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Abstract
The mixed capacitated general routing problem consists of determining routes for vehicles that are
to service segments of a mixed network consisting of vertices, edges and arcs. In this study we
present a bi-objective version of this problem. In addition to the traditional minimize total route
cost objective we introduce several ways of considering route balance as a second objective. Insights
on route balance and which effects variants of this objective have on the solutions are given. An
exact solution method is used to generate exact Pareto fronts for a number of small benchmark
instances. We illustrate the effects on the solutions for four suggestions for route balance objectives.
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1. Introduction

Routing problems arise in many practical applications and have been widely studied. Defined
a network, one or several routes need to be created that visits all, or a subset of, the network’s
vertices, arcs and/or edges. An overview and early references can be found in Gilbert and Osman
(1995). Two groups of popular problems are the capacitated vehicle routing problem (CVRP) and
the capacitated arc routing problem (CARP). For the CVRP, the service occurs at the vertices in
the network, while for the CARP service occurs in arcs and/or edges.

In this paper we consider the mixed capacitated general routing problem (MCGRP), a gener-
alization of the CVRP and CARP. It is defined on a mixed graph G = (V,E,A), where V is the
set of vertices, E the set of undirected edges, and A the set of directed arcs. Some of the vertices,
edges and arcs are required, i.e. they have a non-negative demand that needs to be serviced. Each
edge and arc have a non-negative traversal cost, and required vertices, edges and arcs may have a
non-negative service cost. A homogeneous fleet of vehicles with a given service capacity is available
for servicing the demand. Typical applications are waste collection and newspaper distributions
where arcs/edges represent housing streets and vertices larger facilities like apartment buildings,
schools and commercial buildings.

The MCGRP was first introduced in Pandi and Muralidharan (1995), who propose a heuris-
tic solution procedure based on creating one giant route first that is split into individual vehicle
routes. The literature on MCGRP is scarce, but includes both heuristic procedures and exact so-
lution approaches: Gutiérrez et al. (2002) propose a heuristic close to a partition-first-route-second
procedure. Their heuristic is compared with the one by Pandi and Muralidharan (1995) and shows
promising results. Prins and Bouchenoua (2005) use a memetic algorithm, and construct a set
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of benchmark instances. Other methods are simulated annealing (Kokubugata et al., 2007) and
adaptive iterated local search (Dell’Amico et al., 2012). The first integer programming formulation
was defined in Bosco et al. (2013) who use a branch-and-cut algorithm to find optimal solutions
for small problem instances. Lower bounds for the MCGRP was identified in Bach et al. (2013).
The MCGRP with stochastic demands is introduced in Beraldi et al. (2015). A chance-constrained
integer programming formulation is presented, and solved exactly by a branch-and-cut algorithm
and heuristically by a neighbourhood search algorithm.

Common for all previous studies of the MCGRP is that one objective is considered: minimize
total route cost. We study a bi-objective version of the problem where we in addition to minimizing
total travel cost also want the routes travelled by each vehicle to be balanced. In this paper we
consider balanced routes to be of similar travel distance, i.e. they should take around the same
time for a vehicle to finish. This is an extension to the MCGRP motivated by the relevance for
many real-life problems where each vehicle driver should have similar workloads. How to define
an objective for balanced routes is not trivial, and we will introduce and test the effects of several
route balance objectives.

The contributions of this paper include providing insights into the bi-objective MCGRP with
route balance, and how the problem solutions depend on how route balance is defined. A new
solution method for bi-objective problems is used to quickly generate a good representation of the
Pareto front.

The remainder of this paper is organized as follows. Section 2 contains some insight on the
effects of considering both total cost and route balance for routing problems. Then Section 3
present an overview of related literature. In Section 4 we present an overview of the solution
approach to the bi-objective MCGRP with route balance. Section 5 provides the numerical results
of a computational study. Finally, Section 6 concludes the paper and suggests alternatives for
further research.

2. Bi-objective vehicle routing problems - some insights

We are studying routing problems that have two objectives: Minimizing total travel cost and
balancing the routes. These two objectives can be conflicting, and we will illustrate this in the
following. In this section we use the VRP in the examples for illustrative purposes. The insights
are, however, general and also apply for the MCGRP and the CARP.

Bi-objective routing problems belong to the class of multi-objective optimization problems, see
e.g. Ehrgott (2005). These problems can be described as follows:

min (f (x1) , f (x2) , ..., f (xn)) ,

subject to x ∈ X.

For the bi-objective case two objectives are to be minimized, i.e. n = 2.
When there are more than one objective, there will in most cases exist several solutions that

can all be considered optimal, or non-dominated. Such solutions are often referred to as Pareto
optimal. The definitions of weak and strict Pareto optimum are as follows (Caramia and Dell’Olmo,
2008):

Definition A solution x∗ is a weak Pareto optimum for the multi-objective problem if and only if
there is no x ∈ X such that fi (x) < fi (x

∗) for all i ∈ {1, ..., n}.

Definition A solution x∗ is a strict Pareto optimum for the multi-objective problem if and only if
there is no x ∈ X such that fi (x) ≤ fi (x

∗) for all i ∈ {1, ..., n}, with at least one strict inequality.
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The image of all Pareto optimal solutions is called a Pareto front.
Routing problems are most often threated as single-objective problems where the objective is

some sort of minimizing total cost of the solution, i.e.:

Min
∑
r∈Ω∗

tr,

where Ω∗ is the set of routes in the solution and tr the cost of route r. Costs will often be associated
with time or distance. In this paper, we let travel distance define the cost of a route. I.e. when we
discuss total travel cost this will be equivalent to total travel distance. Route balance will then be
defined with respect to the travel distance of each individual route in the solution.

In this section we operate with the following three assumptions:

1. We have a fleet of Q homogeneous vehicles with capacity C.

2. In a solution each of the Q vehicles travels one route that starts and ends at the depot and
service at least one customer.

3. No symmetry, i.e. there does not exist any set V ∗ of vertices, arcs or edges that can be visited
on a route that has the exact same travel distance as a different route visiting a different set
of vertices, arcs or edges where at least one of these is not element in V ∗.

It is not trivial to define route balance. When we consider travel distance, we can define a
perfectly route balanced solution as one for which each vehicle will be travelling the exact same
distance. To obtain route balance in this setting, the two following objectives can be considered:

Min
∑
r∈Ω∗

(tr − µ)2 ,

Min tL − tS ,

where µ is the average travel distance of each individual route in the solution, and tL and tS the
routes with the longest and shortest travel distance in the solution, respectively. The first of these
objectives is then the same as minimizing the variance of the travel distance of each individual
route in the solution.

