
An Adaptive Iterated Local Search for

the Mixed Capacitated General Routing Problem

Mauro Dell’Amico(1), José Carlos Dı́az Dı́az(1), Geir Hasle(2), Manuel Iori(1)

(1) Department of Sciences and Methods for Engineering,

University of Modena and Reggio Emilia,

Via Amendola 2, 42122 Reggio Emilia, Italy

{mauro.dellamico; jose.diaz; manuel.iori}@unimore.it

(2) Department of Applied Mathematics,

SINTEF ICT

P.O. Box 124 Blindern, NO-0314 Oslo, Norway

geir.hasle@sintef.no

Abstract

We study the Mixed Capacitated General Routing Problem (MCGRP) in which a fleet of capacitated

vehicles has to serve a set of requests by traversing a mixed weighted graph. The requests may be

located on nodes, edges, and arcs. The problem has theoretical interest because it is a generalization

of the Capacitated Vehicle Routing Problem (CVRP), the Capacitated Arc Routing Problem (CARP),

and the General Routing Problem (GRP). It is also of great practical interest since it is often a more

accurate model for real world cases than its widely studied specializations, particularly for so-called street

routing applications. Examples are urban-waste collection, snow removal, and newspaper delivery. We

propose a new Iterated Local Search metaheuristic for the problem that also includes vital mechanisms

from Adaptive Large Neighborhood Search combined with further intensification through local search.

The method utilizes selected, tailored, and novel local search and large neighborhood search operators,

as well as a new local search strategy. Computational experiments show that the proposed metaheuristic

1

is highly effective on five published benchmarks for the MCGRP. The metaheuristic yields excellent

results also on seven standard CARP datasets, and good results on four well-known CVRP benchmarks

including improvement of the best known upper bound for one instance.

Keywords: Vehicle Routing; Arc Routing; Mixed Capacitated General Routing Problem; Node, Edge, and Arc

Routing Problem; Metaheuristics

Introduction

Two of the most important optimization problems in freight transportation and logistics are the Capacitated

Vehicle Routing Problem (CVRP) and the Capacitated Arc Routing Problem (CARP).

In the CVRP, a set of customers with known demands must be served by a fleet of identical capacitated

vehicles stationed at a central depot. Requests with given demand size are located on the vertices of a

graph, and the aim is to route the vehicles along the graph to satisfy all requests with minimum routing

cost, obeying vehicle capacity. The graph may be either directed or undirected, and the costs are assigned

to links (edges/arcs). The problem has been widely studied (especially in its undirected version) because of

the large number of real-world applications it models, including distribution of gasoline, beverage, and food,

and collection of solid waste. We refer the interested reader to the books by Golden et al. (2008), and Toth

and Vigo (2014).

In the CARP we are still given a weighted undirected/directed graph, but in this case, requests of given

size are located on a subset of links. A fleet of identical vehicles, all based at a central depot and having

a fixed capacity, is available for serving the requests. The problem is to route vehicles along the graph in

a capacity feasible way to serve all requests with minimum routing cost. Also the CARP has been widely

studied, because it captures the essence of a wide range of real-world applications, including street sweeping,

winter gritting, and snow clearing. In many cases the CARP is also a good model for postal delivery,

newspaper delivery, and household waste collection. We refer the interested reader to the survey by Wøhlk

(2008), the annotated bibliography by Corberán and Prins (2010), and the book edited by Corberán and

Laporte (2014).

In the literature, there has been a tendency to categorize applications as being either a case of node

routing, or a case of arc routing. There are, however, important real-world problems whose essential char-

2

acteristics cannot be captured neither by the CVRP nor by the CARP, as there is a mixture of requests

located on nodes and requests located on links. Prins and Bouchenoua (2005) argue that in certain cases

of urban-waste collection, most requests may be adequately modeled as located on streets, but some large

point-based demands, located for example at schools or hospitals, are better modeled by the use of vertices.

In subscription newspaper delivery, requests are basically located in points, but in dense urban or suburban

residential areas a CARP model based on the street network may be a good abstraction. In general, qualified

abstraction and problem reduction for a CVRP instance through aggregation, for instance with heuristics

based on the road network, will create an instance with requests located on nodes, edges, and arcs, see, e.g.,

Hasle (2014).

To answer the challenges that are induced by these complex problems, several researchers have recently

focused their attention on the so-called Mixed Capacitated General Routing Problem (MCGRP). In the

MCGRP, requests are located on a subset of vertices, edges, and arcs of a given weighted mixed graph, and a

fleet of identical capacitated vehicles based at a central depot is used to satisfy requests with minimum routing

cost while adhering to capacity constraints. The MCGRP is able to model a continuum of mixed node and

arc routing problems, and hence removes the sharp boundary that is often seen in the literature. As alluded

to above, the problem has large practical interest, particularly for so-called street routing applications, see

Bodin et al. (2003). The MCGRP is also of interest in combinatorial optimization, because it generalizes

both the CVRP, the CARP and many other routing problems, as described in Section 2. Its resulting

combinatorial complexity is, however, very high, and solving it to optimality is a difficult task even for

moderate-size instances, see Bach et al. (2013) and Bosco et al. (2013).

