illustrated by
problem instance 10-1.

8 Concluding remarks

This paper considered the offshore supply vessel (OSV) planning problem,
which consists of determining an optimal fleet size and mix of OSVs to time
charter, as well as their weekly routes and schedules for servicing offshore oil
and gas installations from an onshore supply depot. This is a real-life plan-
ning problem and the work originates from a research project with Statoil, the
leading operator on the Norwegian continental shelf. We have presented both
a new arc-flow model and a voyage-based model for solving the OSV plan-
ning problem. A computational study showed that the voyage-based model
outperforms the arc-flow model on the real planning problems. However, the
arc-flow model has some value as it provides a more precise description of
the problem compared with the voyage-based model for which some of the
problem details are hidden in the voyage generation procedure. A decision
support tool based on the voyage-based model has been used by planners at
Statoil for the supply service from one of the supply depots along the Nor-
wegian Coast. The use of this tool has enabled a reduction in the number of
OSVs while maintaining an efficient and reliable supply service. Cost savings
of this reduction was estimated to approximately 3 million USD/year.

The weather conditions at the Norwegian continental shelf can be harsh,
especially during the winter season. Wave heights may limit both an OSV’s
sailing speed and its ability to perform unloading/loading operations at the
installations. Hence, we analyzed the weather impact on the execution of a
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schedule and proposed some robustness approaches to obtain solutions that
can better withstand delays due to rough weather conditions. Simulations
indicated that such solutions are both more robust and have lower expected
costs.

The voyage-based model succeeded in solving Statoil’s OSV planning prob-
lem. However, it can be observed from the computational results that this
method reached its limits with respect to problem sizes. Column generation
schemes or heuristic methods should be developed for obtaining solutions to
larger problems, like the ones proposed in [25]. Such methods may also be of
interest if the scope is extended from considering the OSV planning problem
from one onshore supply depot to perform the planning from several depots
simultaneously. Today’s license regulations restrict the possibility to change
the depot from which an installation is serviced, but it can be of interest
to evaluate the potential cost reduction by more than one depot sharing a
fleet of OSVs. This option results in a larger, more complex problem, and the
solution methods presented in this paper would probably no longer suffice.
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3. Baptista S, Oliveira RC, Zúquete E (2002) A period vehicle routing case study. Eur J

Oper Res 139(2):220-229
4. Beltrami EJ, Bodin LD (1974) Networks and vehicle routing for municipal waste col-

lection. Networks 4(1):65-94
5. Brandão J, Mercer A (1997) A tabu search algorithm for the multi-trip vehicle routing

and scheduling problem. Eur J Oper Res 100(1):180-191
6. Brandão J, Mercer A (1998) The multi-trip vehicle routing problem. J Oper Res Soc

49(8):799-805
7. Brown GG, Graves GW, Ronen D (1987) Scheduling ocean transportation of crude

oil. Manage Sci 33(3):335-346
8. Christiansen M, Fagerholt K, Nygreen B, Ronen D (2007) Maritime Transportation.

In: Barnhart C, Laporte G (eds) Handbooks in Operations Research and Management
Science Vol 14 Transportation. North-Holland, Amsterdam

9. Ehrgott M, Ryan DM (2002) Constructing robust crew schedules with bicriteria opti-
mization. J Multi-Crit Decis Anal 11(3):139-150



26 Elin E. Halvorsen-Weare and Kjetil Fagerholt

10. Fagerholt K (1999) Optimal fleet design in a ship routing problem. Int Trans Oper

Res 6(5):453-464
11. Fagerholt K, Lindstad H (2000) Optimal policies for maintaining a supply service in

the Norwegian Sea. Omega 28(3):269-275
12. Fisher ML, Jaikumar R (1981) A generalized assignment heuristic for vehicle routing.

Networks 11(2):109-124
13. Fisher ML, Rosenwein, MB (1989) An interactive optimization system for bulk-cargo

ship scheduling. Nav Res Log 36(1):27-42
14. Francis PM, Smilowitz KR, Tzur M (2008) The period vehicle routing problem and its

extensions. In: Golden B, Raghavan S, Wasil E (eds) The Vehicle Routing Problem:
Latest Advances and New Challenges, pp. 73-102. Springer, Boston

15. Golden B, Assad A, Levy L, Gheysens F (1984) The fleet size and mix vehicle routing
problem. Comput Oper Res 11(1):49-66

16. Gribkovskaia I, Laporte G, Shlopak A (2008) A tabu search heuristic for a rout-
ing problem arising in servicing of offshore oil and gas platforms. J Oper Res Soc
59(11):1449-1459

17. Halvorsen-Weare EE, Fagerholt K (2011) Robust supply vessel planning. In: Pahl, J,
Reiners T, Voß S (eds) Lecture Notes in Computer Science Vol 6701 Network Opti-
mization, pp. 559-573. Springer, Berlin

18. Halvorsen-Weare EE, Fagerholt K, Non̊as LM, Asbjørnslett BE (2012) Optimal fleet

composition and periodic routing of offshore supply vessels. Eur J Oper Res 223(2):508-
517

19. Hemmelmayr VC, Doerner KF, Hartl RF (2009) A variable neighborhood search
heuristic for periodic routing problems. Eur J Oper Res 195(3):791-802

20. Hoff A, Andersson H, Christiansen M, Hasle G, Løkketangen A (2010) Industrial
aspects and literature survey: Fleet composition and routing. Comput Oper Res
37(12):2041-2061

21. Maisiuk Y, Gribkovskaia I (2014) Fleet Sizing for Offshore Supply Vessels with Stochas-

tic Sailing and Service Times. Procedia Comput Sci 30:939948
22. Mourgaya M, Vanderbeck F (2007) Column generation based heuristic for tactical

planning in multi-period vehicle routing. Eur J Oper Res 183(3):1028-1041
23. Ronen D (1992) Allocation of trips to trucks operating from a single terminal. Comput

Oper Res 19(5):445-451
24. Ross SM (2007) Introduction to Probability Models, 9th edn. Academic Press, San

Diego

25. Shyshou A, Gribkovskaia I, Laporte G, Fagerholt K (2012) A Large Neighbourhood
Search Heuristic for a Periodic Supply Vessel Planning Problem Arising in Offshore
Oil and Gas Operations. INFOR 50(4):195-204

26. Statoil (2011) Logistikkportalen. www.logistikkportalen.no Accessed 30 November

2011
27. Taillard ED, Laporte G, Gendreau M (1996) Vehicle routeing with multiple use of

vehicles. J Oper Res Soc 47(8):1065-1070
28. Tan CCR, Beasley JE (1984) A heuristic algorithm for the period vehicle routing

problem. Omega 12(5):497-504
29. Weide O, Ryan D, Ehrgott M (2010) An iterative approach to robust and integrated

aircraft routing and crew scheduling. Comput Oper Res 37(5):833-844
30. Williams HP (1999) Model building in mathematical programming, 4th edn. John

Wiley & Sons, Chichester

www.logistikkportalen.no

	Optimization in offshore supply vessel planning
	Elin E. Halvorsen-Weare and Kjetil Fagerholt
	1 Introduction
	2 Supply chain
	3 Problem description
	4 Literature review
	5 Mathematical models
	5.1 Arc-flow model
	5.2 Voyage-based model

	6 Numerical analysis
	6.1 Problem instances
	6.2 Numerical results

	7 Weather impact and robust planning
	7.1 Robustness approaches
	7.2 Results from applying robustness approaches

	8 Concluding remarks
	References