If there for a routing problem exist at least one perfectly route balanced solution, the two
balance objectives presented above will have the same optimal value, 0. But the Pareto front for
these objectives when the other objective is to minimize total travel distance can be very different.
The first minimization problem will require more computational effort than the second, but takes
into account the travel distance of all individual routes in the solution. The second minimization
problem will ensure that the difference in travel distance between tL and tS is small, but does not
consider the travel distances of the other routes in the solution. Hence there can be many routes
that have incrementally longer travel distance than tS or many that have incrementally shorter
travel distance than tL. If a decision maker is interested in creating a fair workload, i.e. a fair
distribution for the lengths of the routes, a variance objective may be more suitable. On the other
hand, a variance objective may result in solutions with extremes, i.e. one substantially longer route
or shorter route. This can be undesirable. To avoid such solutions lower and upper bounds on the
individual routes’ travel distance can be added.

A different objective that, as the variance objective, also takes into account the length of all
routes is:

Min
∑
r∈Ω∗

(
tr − tS

)
.
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(a) The nine node VRP. The
square numbered 0 represents
the depot.

(b) Solution when minimizing
longest route distance.

(c) One route from the maximiz-
ing shortest route distance solu-
tion.

Figure 1: Consequences of minimizing longest route distance and maximizing shortest route distance for a nine node
VRP.

Here Ω∗ is the set of routes in the solution, tr is the travel distance of route r and tS the travel
distance of the shortest route. This objective has the advantage of considering all route lengths
without needing to consider a quadratic objective.

For some real-life routing problems there may exist a target route distance, i.e. a travel distance
that all routes should be close to. This can be the case for e.g. the newspaper delivery problem where
all the individual routes should be completed within a certain time and all routes for individual
newspaper deliverers need to be of similar length. If we define this target distance as TG this
objective can be modelled as follows:

Min
∑
r∈Ω∗

|tr − TG|.

In some situations it may not be of importance that the routes are overall balanced, but there
may be a preference of either having not too long routes or too short routes. The former can for
example be the case for waste collecting problems where the drivers have to sort the waste after
returning to the depot (see e.g. Lacomme et al. (2003)). Then one of the following objectives can
be used:

Max tS ,

Min tL,

where tS and tL are the travel distance for the shortest and longest routes in the solution, respec-
tively. These two objectives can lead to very diverse solutions. An example is illustrated in Figure
1. This is a nine node VRP in the Euclidian space where nodes 1−3, 4−6 and 7−9 are located in
clusters with varying travel distances from the depot, 0 (Figure 1a). Figure 1b shows the solution
to the minimize longest route problem: Each vehicle route visit one cluster. Figure 1c shows a route
in the solution to the maximize shortest route problem: Each vehicle route will visit one node in
each cluster.

Maximizing the travel distance for the shortest route in the solution may sound quite conflicting
for a decision maker whose primary objective is to minimize cost. However, it may for some routing
problems be an efficient means to create solutions that are more route balanced when both objectives
are considered. Maximizing tS is one part of the objective of minimizing the distance between the
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Figure 2: Examples of solutions that are equally route balanced for a VRP with four vehicles and eight vertices. The
square box represents the depot. All required vertices are equally spaced on a circle with radius R from the depot.

longest and shortest route, while minimizing tL is the other. An interesting observation from the
example in Figure 1 is that the solution to the minimizing tL problem is close to the solution of
minimizing total travel distance, while the solution to the maximizing tS problem is close to the
solution of minimizing tL − tS .

Insights from Bertazzi et al. (2015) show that also the objective of minimizing tL may have
significantly higher total travel distance than the minimizing total travel distance solution. In fact,
the authors prove that in the worst case the ratio of the two solutions total travel distance tends to
infinity. However, this relies on assumption 2 being relaxed. In general, for most real-life problems,
there will be a limited number of capacitated vehicles where most feasible solutions require that each
one of them travels one route. Then it may often be possible to find a solution to the minimizing
tL problem which total travel distance is not far from the optimal minimizing total travel distance
solution.

For many routing problems there exist several solutions that have the same, or very similar
route balance, but where the total travel distance will vary. One example is shown in Figure 2.
Here there are eight vertices and four vehicles that visit two vertices each. The vertices are all
equally spaced on a circle with distance R from the depot. All three solutions have perfect route
balance, i.e. all four routes have the exact same travel distance, but the total travel distance of all
routes varies. For the far left solution, each route have travel distance (2+

√
2)R, making the total

travel distance 4(2 +
√
2)R. The next solution has total travel distance of 2(1 + cos(3π/8))R, and

the last has total travel distance of 16R.
In Figure 3, we illustrate the opposite effect of Figure 2: Two solutions to a VRP where both

have the same total travel distance, but different route balance. There are four vertices and two
vehicles and the travel distances between the vertices are as shown in the far left illustration. Both
solutions have a total travel distance of 2(a+ b+2c). The solution shown in the middle is perfectly
route balanced with two routes each of travel distance a+ b+ 2c, while the other solution has two
different routes with a travel distance difference of 2b+2c−2a. In the worst case, a and c are small
values (ϵ), and b is a high value, making the difference in travelled distance for the two routes close
to 2b.

For problems like the ones illustrated in Figures 2 and 3, the interesting solutions are the ones
that have the lowest total travel distance (Figure 2), and the best route balance (Figure 3).

We have seen how solutions considering different objectives may vary, and one interesting
question is how large difference we can have in solutions in terms of total travel distance when
considering the two objectives of minimizing total travel distance and maximizing route balance
(minimizing route imbalance). We introduce the following definitions:

Definition Let S be the set of solutions to a routing problem. Then let Ts (s ∈ S) be the to-
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Figure 3: Two solutions with the same total travel distance for a VRP with two vehicles and two required vertices.

Figure 4: VRP with two vehicles and two required vertices.

tal travel distance of solution s. Further, let ∆s (s ∈ S) be the imbalance of solution s, and(
V 1
s , V

2
s , ..., V

Q
s

)
(s ∈ S) be the partition of the required vertices, edges and arcs V visited by

the vehicles associated with solution s. Let l
(
V
)

be the travel distance of the optimal traveling
salesman problem (TSP) visiting the set of all required entities V so that Ts =

∑Q
k=1 l

(
V k
s

)
. Fi-

nally, let sT be the optimal solution to the single-objective minimize total travel distance problem
and let s∆ be the optimal solution to the single-objective minimize imbalance routing problem.

There will for many routing problem exist several optimal solutions to the maximize route
balance problem that have different values for Ts∆ . In those cases we are only interested in the one
with the shortest travel distance, i.e. s∆ will always be the solution with shortest value for Ts∆ .