In this paper, we propose a novel, hybrid metaheuristic, called Adaptive Iterated Local Search (AILS)

for easy reference, to solve large-size instances of the MCGRP. It utilizes vital mechanisms from two classical

trajectory-based metaheuristics: Iterated Local Search (ILS), see Lourenço et al. (2010), and Adaptive Large

Neighborhood Search (ALNS), see Pisinger and Røpke (2007). We have combined these mechanisms in a

new way, and introduced several new elements. Novel local search and large neighborhood search operators

have been designed, and well-known operators have been tailored to the problem at hand. When ALNS finds

solutions with a certain quality, further intensification is performed by local search (LS).

We have designed a new, aggressive LS strategy. In each iteration we explore a large neighborhood

consisting of the union of moves from five operators, and investigate all moves with positive savings. The

3

effect is that we execute all independent moves before generating a new neighborhood.

Our experimental study shows that the resulting algorithm is highly effective. For five MCGRP bench-

marks consisting of 409 instances in total, AILS produces 381 best known solutions, 108 of which are new.

For three instances, AILS closes the gap for the first time. This brings the number of proven optimal solutions

up to 234. AILS fails to find only ten of these. Notably, the AILS also achieves high quality computational

results for heavily investigated special cases of the MCGRP, viz. four standard benchmarks for the CVRP,

and seven standard benchmarks for the CARP.

The remainder of the paper is organized as follows. In Section 1 we formally describe the MCGRP. In

Section 2 we give a survey of the most relevant results in the related literature. In Section 3 we propose our

AILS metaheuristic for the MCGRP, and describe the key elements that make it computationally effective.

In Section 4 we configure and evaluate the algorithm by means of extensive computational tests, and in

Section 5 we draw conclusions.

1 Problem Description

The MCGRP is defined on a weighted mixed graph G = (N,E,A), where N = {1, 2, . . . , n} is the set of

nodes, E the set of edges and A the set of arcs. Let cij denote the non-negative traversal cost associated with

any link (i, j) ∈ E ∪ A. The traversal cost, also known as deadheading cost, denotes the cost for traversing

the link without servicing it. The traversal cost is 0 for all nodes.

Three subsets Nr ⊆ N , Er ⊆ E and Ar ⊆ A define the requests, or tasks, i.e., the subsets of, respectively,

nodes, edges, and arcs that have demand and must be serviced. Each request has a non-negative service cost,

si for i ∈ Nr and sij for (i, j) ∈ Er∪Ar, and a non-negative demand, qi for i ∈ Nr and qij for (i, j) ∈ Er∪Ar.

Let τ = |Nr|+ |Er|+ |Ar| be the total number of requests.

A fleet of identical vehicles, all having capacity Q, is used to service the requests. The fleet is located in

a special node, called the depot. Each vehicle performs at most one route, that is, it starts from the depot,

services a number of requests, and then returns to the depot. Deadheading via non-required links is usually

necessary to reach the required ones. A route is feasible if the sum of serviced demands does not exceed the

vehicle capacity.

The aim of the MCGRP is to define a set x of feasible routes for which every task t ∈ Nr ∪ Er ∪ Ar is

4

serviced exactly once, and the total cost z(x) is a minimum. Note that the total service cost is constant over

all feasible solutions, hence it is sufficient to minimize the sum of traversal costs.

An example of a MCGRP instance is given in Figure 1. Each node is depicted by a circle, drawn with

a solid line if the node is a request, by a dashed line otherwise. Node 7 is the depot and is depicted by

a square. Similarly, required links are drawn with a solid line, non-required links with a dashed line. The

traversal costs are indicated. In this particular instance the traversal costs are symmetric, hence we give

only one cost for each pair of arcs connecting the same two vertices. The vehicle capacity is 1437.

1 2 3 4

5 6 7

8
9 10

11

c = 19

c
=

2
5

c
=
29

c = 22c = 20 c = 38

c
=

3
9c = 20

c
=

1
8

c
=

3
2

c = 20

c
=

1
8

c
=

1
8

c
=

1
8

c
=
27

c = 19 c = 22c = 27 c = 36

Figure 1: A MCGRP example: Instance CBMix23.

A solution for the instance in Figure 1 is illustrated in Figure 2. It consists of four routes, each presented

in a separate sub-figure for the sake of clarity. In each sub-figure, the links with solid lines are serviced by

the route, links with dashed lines indicate deadheading. We also indicate the demand for each serviced task.

Note that Route 1 starts from the depot and visits, in sequence, nodes 10, 6, 5, and 8, then visits 6 again

and returns to the depot. It services five tasks, namely 10, (10,6), (5,8), (8,6) and (6,7), with total demand

(denoted load for short in the figure) equal to 1024. Note also that Route 2 travels three times through node

6, and Route 3 is forced to travel three times between nodes 4 and 11 to perform the two requests (4,11)

and (11,4). The resulting solution value is 780, and its optimality was proven by Bosco et al. (2013).

2 Prior Work in the Area

The MCGRP has also been called the Node, Edge, and Arc Routing Problem (NEARP) in the literature. As

far as we know, Pandi and Muralidharan (1995) is the first paper that investigates the MCGRP. The authors

studied a generalization with a heterogeneous fixed fleet, and a maximum route duration constraint. The

5

1 2 3 4

5 6 7

8
9 10

11

5 6 7

8
10

q = 156

q
=
30
3

q
=

1
3
0 q

=
320

q = 115

(a) Route 1 (cost = 130, load = 1024)

1 2 3 4

5 6 7

8
9 10

11

1 2

5 6 7

9 10

q = 131

q
=

2
8
7 q

=
28
3

q
=

1
2

q
=

2
6

q = 244

(b) Route 2 (cost = 192, load = 983)

1 2 3 4

5 6 7

8
9 10

11

3 4
q = 397

7

10
11

q
=

2
7
4

q
=

1
3
9

q
=

3
5
1

(c) Route 3 (cost = 227, load = 1161)

1 2 3 4

5 6 7

8
9 10

11

1 2 3
q = 302

4

6 7

10
11

q = 215

q
=

2
2
7

q = 321 q = 363

(d) Route 4 (cost = 231, load = 1428)

Figure 2: A four-route (optimal) solution for CBMix23.

resulting problem, denoted the Capacitated General Routing Problem (CGRP), was solved with a route-first-

cluster-second heuristic. The algorithm was tested on random test instances inspired from curb-side waste

collection in residential areas, and on random instances from the Capacitated Chinese Postman Problem

literature.

A few years later, Gutiérrez et al. (2002) studied the homogeneous fixed fleet version of the CGRP, and

called it the Capacitated General Routing Problem on Mixed Graphs (CGRP-m). In other words, the CGRP-

m is a MCGRP with a limited number of vehicles. They proposed an O(n3) heuristic and compared it with

the heuristic by Pandi and Muralidharan (1995), obtaining favorable computational results on a benchmark

of 28 instances with the number of vehicles between 2 and 4, and the number of required tasks between 6

and 21.

Prins and Bouchenoua (2005) introduced the Node, Edge, and Arc Routing Problem (NEARP) name for

the problem and solved it by means of a memetic algorithm in which a population of solutions is evolved

6

through a genetic process, and each new solution is post-optimized using five local search operators. The

resulting algorithm was tested on benchmark instances from the CVRP and CARP literature, and on a new

set of MCGRP instances denoted the CBMix benchmark. Kokubugata et al. (2007) developed a simulated

annealing algorithm that makes use of three local search operators. They tested their algorithm on the

CBMix instances and provided several new best known solutions. Recently, upper bounding procedures were

discussed by Hasle et al. (2012), who obtained interesting computational results by running the commercial

VRP solver Spider.

The first lower bounding procedure for the MCGRP was proposed by Bach et al. (2013). It was obtained

by adapting a procedure originally developed for the CARP by Wøhlk (2006), based on the solution of a

matching problem. The lower bound was tested on the CBMix benchmark, and on two new sets of MCGRP

instances proposed by the authors: the BHW benchmark based on well known instances from the CARP

literature, and the DI-NEARP benchmark taken from real-world newspaper distribution cases in Norway.

Bosco et al. (2013) proposed the first integer programming formulation for the MCGRP, using three-

index variables for nodes and two-index variables for edges and arcs. They extended some valid inequalities

originally introduced for the CARP to the MCGRP, and embedded them into a branch-and-cut algorithm.

This algorithm was tested on two new benchmarks called mggdb and mgval, each consisting of six sets, and

totaling 342 instances. The mggdb benchmark, with 138 instances, was derived from the gdb undirected

CARP test set. The mval mixed CARP dataset is the origin of the mgval benchmark that has 204 instances.

The authors considered only the 264 instances involving at most seven vehicles in their experiments. For

these, the method provided 154 proven optimal solutions. The authors also tested their algorithm on the

four smallest-size CBMix instances, providing two optimal solutions.

Bach et al. (2014) proposed a branch-and-cut-and-price method for the MCGRP and investigated its

performance on mggdb, one subset of mgval, CBMix, and BHW. At the time, they proved optimality for 31

new mggdb instances. On CBMix, they improved the best known upper bound for two instances and the best

known lower bound in 21 cases. Optimality was proven for two new BHW instances.

With the work reported in Bosco et al. (2013) as basis, Irnich et al. (2015) presented a new two-index

mathematical model for the MCGRP, and a two-phase branch-and-cut algorithm that utilizes an aggregate

formulation to develop an effective lower bounding procedure. They provided numerical results for three of

the six parameter subsets of the mggdb and mgval benchmarks. 124 of the 171 instances investigated are

7

solved to optimality.