We start by considering a VRP with two vehicles and two required vertices, see Figure 4. We
have two required vertices located in directly opposite directions from the depot. Each of them
have a demand of D, and we assume that the demand can be split, i.e. a vehicle may visit one
vertex and service only a portion of the demand. The travel distance to vertex 1 is c − ϵ and the
travel distance to vertex 2 is c+ ϵ where ϵ is a small number. Then we observe the following travel
distance for the optimal solutions to the example illustrated in Figure 4:

TsT = 2 ∗ (c− ϵ) + 2 ∗ (c+ ϵ) = 2c,

Ts∆ = 2 ∗ (c− ϵ) + 2 ∗ (c+ ϵ) + 2 ∗ (c− ϵ) + 2 ∗ (c+ ϵ) = 4c = 2 ∗ TsT .

We observe that we get the optimal route balance solution by creating two equal routes that
service both vertices. The travel distance for this solution is then twice as long as the solution to
the minimize travel distance problem.

Claim 1. l
(
V k
s∆

)
≤ l (V ) ≤ TsT .

The first inequality in Claim 1 follows from V k
s∆

⊆ V and the second inequality is a consequence
of the length of an optimal TSP tour visiting all vertices is less than or equal to the length of an
optimal VRP solution visiting all vertices. This then implies:
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Theorem 1. Ts∆ =
∑Q

k=1 l
(
V k
s∆

)
≤

∑Q
k=1 TsT = QTsT .

By Theorem 1 we know that the best route balanced solution we can get has a total travel
distance equal to, or less than, the number of routes multiplied by the best total travel distance. In
the case where vertices are located in clusters where each of the vertices in a cluster can be serviced
by individual routes, it is possible to create a perfectly route balanced solution where each vehicle
visits each cluster exactly once. We will illustrate this by an example.

Figure 5 shows a VRP with three clusters that each contain three vertices, there are three
vehicles, assumptions 1-3 holds, and each vertex has a demand of C/3. That is, a vehicle visiting a
cluster can service one, two or three vertices, representing a demand of C/3, 2C/3 or C, respectively.
The travel distances from the depot 0 to the clusters and between the clusters are as shown in Figure
5a. The travel distance between each vertex in a cluster is ϵ. As balance objective, we consider
minimizing the difference in travel distance between the longest and shortest routes. The following
solutions exist:

• All vehicles visit one cluster each and service all three vertices, a total demand of C, Figure
5b.

• Combinations of two vehicles visiting two clusters, servicing two vertices and a demand of
2C/3 in one cluster and one vertex and a demand of C/3 in the other, and one vehicle visiting
one cluster servicing all vertices and a demand of C, Figure 5c.

• All vehicles visit two clusters each, servicing two vertices in one cluster and one in the other,
Figure 5d.

• Combinations of two vehicles visiting two clusters servicing two vertices in one and one vertex
in the other cluster, and one vehicle servicing one vertex in all three clusters, Figure 5e.

• All vehicles visit each cluster once servicing one vertex and a demand of C/3 in each cluster,
Figure 5f.

Figure 6 shows the objective values and Pareto front for the three cluster example when ϵ → 0.
There are three non-dominated solutions: The optimal minimum travel distance solution: each
vehicle visits exactly one cluster, Figure 5b, the optimal route balance solution: each vehicle visits
all three clusters, Figure 5f, and the shortest travel distance alternative of the combination of routes
visiting one or two clusters: Figure 5c. We observe that the total travel distance of the best route
balance solution is three times the one for the best travel distance solution.

We observe from Figure 6 that we can create a solution that scores high on the route balance
objective at a total travel distance that is close to the minimum total travel distance solution. To
get better route balance than this solution the only option is the perfectly balanced solution that
has a much higher total travel distance.

We can create a general case of the example illustrated in Figure 5: We have Q vehicles with
capacity C that are to service a total of Q2 customers, each with demand C/Q. Clusters of Q
customers are located at distances ci, i = 1, ..., Q from the depot, where each ci is unique. To get
from a cluster to a different cluster, it is necessary to travel through the depot. The internal travel
distances between each customer in a cluster is ϵ. When assumption 3 holds, and ϵ → 0, the best
total travel distance solution will be that each vehicle service all customers in one cluster. The best
route balance solution will be that each vehicle service one customer in each cluster. Total travel
distances for each of the best solutions are then:

LsL =

Q∑
i=1

2ci,
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(a) The three cluster VRP.
(b) Vehicles visit one clus-
ter each.

(c) One example of vehicles
visiting one or two clusters
each.

(d) Vehicles visit two clus-
ters each.

(e) One example of vehicles
visiting two or three clusters
each.

(f) All vehicles visit all
three clusters.

Figure 5: Solutions to the three clusters, nine vertices, three vehicles example.
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Figure 6: Objective values and Pareto front for the three clusters, nine vertices, three vehicles example. X-axis shows
total travel distance and y-axis the balance measured as difference between longest and shortest route.

Ls∆ = Q

Q∑
i=1

2ci = QLsL .

Bertazzi et al. (2015) show that also when the balance objective is to minimize tL the worst
case is Ts∆/TsT → Q. However, unless Q = 1, this ratio will never reach Q. We introduce the
following definitions:

Definition Let tL∆ be the longest route in the solution to the single-objective min tL problem, an let
tLT be the longest route in the solution to the single-objective minimize total travel distance problem.
As before, sT is the solution to the single-objective minimize total travel distance problem. s∆L is
the solution to the single-objective min tL problem.

Claim 2. If Q ≥ 2, then tL∆ ≤ tLT < TsT .

The first inequality in Claim 2 is obvious as the longest route in the solution to the min tL

problem is at least no longer than the longest route to any other solution to the problem. The
strict inequality holds under assumption 2 when there is more than one vehicle. This then implies:

Theorem 2. Ts∆L =
∑Q

k=1 l
(
V k
s∆L

)
≤

∑Q
k=1 t

L
∆ < QTsT .

Theorem 2 holds whenever Q ≥ 2, and shows that the worst total travel distance we can get
is strictly less than the number of vehicles multiplied with the best possible total travel distance
when the objective is to minimize tL. It also holds when we relax our assumption 2, i.e. when all
vehicles do not need to travel a route. This implies from the insights illustrated in Figure 2 and
3: We may have several solutions with different total travel distance that still is optimal relative
to the min tL problem. In these cases, we are only interested in the solution with the lowest total
travel distance. Hence, we have:

Theorem 3. If tL∆ = TsT , then tLT = tL∆ and Ts∆L = TsT .