A matheuristic for the MCGRP was proposed by Bosco et al. (2014). The authors provided numerical

results for the mggdb, mgval, and CBMix benchmarks. A bi-criteria extension of the MCGRP, where the second

criterion is route balance, was studied for the first time by Mandal et al. (2015). A memetic algorithm is

proposed, and numerical results are reported for the CBMix benchmark.

In Section 4, we provide a comprehensive survey of numerical results for the CBMix, BHW, DI-NEARP,

mggdb, and mgval MCGRP benchmarks. We also refer to the Transportation Optimization Portal (TOP)

web site SINTEF that attempts to maintain an updated survey of the best known numerical results for all

MCGRP benchmarks.

As mentioned in the introduction, the MCGRP generalizes a large number of optimization problems

arising in transportation and logistics. A problem classification is presented in Figure 3. The classification

is incomplete, because of the large number of variants addressed in the scientific literature. As depicted by

the figure, the MCGRP directly generalizes:

• the Capacitated Vehicle Routing Problem (CVRP): Nr = N , Er = ∅ and A = ∅;

• the Capacitated Arc Routing Problem (CARP): Nr = ∅ and A = ∅; and

• the General Routing Problem (GRP): one vehicle, Q = +∞ and A = ∅.

The CVRP is one of the most widely studied problems in the combinatorial optimization literature.

Recently, exact algorithms based on branch-and-cut-and-price techniques have been proposed by Baldacci

et al. (2008) and Baldacci and Mingozzi (2009). Good-quality heuristic solutions have been obtained in

the last years by, among others, Gröer et al. (2011) with local search and integer programming embedded

into a parallel algorithm, and Vidal et al. (2012) with a hybrid genetic algorithm that can also take into

consideration multiple depots or multiple periods. We also mention that there are works aimed at solving

the CVRP on an asymmetric cost matrix. The literature on the problem, known as the Asymmetric CVRP

(ACVRP), is described, e.g., in Toth and Vigo (2002). Note that, since the CVRP is strongly NP -hard, so

is the MCGRP.

The CARP has also been widely studied in the literature. Recently, branch-and-cut-and-price algorithms

have been presented by Bartolini et al. (2011) and Martinelli et al. (2011). Good-quality heuristic solutions

have been obtained via Ant Colony Optimization by Santos et al. (2010). Despite the use of the term “arc”

8

in its name, the CARP has been originally defined on an undirected graph. Works aimed at solving arc

routing problems on directed graphs, and on more general mixed graphs, are described, e.g., in Corberán

et al. (2006).

The GRP was introduced by Orloff (1974), to model the problem of collecting requests on nodes and edges

of an undirected graph with a single uncapacitated vehicle. A good cutting plane algorithm was proposed by

Corberán et al. (2001). Similar to the CVRP and the CARP, also the GRP has been extended to directed

and mixed graphs, see, e.g., Corberán et al. (2005). Notably, the GRP generalizes other combinatorial

optimization problems, namely:

• the Rural Postman Problem (RPP): one uncapacitated vehicle, A = ∅, Nr = ∅;

• the Chinese Postman Problem (CPP): one uncapacitated vehicle, A = ∅, Nr = ∅, Er = E;

• the Steiner Graphical Travelling Salesman Problem (SGTSP): one uncapacitated vehicle, A = ∅, Er =

∅;

• the Graphical Travelling Salesman Problem (GTSP): one uncapacitated vehicle, A = ∅, Er = ∅,
Nr = N ; and

• the Travelling Salesman Problem (TSP): one uncapacitated vehicle, A = ∅, Er = ∅, Nr = N .

For the literature on the RPP, CPP, SGTSP, GTSP, TSP and their extensions to directed and mixed graphs,

we refer the reader to Corberán et al. (2001), Gutin and Punnen (2002), Corberán et al. (2007), Corberán

and Laporte (2014), and references therein.

3 Adaptive Iterative Local Search

In this section we discuss the novel hybrid metaheuristic that we propose to search for high-quality solutions

of MCGRP instances of realistic size in reasonable time. For easy reference, we call the algorithm Adaptive

Iterative Local Search (AILS). Parts of AILS uses pseudo-random numbers, but we emphasize that it is a

deterministic algorithm that will produce the same path in the search space given the same random seed.

First, we give a description of the overall design of AILS. Main goals are to ensure a good balance

between intensification and diversification, and to avoid non-productive search efforts. To these ends, we use

9

k vehicles

1 vehicle

nodes edges/arcs

MCGRP

CVRP CARP

GRP
SGTSP

GTSP

TSP

RPP

CPP

Figure 3: A graphical representation of a problem classification.

the idea of Iterated Local Search (ILS) (see, e.g., Lourenço et al. (2010)) that mainly consists of improving

a solution through a trajectory based intensification algorithm, and diversification through a perturbation

method when intensification stagnates.

AILS combines intensification mechanisms that on their own have proven to be highly effective for a

variety of discrete optimization problems, including many variants of the VRP, namely Adaptive Large

Neighborhood Search (ALNS) proposed by Pisinger and Røpke (2007) and partially based on ideas from

Shaw (1997), and deep intensification through Local Search (LS). Intensification is performed in stages, each

consisting of a certain number of iterations.

In one iteration, ALNS destroys and repairs the current solution. The pair of destructor and constructor

operators is probabilistically selected among alternative operators. A reinforcement learning technique is

used to update the selection probabilities. Further details on our version of the ALNS are given in Section 3.1.

It contains several innovations and non-standard mechanisms. If the solution resulting from a destroy/repair

operation has good quality, the search is further intensified through local search with five neighborhood

operators, and a new, aggressive move selection strategy. Details are given in Section 3.2. The main

diversification mechanism of AILS is a major disruption – a kick – applied when a certain search effort has

been made without acceptance of a new solution.

Pseudocode for the AILS algorithm, the structure of which is quite simple, is given in Algorithms 1 and

10

2, with explanation below. Parameters, functions, and procedures used by AILS are briefly described, with

final values listed in Table 1. We refer to Section 4.1 for further description of the configuration process.

Algorithm 1 Adaptive Iterative Local Search

1: function AILS(Instance)
2: comment: Initialize global variables
3: IterPerStage := N ITER PER STAGE
4: kmax := K Max(Instance)
5: KickCountdown :=Iter Before Kick(Instance)
6: Initialize Roulette Probabilities()
7: comment: Construct first solution and take to deep local optimum
8: xinit :=Construct Initial Solution(Instance)
9: xincumbent :=LS Full(xinit)

10: xLocalIncumbent := xincumbent

11: comment: Main body: iterative phase
12: repeat
13: xcurrent := xBestThisStage := xLocalIncumbent

14: comment: Execute a batch of intensifying iterations – a stage
15: IterationCounter := 0;
16: while IterationCounter < IterPerStage do
17: IterationCounter := IterationCounter+ 1
18: NewStage := Combined ALNS and LS()
19: if NewStage then
20: IterPerStage := N ITER PER STAGE - 1
21: KickCountdown := iterBeforeKick

22: IterationCounter = IterPerStage
23: end if
24: end while
25: comment: Increase number of iterations
26: IterPerStage := IterPerStage+ 1
27: until Timeout()
28: return xincumbent

29: end function

11

Algorithm 2 Combined ALNS and LS

1: function Combined ALNS and LS()
2: comment: Returns TRUE if a new stage is required, FALSE otherwise
3: comment: Check for stagnation
4: if KickCountdown > 0 then
5: k :=random(1, kmax)
6: xcurrent :=Roulette Destroy and Repair(k)
7: if z(xcurrent) = z(xBestThisStage) return FALSE

8: comment: Intensify with LS Full, LS1, or LS2 based on random choice and instance size
9: if random(0,1)< pLSFull

then
10: LS Full(xcurrent)
11: else
12: if τ < 200 then LS1(xcurrent) else LS2(xcurrent)
13: end if
14: KickCountdown := KickCountdown− 1
15: if z(xcurrent) < z(xBestThisStage) then
16: xBestThisStage := xcurrent

17: comment: Give higher probability to selected Destructor/Constructor pair
18: Update Roulette Probabilities()
19: Update Incumbents(xcurrent)
20: return TRUE

21: end if
22: return FALSE

23: else
24: comment: Nothing has happened for a while, make a major, random destroy and repair
25: k :=random(τ/2, τ)
26: xLocalIncumbent :=Random Destroy and Repair(k)
27: xcurrent := xLocalIncumbent :=LS Full(xLocalIncumbent)
28: Update Incumbents(xcurrent)
29: return TRUE

30: end if
31: end function

AILS finds a first feasible solution with simple, fast heuristics. The initial solution is taken to a deep local

optimum through an aggressive local search procedure. A main repeat-until loop performs Iterated Local

Search until timeout. An intensification stage, implemented by the inner for loop, performs a given number

of iterations. Each iteration consists of a destroy and repair cycle, possibly followed by further intensification

with local search. A local incumbent for the stage is maintained. When a stage is finished, a new one is

started from the local incumbent of the previous one. A kick is performed whenever stagnation occurs, i.e.,

no new solution has been accepted for a certain number of iterations that depends on the computational

complexity of the instance. We refer to Table 1 and Section 4.1 for details. The kick utilizes the random

destructor and random constructor operators from the ALNS, see Section 3.1. The resulting solution is taken

12

to a deep local optimum before a new intensification stage is started.