The first implication in Theorem 3 follows directly from Claim 2 and the second implication
follows the first as tLT = tL∆ directly implies that there exists an optimal solution to the min tL

problem that is also optimal for the single-objective minimize total travel distance problem.
For real routing problems a perfectly route balanced solution like the one in Figure 5f will never

be of interest. The perfectly route balanced solution will be very expensive in terms of total travel
distance, and any driver will question why there should be made several visits to the same location
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(a) (b)

Figure 7: Examples of Pareto fronts.

if one single vehicle can service the demand. The observation from Figure 6 is interesting as there
is a Pareto optimal solution with good route balance at a small increase in total travel distance
from the best known solution. In this solution there is though, a duplication of one of the routes,
and hence it would not be an interesting solution from a practical point of view. But for many
other real routing problems that includes many more required vertices and vehicles than our little
example, the Pareto front may look similar to the one in Figure 6 and hence, it will be possible to
achieve a much better route balance at a low increase in cost.

It is far from trivial to decide which solutions, or what part of the Pareto front a decision
maker will be interested in. Figure 7 illustrates the Pareto front from five solutions found for two
different routing problems where one objective is to minimize total travel distance and the other
is to minimize the difference in travel distance between the longest and shortest route. In many
cases, and in particular if it is possible to split demand, the optimal route balance solution can be
very expensive in terms of total travel distance as illustrated by Theorem 1 and our example in
Figure 5. For most real routing problems, a decision maker will not aim for perfect route balance,
but for some sort of more fair distribution of workload between the vehicles, and will be willing to
add to the total travel distance to obtain this. The decision maker may have a given willingness
towards how much increase in total travel distance that would be accepted for the gain of balanced
routes, e.g. that a 10 % increase in total travel distance compared with the minimum total travel
distance is acceptable. In that case only solutions 1 and 2 in Figures 7a and 7b will be of interest
for the decision maker. But as we observe, solution 3 in Figure 7b looks quite promising, having
a total travel distance just over 1.1LsL , but a much better route balance than solutions 1 and 2.
If the Pareto front has a structure similar to the one in Figure 7b it will be interesting to study
the solutions where there is a large improvement in the route balance. However, if the Pareto
front has a structure similar to the one in Figure 7a it is more difficult to define which areas that
are of interest for the decision maker, and maybe an approach where the Pareto optimal solutions
considered are within given criteria specified by the decision maker will be of good quality.

For solutions to real routing problems, we assume that demand cannot be split, i.e. each vertex
needs to be serviced by exactly one vehicle. In practice most routing problems will be of this type
meaning that the demand at each required vertex is sufficiently small so that routing decisions
where more than one vehicle service the demand will be cost wise dominated by decisions where
only one vehicle service this demand. In particular this will be valid for the MCGRP problem
we consider in this paper. Figure 8 shows a VRP with ten nodes and two vehicles. In Figure
8a the optimal solution to the minimum travel distance objective is shown. This solution is not
very well route balanced as we have one shorter route visiting four vertices and one longer visiting
six vertices. It is possible to consider these two routes and make the solution artificially more
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(a) Minimum total
travel distance.

(b) Artificial route
balance.

(c) Two examples of solutions with better
route balance.

Figure 8: Minimum total travel distance, artificial route balance and route balanced solutions.

route balanced by making the shorter route longer as illustrated Figure 8b. Such routes are called
artificially balanced and will not be of practical interest. Artificially balanced routes can be avoided
by making each separate route optimal according to the minimize total travel distance objective, see
e.g. the discussion by Jozefowiez et al. (2002). To create a solution that is better route balanced
than the minimum total travel distance solution, we will have to move one node visit from the
longest route to the shortest route. Examples of such solutions are shown in Figure 8c.

3. Relevant literature

The bi-objective MCGRP is a multi-objective routing problem. There exists some studies on
this set of problems, a review is given by Jozefowiez et al. (2008b). Their findings are that there
exist only a relative moderate number of publications. However, many authors have started to
consider several objectives in routing problems, e.g. Demir et al. (2014). For most problems one
of the objectives will be the standard one for general routing problems: Minimize total route cost.
Cost can in that setting be defined as total travel distance, total travel time, or other means
of cost relevant for the problem studied. Other popular objectives studied in the literature is
minimizing the number of routes (vehicles), maximizing customer satisfaction and balancing of
routes. Jozefowiez et al. (2008a) present an overview of what multi-objective optimization brings
to VRPs, and illustrate this by two examples. They propose a general two-stage strategy to deal
with the challenges of multi-objective optimization: Diversification and intensification.

In the following some of the relevant literature on multi-objective routing problems is presented.
We focus on literature that consider balancing of routes as one of the objectives. We start with
presenting references considering the CARP, then the VRP. No literature on the multi-objective
MCGRP has been found.

Lacomme et al. (2003, 2006) were the first to study a multi-objective CARP where they seek
to minimize both the total route length and the length of the longest trip: the makespan. The
problem is motivated by waste management companies. They use one of the most widely used
multi-objective genetic algorithms: Non-dominated Sorting Genetic Algorithm II (NSGA-II). Initial
solutions are generated randomly, but also three good starting solutions are added by using three
good heuristics for the CARP. Local search operators are added to improve solutions with respect
to both objectives. Such hybridization approaches where evolutionary algorithms are combined
with local search are also called memetic algorithms.

The multi-objective CARP was also studied by Mei et al. (2011) who propose a decomposition-
based memetic algorithm with extended neighborhood search. In the decomposition framework,
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the multi-objective CARP is split into a number of single-objective CARPs where the objectives
are given different weights. An experimental study compares the authors’ solution method with
the one proposed by Lacomme et al. (2006) and a pure NSGA-II approach.

Grandinetti et al. (2010, 2012) propose an optimization-based heuristic procedure for the multi-
objective CARP with three objectives: minimize total transportation cost, makespan and the total
number of routes. The last objective is handled by solving the bi-objective CARP for all possible
number of vehicle routes. The problem is modelled as a path-flow integer programming model
where each path represents one possible route. The bi-objective CARP is then solved by the
ϵ-constraint method where the Pareto set is approximated by solving a sequence of constrained
single-objective problems: One objective is transformed into a constraint bounded by the value of
ϵ. A computational study compares the results with the solutions presented by Lacomme et al.
(2006), and finds that their method is competitive with the algorithm proposed by Lacomme et al.
(2006).

A stochastic bi-objective CARP was studied by Fleury et al. (2005). The authors seek to
minimize total costs and makespan for a CARP with stochastic demands. A stochastic memetic
algorithm is proposed using a NSGA-II framework.

An early study by Sutcliffe and Board (1990) considers the problem of transporting mentally
handicapped adults to a training center. They identify several objectives; among them minimizing
the total travel distance, minimizing total time, equalization of the trip times for each vehicle and
equalization of the number of unused seats in each vehicle. They solve the problem as a single-
objective VRP with the objective of minimizing total time and add constraints on the equalization
of trip times and unused seats.

Lee and Ueng (1999) study a VRP with load-balancing, motivated by the aspect of fairness
among the drivers in a company. They formulate the problem as an integer program where the
objective function is a weighted sum of total travel distance and the total difference between each
vehicles working time and the vehicle with shortest working time. A heuristic solution algorithm
is proposed for solving the integer program.