Before AILS starts, the minimum traversal (deadheading) costs c′ij connecting any pair of vertices i and j

are computed with the standard Dijkstra algorithm. Recall that τ = |Nr|+ |Er|+ |Ar| is the total number of

requests. First, the AILS computes an initial solution xinit with the functionConstruct Initial Solution

(Algorithm 1, line 8). Experiments showed that the quality of the initial solution had no significant effect on

the final result after a reasonable computing time. Hence, we selected a computationally cheap construction

procedure, the Augment-Merge heuristic proposed by Golden and Wong (1981). For instances with a given

upper bound on the number of vehicles (as the mggdb and mgval benchmarks) we used a modified version

of the Augment-Merge procedure that continues to merge routes, also with negative savings, if the number

of routes in the current solution is larger than the upper bound. If this simple procedure fails in finding

a feasible solution, we solve a bin packing problem where the task demands are objects that have to be

packed into bins of capacity equal to the vehicle capacity. We used the powerful variable neighborhood

search procedure developed in Dell’Amico et al. (2012), modified so that it stops as soon as the number of

bins is not larger than the upper bound. The tasks of each bin are than sequenced with a simple nearest

insertion procedure. The initial solution is taken to a deep local optimum, the first version of the incumbent

xincumbent, by the most powerful LS, called LS Full.

After initialization, the AILS enters a main loop that is executed until timeout. Within this loop,

combined ALNS and LS is executed for intensification. As acceptance criterion for a new solution, we

use simple improvement. We note that the number of iterations per stage is initialized to the parame-

ter N ITER PER STAGE, then increased by one for each stage, as initial experiments indicated that a

progressive number of iterations was needed to reinforce the intensification.

Table 1: Final parameter setting

Parameter/function Value

N ITER PER STAGE 10
kMAX(Instance) min(τ − 2, 50)
β 0.75
γ 0.1
pLSFull

0.15
Iter Before Kick(Instance) 20.000 * max{1, 20.000/(τ2 + |A|+ 2|E|+ n2/5)}

Below follows a description of the functions and procedures used in Algorithms 1 and 2.

13

Timeout: A function that returns TRUE when the given CPU time limit is reached, FALSE otherwise.

Initialize Roulette Probabilities: sets all entries in the scores table π for roulette wheel selection to

1. This procedure is invoked in the initialization, line 6.

The following procedures and functions are used in in Combined ALNS and LS.

Random Destroy and Repair: line 26, is called to make a kick after a certain amount of search effort

has been performed without acceptance of a new current solution. It calls the Random-Destructor and

then the Random-Constructor for a number of tasks randomly drawn from the interval [τ/2, τ).

Roulette Destroy and Repair calls the normal, roulette wheel based selection of Destructor and Con-

structor pair, and the execution of these operators with a randomly drawn k value, see line 6.

Update Roulette Probabilities: line 18, increases the probability of selecting a successful Destruc-

tor/Constructor pair.

Update Incumbents: line 19, checks whether the current solution is better than the best solution found,

and in case, updates the corresponding variable. Similarly, there is a test whether the current solution

improves the global incumbent. The function returns TRUE if any of the variables were updated, FALSE

otherwise.

3.1 The Adaptive Large Neighborhood Search Component

The Adaptive Large Neighborhood Search mechanism in AILS is a modified and simplified version of the

one proposed by Pisinger and Røpke (2007). To perform well, ALNS must utilize a varied repertoire of

destructor and constructor operators, and a qualified mechanism for selecting the operators to employ in

a given cycle. Our ALNS design introduces a novel tree-destructor that utilizes the graph structure of the

instance at hand. Experiments (see Section 4.2) show that it is effective.

Self-adaptation in ALNS is typically achieved through a reinforcement learning mechanism that rewards

operators that have been successful in past iterations. The reinforcement learning mechanism in AILS is

based on operator pairs rather than on single operators. Any time the destroy and repair mechanism is

invoked, a destructor/constructor operator pair is randomly drawn, using roulette wheel selection. These

operators are then used to remove and re-insert a randomly drawn number of tasks. A scores matrix π

14

contains a measure for the effectiveness of each pair of Destructor and Constructor operators. The score

element πij is associated with the i-th Destructor and the j-th Constructor. AILS uses a very simple score

update mechanism. The initial value for all elements is 1. The update procedure increments the value

πij by 1 unit, whenever the i-th Destructor and the j−th Constructor have led to a new current solution.

The scores matrix π is never reset in AILS, as focused experiments with different reset models never gave

significant improvement.

In each iteration, a number k is used as parameter to the randomly selected pair of operators. As is

common in the literature, k is randomly drawn from a uniform distribution over an interval [kmin, kmax].

Early experiments revealed that it is beneficial to have a finite probability of selecting very small k values,

so we set kmin to 1. Common ALNS insight indicates that kmax should be an increasing function of instance

size, but with an upper limit to avoid excessive computational burden. Focused experiments confirmed that

this model is effective, and we found the best upper limit value for kmax to be 50. The final form of the

function to determine kmax is found in Table 1.

Another important simplification relative to the ”canonical” ALNS is that the AILS design uses a simple

improvement criterion for acceptance of new solutions, rather than a more complex criterion that is common

in the literature.