Three objectives and multiple periods are considered in the VRP studied by Ribeiro and
Lourenço (2001). Objectives are to minimize total costs, minimize standard deviation of the work
of each vehicle at the end of the period, and maximize the number of times a driver visits the same
customer. In their solution procedure, each objective is given a weight and the sum of the weighted
objectives is minimized.

Corberán et al. (2002) propose a scatter search to the problem of routing school buses when the
objectives are both to minimize the total number of buses and to minimize the maximum time any
student spends on a bus. Two constructive heuristics are used to generate initial routes, then the
solutions are improved by local search and by generating new solutions by combining two existing
ones.

In a sequence of papers Jozefowiez et al. (2002, 2006, 2007, 2009) study the VRP with route
balance. Here route balance is measured in terms of difference between the longest and shortest
route. In Jozefowiez et al. (2002) the problem is solved in a NSGA-II framework where a technique
is proposed to maintain the population in the evolutionary algorithm diversified: Elitist diversifica-
tion. For intensification of the Pareto set found by the evolutionary algorithm the authors propose
the use of tabu search. Parallelization is also added to their algorithm to improve the performance.
The authors do further investigations on the NSGA-II framework in Jozefowiez et al. (2006). A
computational study compares the results of using only NSGA-II, NSGA-II with elitist diversifica-
tion and adding parallelization to the algorithms. In Jozefowiez et al. (2007) a target aiming Pareto
search using tabu search is proposed. The local search procedure is embedded with NSGA-II form-
ing a hybrid meta-heuristic. The elitist diversification technique and parallelization procedure are
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revisited in Jozefowiez et al. (2009). The two mechanisms are embedded in a multi-objective evo-
lutionary algorithm, and computational results show a strict improvement of the generated Pareto
sets.

Pasia et al. (2007a) also study the VRP with route balance. The proposed solution method
combines population search with local search. In a computational study the results show that their
proposed solution method performs well compared with the NSGA-II algorithm. In a second paper,
Pasia et al. (2007b), the authors propose a Pareto ant colony optimization scheme for the same
problem. Computational results show that the new solution method improves the performance of
the solution method from Pasia et al. (2007a).

A multi-objective evolutionary algorithm with an explicit collective memory method for the
VRP with route balance was proposed by Borgulya (2008). The algorithm is compared with the
ones by Jozefowiez et al. (2002, 2006) and the comparison shows that the algorithm has good
quality and provides similar results as the methods it is compared with.

Reiter and Gutjahr (2012) propose an exact method for the VRP with the objectives of mini-
mizing total travel cost and the length of the longest route. The problem is formulated as an integer
programming model and the solution approach is based on the adaptive ϵ-constraint method. The
resulting single-objective subproblems are solved by a branch-and-cut technique. The metaheuris-
tic algorithm NSGA-II and a single-objective genetic algorithm is combined with the ϵ-constraint
method to improve the performance. A computational study shows that the method can solve
small to medium sized instances to optimality.

The commercial waste collection VRP with time windows (VRPTW) was studied by Kim
et al. (2006). Objectives are to minimize the number of vehicles and total travel time, maximize
route compactness and balance workload among the vehicles. The solution approach contains a
clustering-based waste collection VRPTW algorithm.

A column generation procedure for a bi-objective VRP is proposed by Sarpong et al. (2013).
The objectives are minimize total travel cost and length of the longest route. A variant of an
ϵ-constraint method is proposed, where instead of defining an ϵ-constraint for the objective of
minimizing the length of the longest route, this objective defines a column’s feasibility.

Melián-Batista et al. (2014) study a bi-objective VRPTW where the objectives are minimizing
total travelled distance and minimizing distance between longest and shortest route length (in time
units). A mixed integer linear model for the bi-objective problem is provided, and two versions of
a scatter search-based algorithm are designed and implemented. Their performance is compared
with an NSGA-II algorithm, and experiments show that the two proposed algorithms outperform
the NSGA-II algorithm.

A bi-objective transportation location routing problem was studied by Martínez-Salazar et al.
(2014). This problem is an extension to the VRP where also the locations of facilities need to be
determined. The objectives are to minimize total cost and balancing workload by minimizing the
distance between longest and shortest route. Both a local search based method (scatter tabu search
procedure) and an evolutionary method (NSGA-II) are proposed.

Some not directly related literature references are Apte and Mason (2006) who study the deliv-
ery operations at the San Francisco public library. Two alternatives for delivery design are proposed:
Balanced routes with pre-sorting and cross docking with pre-sorting and balanced routes. Groër
et al. (2009) study the balanced billing cycle VRP where a utility company needs to create new
meter reading routes based on the already existing routes. Objectives are to reduce total length
of the routes and balance the meter readers’ route in terms of total route length and number of
meters read each day. He et al. (2009) propose a balanced K-means algorithm to design balanced
groups of geographically close customers for a tobacco company, but do not consider the actual
vehicle routes. Tsouros et al. (2006) propose a routing-loading balance heuristic algorithm for a
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VRP where the objectives are to maximize uniform vehicle utilization taking into account a smooth
vehicle loading throughout the fleet.

4. Solution approach

To illustrate the effects of including route balance to the MCGRP, we use a solution method
for the bi-objective problem that quickly generates a good approximation to the Pareto front. The
solution method is described in detail by Halvorsen-Weare (2015). In this section we present a
mathematical model formulation for the MCGRP, and provide a brief description of the solution
method.

4.1. Mathematical formulation for the MCGRP
We choose to formulate the MCGRP as a set partitioning model. In this model, each variable

correspond to one route, and each required vertex, edge and arc needs to be serviced by exactly
one route. Depending on the problem instance, the number of routes can be fixed, or it can be a
part of the optimization problem, i.e. the number of routes will be determined by what gives the
best objective function value.

Let Ω be the set of routes a vehicle with capacity C can travel. The sets VR, AR and ER are
the sets of required nodes, arcs and edges, respectively.

The parameters Arv, Ara and Are are one if on route r ∈ Ω required vertex v ∈ VR, arc a ∈ AR

or edge e ∈ ER is serviced, and zero otherwise. Tr is the length in time units for each route, and
Q is the number of available vehicles.

The variables are the binary variable λr, r ∈ Ω, equal to 1 if route r is used and 0 otherwise,
and the continuous variables tL and tS , equal to the length of the longest and shortest route,
respectively.

We define a total of five objectives, that all should be minimized:

T :
∑
r∈Ω

Trλr (1)

∆1 : tL − tS (2)
∆2 : tL (3)
∆3 :

∑
r∈Ω

∣∣Trλr − TG
∣∣ (4)

∆4 :
∑
r∈Ω

|Trλr − µ| (5)

T is the objective of minimizing the total distance travelled by all routes. Then ∆1-∆4 are four
different options for the route balance objective. ∆1 minimizes the difference between the longest
and the shortest route and ∆2 minimizes the length of the longest route. TG is some target route
distance defined by the user, i.e. for ∆3 the decision maker’s objective is to minimize the total
difference in travelled distance of all individual routes compared with some desired route distance.
µ is the mean travel distance of all routes in the optimal solution, hence ∆4 minimizes the difference
in travelled distance between all individual routes and the mean travel distance. This objective
resembles the variance objective. To ensure that we have a linear problem, objective ∆4 can only
be applied to problem instances where there is a fixed number of vehicles.

14



For objectives ∆3 and ∆4 we use the absolute value. To formulate these objectives as linear
objectives, we reformulate them as follows:

∆3 :
∑
r∈Ω

tGr (6)

∆4 :
∑
r∈Ω

σr (7)

The values of the new variables, tGr and σr are determined by the following constraints:

tGr ≥
(
Tr − TG

)
λr, r ∈ Ω, (8)

tGr ≥
(
TG − Tr

)
λr, r ∈ Ω, (9)

µ =
1

Q

∑
r∈Ω

Trλr, (10)

σr ≥ Trλr − µ, r ∈ Ω, (11)
σr ≥ µ− (Tr −M)λr −M, r ∈ Ω. (12)

Constraints (8) and (9) set the value of tGr to be the positive difference between the travel distance
of route r and the target travel distance TG. If a route is not part of the optimal solution, λr will
be zero, hence so will tGr . Constraint (10) determines the mean travel distance of all routes, and
(11) and (12) set the value of σr to be the positive difference between the travel distance of route
r and the mean travel distance. M is here set to a large value that needs to be at least as high as
µ to ensure that σr does not take a positive value if route r is not travelled.

The constraints in the set partitioning model are the following:

tL ≥ Trλr, r ∈ Ω, (13)
tS ≤ Trλr +M (1− λr) , r ∈ Ω, (14)∑
r∈Ω

Arvλr = 1, v ∈ VR, (15)∑
r∈Ω

Areλr = 1, e ∈ ER, (16)∑
r∈Ω

Araλr = 1, a ∈ AR, (17)∑
r∈Ω

λr ≤ Q, (18)

λr ∈ {0, 1} , r ∈ Ω. (19)

Constraints (13) sets the length of the longest route. These constraints are only necessary when
objectives ∆1 and ∆2 are considered. Constraints (14) sets the length of the shortest route, and
are only necessary when objective ∆1 is considered. M is set to a sufficiently high number so that
there will be at least one route in a solution of minimum this length. Constraints (15)-(17) are the
partitioning constraints that forces all required vertices, edges and arcs to be serviced exactly once.
Constraint (18) is limiting the number of routes in a solution to the number of available vehicles.
This constraint is only valid for problem instances where there is a maximum number of available
vehicles. If objective ∆4 is to be used, we need a fixed number of vehicles and the constraint will be
replaced by an equality constraint. Finally, (19) set the binary requirements for the route variables.
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To solve the model described by constraints (13)-(19), we need to determine the routes r ∈ Ω.
For routing problems, there exist a vast amount of work where similar problem formulations have
been solved to optimality. Methods consist of pre-generating all routes, and by dynamically adding
promising route candidates in a branch-and-price framework. By introducing route balance as a
second objective, the existing methods for dynamically adding routes can no longer be used. Also,
when generating routes, we have to ensure that each individual route is cost-optimal, so we avoid
solutions with routes that are artificially route balanced.

We therefore choose to pre-generate all candidate routes, where a candidate route is defined as
follows:

Definition For each subset of vertices, edges and arcs that can be visited on a single route a
candidate route is the cost-optimal route that visits all vertices, edges and arcs in the subset
exactly once.

To generate all candidate routes, the routepool, we first enumerate all possible subsets of
vertices, edges and arcs, before the optimal solution for the TSP for each of the subsets is calculated
by a dynamic programming algorithm.

4.2. Solution method for the bi-objective problem
We are interested in finding Pareto optimal solutions that are well spread along the Pareto

front. To generate strict Pareto optimal solutions, we use a hierarchical approach that combines
two techniques from the multi-objective literature: the ϵ-constraint method and the lexicographic
method, see e.g. Ehrgott (2005). For the bi-objective problem, the ϵ-constraint method can be
formulated as follows:

min f1 (x) ,

subject to f2 (x) ≤ ϵ2.

Here, f1 and f2 are the two objectives, and ϵ2 is a threshold value for the second objective. All
solutions in the Pareto front can be found by the ϵ-constraint method with appropriate choices for
ϵ, see e.g. (Ehrgott, 2005, p. 100). The lexicographic method is a technique that can be used for
multi-objective optimization problems when the objective functions can be or have to be considered
in a hierarchical manner. The following optimization problems are then solved (Marler and Arora,
2004):

min fi (x) ,

subject to fj (x) ≤ fj
(
x∗j

)
, j = 1, 2, ..., i− 1, i > 1,

i = 1, 2, ..., k,

where i represents an objective’s position in the hierarchy.
We combine ideas from the ϵ-constraint and lexicographic methods, and minimize one of the

objectives, and then the other objective with a constraint on the first objective. Then the objectives
swap roles. By using this method, we will find the outermost solutions in the Pareto front: the
solutions to the two single-objective problems with the best possible value for the other objective.
When these solutions are found, we want to find some solution that is located at the Pareto front
at some point between these two. This can be obtained by taking the two objective function values
for one of the solutions and define the middle point of these in an ϵ-constraint.

Let f1 and f2 be the objective function for the first and second objective, respectively. Further
let xi be the solution to the i’th optimization problem. The six first solutions to the bi-objective
problem will be found in the following manner:
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Figure 9: Illustration of how solutions 1-6 may appear for the solution procedure.

1. Minimize f1 (x).

2. Minimize f2 (x) subject to f1 (x) ≤ f1
(
x1

)
.

3. Minimize f2 (x).

4. Minimize f1 (x) subject to f2 (x) ≤ f2
(
x3

)
.

5. Minimize f2 (x) subject to f1 (x) ≤ 1/2
(
f1

(
x1

)
+ f1

(
x4

))
.

6. Minimize f1 (x) subject to f2 (x) ≤ f1
(
x5

)
.

Figure 9 illustrates how the solutions may be spread for the solution procedure.
Using this procedure, we may have found up to 6 Pareto optimal solutions. Solutions x1, x3

and x5 will be weak Pareto optimum, while solutions x2, x4 and x6 will be strict Pareto optimum.
For some problem instances, the solutions may coincide.