AILS draws upon a repertoire of seven destructor operators, all parameterized by the number of tasks to

remove:

1. Random-Destructor: k random tasks are selected and removed from the solution;

2. Task-Destructors: these are our extensions of the analogous operators used for CVRP and CARP.

2.a Node-Destructor: if k ≤ |Nr|, k random node tasks are removed from the solution, otherwise

the Random-Destructor is used;

2.b Edge-Destructor: if k ≤ |Er|, k random edge tasks are removed from the solution, otherwise

the Random-Destructor is used;

2.c Arc-Destructor: if k ≤ |Ar|, k random arc tasks are removed from the solution, otherwise the

Random-Destructor is used;

3. Worst-Destructor: we define the cost of removing a task t from the current solution x as Γ(t, x) =

15

z(x) − z−t(x), where z−t(x) is the cost of the solution without task t. The operator removes the k

tasks having the highest values of Γ(t, x);

4. Related-Destructor: this operator was proposed by Shaw (1997, 1998). Its aim is to remove tasks

that are somehow close to one another. For the MCGRP, extending the original idea, we define the

contiguity of two tasks r and t as:

ρ(r, t) = β
c′rt

maxsu c′su
+ γ

|q(r) − q(t)|
maxs q(s)

+ δ(r, t), (1)

where β = 0.75, γ = 0.1 as recommended in the literature, c′rt is the minimum traversal cost between

r and t, q(t) is the demand of task t, and δ(r, t) takes value 1 if r and t are in the same route in the

current solution, 0 otherwise. We start by selecting a random task, then we add k−1 tasks in a greedy

way by selecting the next task as the one with minimum distance from the last added task.

5. Tree-Destructor: this is a new operator which is particularly effective for MCGRP instances that

contain all three task types. It utilizes the instance graph, as illustrated in Figure 1. First, it randomly

selects a task as a root node, and then grows a tree in the instance graph G, from this root, by using

a breadth-first strategy. The growth is halted as soon as k tasks (of any kind) are encountered.

Three constructors are used in AILS, as extensions of operators from the literature. They re-insert k

removed tasks in the current solution, one at a time, according to a certain criterion. They iterate until all

tasks have been re-inserted. The resulting solution is always feasible, although it may contain additional

routes. When the instances have a fixed number of vehicles, as those in Bosco et al. (2013), we manage this

particular case by adding a penalty for each route, so that minimizing the objective function also reduces

the number of routes. The feasibility check is then modified by including a control on the number of vehicles

used.

• Random-Constructor: Insert each task, one at a time, according to the order in which they have

been removed from the solution by the Destructor, in a random position in the current set of routes.

If no feasible position exists, create a new route with only this task;

• Greedy-Constructor: In each iteration, the task with the minimal best insertion cost is inserted in

its best position;

16

• Regret-Constructor: Compute for each task t its cheapest insertion cost, and its second cheapest

insertion cost, and define its regret r(t) as the difference between the two costs. Insert the task having

maximum regret in its best position, and then re-iterate, by re-computing regrets, until all tasks have

been re-inserted.

The Regret-Constructor has been used, among others, by Røpke and Pisinger (2006), to overcome the myopic

behavior of greedy repair.

3.2 The Local Search Component

Local search in AILS is based on five operators from the node routing and arc routing literature that will

be described in detail below. These operators have been extended to accommodate the MCGRP model. In

total, 26 move subtypes have been implemented. However, we have designed a new (as far as we know),

more aggressive neighborhood evaluation strategy, as follows. In each iteration, the union of neighborhoods

resulting from the five operators applied to the current solution is fully explored. All moves with positive

savings are considered, in the order of decreasing savings. All independent moves that led to feasible

solutions are executed, before local search proceeds with the next neighborhood exploration from the new

current solution.

As is seen in Algorithms 1 and 2, AILS performs intensification through local search in three situations:

• after construction of the initial solution,

• when a solution with sufficient quality has been produced by ALNS,

• after a kick.

The three situations call for different LS variants. After initial construction, and after a kick, the goal

is to find a deep local optimum fast. Therefore, we utilize the most powerful local search variant called

LS Full that includes all move types. During the ALNS destroy and repair phase, we have seen through

experiments that it becomes too expensive to use LS Full all the time. Therefore, we designed two reduced

local search variants: LS1 and LS2. The details of these are given below. LS1 is used for small instances

(τ < 200), for larger instances, we use LS2. However, with a small probability pLSFull
, see Table 1, we

invoke the full local search, regardless of instance size. These choices were made after extensive experiments

on standard MCGRP, CARP, and CVRP benchmarks.

17

AILS utilizes the following set of local search operators:

• Swap: exchanges the position of two tasks (both intra and inter-route);

• Or-opt: relocates a segment of tasks, either within a route, or from one route to another. The length

of the segment to be relocated is limited to l tasks;

• 2-opt: breaks a route cycle in two segments and re-connects the segments in the only possible way.