Given that we have found three individual strict Pareto optimal solutions, we need to determine
which part of the Pareto front to investigate. For this determination, we measure distance between
two solutions as the area defined by them. The area, A12 between two Pareto optimal solutions,
x1 and x2 is calculated as follows:

A12 =
f1

(
x1

)
− f1

(
x2

)
f2 (x2)− f2 (x1)

. (20)

We then introduce the terms explored area and unexplored area. We call the strict Pareto
optimal solutions that have already been found during the search along the Pareto front existing
Pareto optimal solution, and two such solutions that are next to each other, i.e. there are no other
existing Pareto optimal solutions in the Pareto front between them, neighbouring solutions. At
each iteration, we need to find a new ϵ-value. The new ϵ-value and its neighbouring solution defines
the new area to explore. Let the set A contain all pair of neighbouring points, (pi, pj), where points
represent both existing Pareto optimal solutions and ϵ-values defining unexplored areas. Then we
have the following definitions:

Definition We call the two end points in the Pareto front, i.e. the two points representing the strict
Pareto optimal solutions to the min f1 (x) and min f2 (x), p1 and p2. When these two points are
found, the unexplored area is the rectangle defined by R (p1, p2). At each iteration, each pair of
neighbouring points (pi, pj) ∈ A, on the active Pareto front that has not yet been explored, defines
such an unexplored area: R (pi, pj). The explored area is then R (p1, p2) \

∪
(i,j)∈AR (pi, pj).
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Figure 10: Determining where to search for a new Pareto optimal solution and setting right-hand-side value for
epsilon constraint when there are three and four existing Pareto optimal solutions. f2 (x) is the objective treated in
the epsilon constraint in Step 3, and ϵ2 and ϵ3 are the new right-hand-side values. pi are the existing Pareto optimal
solutions, and pϵk are the ϵ-points that together with neighbouring solutions define unexplored area. Shaded area is
explored area.

The procedure to find a new Pareto optimal solution is then as follows:

1. Choose the largest unexplored area defined by two neighbouring points on the Pareto front,
A∗.

2. Determine the right-hand-side of the epsilon constraint to be the mid-point of the unexplored
area between the two neighbouring points.

3. Solve the resulting MCGRP.

4. Swap objectives and set right-hand-side of epsilon constraint to the objective function value
found in Step 3.

5. Solve the resulting MCGRP.

The procedure for determining the new epsilon constraints when there are three and four existing
strict Pareto optimal solutions is illustrated in Figure 10. It continues until a predetermined number
of Pareto optimal solutions are found, or when all the area has been explored.

This solution procedure for bi-objective problems perform binary search over the values of one
of the objective functions to ensure that we quickly get a good representation of the Pareto front.
Even when the procedure stops early, we will have a good approximation of the Pareto front. For a
detailed description of the procedure, including pseudocodes, we refer to Halvorsen-Weare (2015).

5. Computational study

The solution method presented in Section 4 can be used to solve small problem instances of the
MCGRP. We have used it to generate optimal Pareto fronts for some of the smallest benchmark
instances from Bosco et al. (2013). In the following we will first present the problem instances
before results are provided along with discussion.

5.1. Problem instances
The problem instances we have solved have a varying number of tasks consisting of required

vertices, edges and arcs. The number of available vehicles is 3, 4 or 5. For these small problem
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Table 1: Problem instances. Q is the number of available vehicles, C is each vehicles capacity, D is total demand.
V , E and A are the total number of vertices, edges and arcs in the problem, and VR, ER and AR are the number of
required vertices, edges and arcs. |R| is the number of generated candidate routes.

Instance number Name Q C D V E A VR ER AR |R|
1 mggdb_0.25_19 3 27 66 8 2 18 3 1 6 314
2 mggdb_0.30_14 5 21 89 7 5 32 3 3 11 3423
3 mggdb_0.30_19 3 27 66 8 2 18 3 1 6 339
4 mggdb_0.35_4 4 5 19 11 4 30 6 2 9 6111
5 mggdb_0.35_19 3 27 66 8 2 18 3 1 5 188
6 mggdb_0.40_4 4 5 19 11 4 30 6 2 9 6111
7 mggdb_0.40_19 3 27 66 8 2 18 4 1 5 322
8 mggdb_0.45_1 5 5 22 12 5 34 6 2 9 4442
9 mggdb_0.45_4 4 5 19 11 4 30 7 2 8 6111
10 mggdb_0.45_6 5 5 22 12 5 34 7 2 9 5442
11 mggdb_0.45_14 5 21 89 7 5 32 6 2 8 3487
12 mggdb_0.45_15 4 37 112 7 5 32 6 2 8 7347
13 mggdb_0.45_19 3 27 66 8 2 18 3 1 4 92
14 mggdb_0.45_20 4 27 107 11 5 34 5 2 9 5502
15 mggdb_0.50_1 5 5 22 12 5 34 8 2 8 5442
16 mggdb_0.50_4 4 5 19 11 4 30 6 2 7 2277
17 mggdb_0.50_6 5 5 22 12 5 34 7 2 8 3650
18 mggdb_0.50_14 5 21 89 7 5 32 6 2 8 2521
19 mggdb_0.50_15 4 37 112 7 5 32 5 2 8 4807
20 mggdb_0.50_19 3 27 66 8 2 18 3 1 4 106
21 mggdb_0.50_20 4 27 107 11 5 34 5 2 8 1867

instances, all vehicles will always be used, hence we do not need to treat constraint (18) as an
equality constraint for balance objective ∆4. A summary of the instances are provided in Table 1.
These problem instances, along with a number of other benchmark instances for the MCGRP can
be found and downloaded from SINTEF (2014).

As we do not have a decision maker to set a target value for the travelled distance of each
individual route, TG, we need to set this to some default value for each problem instance when
we use balance objective ∆3. This default value is calculated as the mean route distance for the
optimal solution to objective T rounded up to nearest integer. Setting TG to this default value can
result in fewer points in the optimal Pareto front since the two objectives are correlated.

The problem instances also have service costs, which are not necessary to consider for the
minimum total route cost objective. However, when considering route balance, we will get different
solutions depending on whether or not the service of tasks is considered as a part of what we want
to balance. For this computational study, we have considered balancing travelled distance only,
hence service cost is neglected.

5.2. Results and discussion
The solution method from Section 4 has been implemented in C# using Microsoft Visual Studio

2010. The mathematical programming model was modelled with Xpress-BCL 4.4.0 and solved by
calling Xpress-Optimizer 22.01.04. All results presented in this paper were obtained on a 2.70
GHz Intel Core i7-2620 M PC with 8 GB RAM. All problem instances from Table 1 was solved
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to optimality, i.e. all individual MCGRP instances were solved to optimality and the bi-objective
solution procedure found all Pareto optimal solutions. The CPU times varied depending on the
problem instance and the balance objective that was considered. For objective ∆1 most instances
was solved within a few minutes, and a few where above 1 hour, the longest CPU time being 1
hour and 50 minutes. For ∆2 all problem instances were solved within less than a minute, for ∆3

all were solved in less than two minutes, and for ∆4 all were solved within a few minutes.
Table 2 shows an overview of the results from running the problem instances. Reported in

the table are the values for all five objectives when each of the five objectives are minimized. For
objective T the best values for each of the four balance objectives, ∆1 - ∆4, given the optimal
value for T are reported. These are hence the worst values for the balance objectives in the Pareto
fronts. For the balance objectives, it is only objective T that is minimized subsequently and the
value for T is then the worst values for this objective in the Pareto fronts. For all other balance
objectives than the one being minimized, there may exist other solutions that yield better values for
the objectives without deteriorating the objective function values for T and the balance objective
being minimized.

Table 3 reports the number of Pareto optimal solutions for each of the problem instances for
each of the four options for balance objective. We observe that the Pareto front size varies for the
four balance objectives. It is ∆1 and ∆4 that have the largest Pareto fronts. Both these balance
objectives consider the range of travelled distance for each individual vehicle routes. Objective
∆2 only considers the route with the longest travel distance and a relatively small Pareto front is
obtained for all problem instances. We observe that the Pareto fronts for objective ∆3 also contains
relatively few solutions, although this balance objective considers the duration of all individual
routes. But as the target route distance for this objective is set to be the average route distance
for the minimum total route distance problem, the balance objective and the total route duration
objective are correlated and hence, a natural consequence is few solutions in the Pareto front.

Table 4 shows the Pareto fronts for problem instance 10, mggdb_0.45_6. These Pareto fronts
are in line with the observation that there are more Pareto optimal solutions for balance objectives
∆1 and ∆4, and that these are spread over a much wider total route distance span than balance
objectives ∆2 and ∆3. For this particular instance, the value for objective T is increased with 65%
for the best solutions for objectives ∆1 and ∆4, while this increase is only 6% for ∆2 and 7% for
∆3.

Figure 12 shows the best vehicle routes for each of the five objectives that are considered for
problem instance 3, mggdb_30_19. The problem instance is illustrated in Figure 11.

Problem instance 3 is a small problem instance providing a typical example on how minimizing
the balance objectives ∆1 and ∆4 can result in a high increase in total travelled distance. The best
vehicle routes for ∆1 and ∆4 are the same, and the total travel distance is 31% higher than the
solution with lowest travel distance, Figure 12c. We see for the solution that required arcs 1-6 and
6-8 are serviced on two different vehicle routes, a choice that yields better route balance for these
objectives at the expense of a higher total travel distance.

The best solutions for balance objectives ∆2 and ∆3 do not require much increase in total travel
distance, 8% and 2% respectively. The best vehicle routes for these objectives have a slightly better
route balance at a small increase in total travel distance from the best total travel distance solution.

In Section 2 we discussed how a decision maker may be interested in only part of the Pareto
front. Particularly, solutions that yield much better route balance at a low increase in total travel
distance can be interesting. Figure 13 shows the Pareto fronts for balance objectives ∆1, ∆3 and
∆4 for problem instance 2, and Table 5 provides the values of the points in the Pareto fronts for all
objectives. For this problem instance we see that it is possible to achieve a high increase in route
balance at a low increase in total travel distance. This is typically a feature for many real life route
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Table 3: Number of Pareto optimal solutions for each of the balance objectives.

Instance number ∆1 ∆2 ∆3 ∆4

1 3 1 2 3
2 4 2 4 5
3 5 2 2 4
4 5 3 3 4
5 5 2 3 4
6 10 3 6 10
7 5 3 4 5
8 9 4 8 9
9 10 2 5 11
10 12 3 6 13
11 2 1 3 3
12 4 1 2 3
13 2 1 1 2
14 9 3 6 9
15 18 2 4 22
16 12 3 5 11
17 13 3 8 18
18 6 1 4 7
19 3 1 3 2
20 1 1 1 1
21 7 2 4 5

Figure 11: Overview of problem instance 3 (mggdb_30_19): 1 is the depot, shaded circles represent required vertices,
thick edges and arcs represent required edges and arcs.
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(a) Best vehicle routes for objective T . (b) Best vehicle routes for objective ∆1 and ∆4.

(c) Best vehicle routes for objective ∆2. (d) Best vehicle routes for objective ∆3.

Figure 12: Best vehicle routes for all objectives for problem instance 3 (mggdb_0.30_19). Best vehicle routes for
objectives ∆1 and ∆4 are the same and are illustrated in (b).

problems, and illustrates how it can be very beneficial to consider more than one objective and
provide a decision maker with several solutions that are located at the part of the Pareto front the
decision maker will be most interested in.

6. Conclusions

In this paper we have introduced the bi-objective mixed capacitated general routing problem.
The MCGRP, along with other routing problems, are in previous studies mainly considered as
single-objective problems where the objective is to minimize total cost which can include only
routing cost, or routing cost and cost of vehicles.

However, for most practical routing problems, there will be other objectives than minimizing
the total cost that are relevant. One of them, that has attracted some interest, is route balance.

Figure 13: Pareto fronts for problem instance 2 (mggdb_0.30_14) for balance objectives ∆1, ∆3 and ∆4.
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How route balance is best defined is not trivial, and will vary depending on the actual routing
problem studied, and the preferences of the decision maker.

We have in this paper introduced several versions of route balance objectives, and discussed
how these affect the optimal solutions. Which one to use should be decided based on the problem
at hand and which of the objectives that will provide most value for the decision maker. The chosen
balance objective will have consequences for both the Pareto optimal solutions, and which solution
methods that can be used.

An exact method that can be used to compute the Pareto front, or parts of it, has been applied
to some small benchmark instances for the MCGRP. The results illustrate how both the problem
instance, and the objectives that are considered, affect the size of the Pareto front. We have
considered a total of four options for the balance objective, and have illustrated how some of these
for some problem instances may be conflicting with the objective of minimizing total travel distance.
This relates specially to balance objectives that consider the span of all individual route distances,
i.e. minimize the distance between the longest and shortest route and minimize the variance of the
individual route distances. Other options for balance objectives may have smaller impact on the
total travel distance. We have seen that e.g. minimizing the distance of the longest route results
in small Pareto fronts for the problem instances we have considered.

Despite the relevance, there is not much research on multi- or bi-objective routing problems.
And from what exist, there is often only one version of a second objective that is presented. Future
research should thus focus on introducing several objectives, and methods for solving the problems
that creates a set of good and, for a decision maker, relevant Pareto optimal solutions, or a good
approximation of the Pareto front within reasonable time.
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