We adapted to the MCGRP also the seven additional operator subtypes originally proposed by Santos

et al. (2010) for the CARP. They result from breaking two different routes in one point each, and

reconnecting the segments in all possible ways when reversals are also considered;

• 3-opt: breaks a route cycle in three segments A, B and C, and reconnects them in all possible ways,

also allowing reversals. There are seven combinations: ACB̄, AC̄B, AC̄B̄, ĀCB, ĀCB̄, ĀC̄B and

ĀC̄B̄, where X̄ denotes the reversal of X . There are six types of intra-route moves (case AC̄B̄ is equal

to intra-route 2-opt), and seven types of inter-route moves;

• Flip: reverses the direction of all the edge tasks of a route.

The Flip operator was proposed for the MCGRP by Prins (2009).

Hence, AILS uses five operators with a total of 26 subtypes: 13 types of 3-opt, 8 types of 2-opt, 2 types

of Or-opt, 2 Swap types, and Flip. LS Full employs all these operators and subtypes. The segment length

limit l for Or-opt is 3, and for 3-opt, |B| ≤ 3. The computationally cheaper LS1 consists of the following

operators: Swap, 2-opt, 3-opt with |B| ≤ 1, and Flip. This limits the search to 18 operator subtypes. LS2

is our cheapest local search variant. It consists of Or-opt with l = 2, Swap, and 2-opt, covering 12 operator

subtypes.

4 Computational Experiments

We coded our algorithm in C++ and ran it on an Intel Xeon E5530 at 2.4 GHz with 23.5 GB of memory,

under the Linux Ubuntu 12.04.1 LTS 64-bit operating system. In Section 4.1, we describe AILS parameter

configuration, before we move on to a quantitative investigation of main AILS mechanisms in 4.2. The

section finishes with a description of extensive computational experiments on standard benchmarks from the

literature, for MCGRP, as well as the CARP and CVRP special cases.

18

4.1 Configuration of the Algorithm

AILS has six main parameters. Through a combination of analysis, insights from the literature, and extensive

computational experiments on CBMix, BHW, and DI-NEARP instances (see Section 2), we determined a good

setting. We refer to Table 1 and explanations in Section 3. Further details of the parameter tuning are not

given here, except for an account of how we determined the final form of the iteration limit for the kick.

The Iter Before Kick function determines the number of iterations without improvement before the

kick is invoked. Initially, we performed a set of experiments with a large sample of MCGRP instances to

determine the best constant value for Iter Before Kick. We tried the following values: 5000, 10.000,

20.000, 30.000, 50.000, and 100.000. Results showed that a good overall choice that balances the potential

for further intensification with the potential benefits of diversification is 20.000 iterations. Disabling the kick

gave considerably worse average results. For very large instances and reasonable timeout values, the kick will

never be invoked within 20.000 iterations, which seems reasonable as the AILS intensification mechanism

will not have enough time to stagnate. However, we observed that for small instances, a larger number of

iterations before the kick gave better results, indicating that with a 20.000 iteration limit, intensification was

interrupted prematurely in many cases.

This observation led us to the conclusion that the iteration limit for the kick should be determined

according to the computational complexity of the instance. We identified τ , |A|, |E| and n as the main

instance metrics of computational complexity. Using a sample of 17 MCGRP benchmark instances (see

Section 4.2 for details), we determined a function of these metrics that has a similar behavior to the CPU

time required to complete one iteration of AILS. In Figure 4 the solid line reports on the observed CPU

time required to execute one iteration (right vertical axis), while the dashed line refers to our function

fapprox = τ2 + |A|+2|E|+ 1
5n

2 (left vertical axis). We observe that our function gives a reasonable estimate

over the sample. We use the reciprocal of fapprox in our final Iter Before Kick function (see again Table

1): it is designed such that the minimum number of iterations before kick is 20.000, but the value will be

higher for instances with low computational complexity.

Further computational experiments, where small variations of the six main AILS parameters were inves-

tigated, revealed only minor changes in performance. For a discussion of AILS robustness with respect to

choice of random seed, we refer to Section 4.2.

19

Figure 4: Comparison between observed time for one iteration and approximating function.

4.2 Investigation of Main AILS Mechanisms

The special combination of ALNS with conditional LS for further intensification is a main feature of AILS.

Further, the Tree-Destructor is an innovation, a new operator in the ALNS component of AILS. This sub-

section reports from a quantitative assessment of the merit of these two major mechanisms.

For a comprehensive assessment, we selected a sample of 17 MCGRP instances from the CBMix, BHW, and

DI-NEARP benchmarks. The sample contains instances of different size and structure, with τ varying from 91

to 833. In general, they are instances that seemed hard from early experiments. The names of the sample

instances and their τ values are found in the result tables below. To have a larger sample, also investigating

the robustness of AILS with respect to random seed, we ran all experiments with ten different seed values.

Thus, the total sample size is 170. For all experiments, a CPU time limit of 3600 seconds was imposed.

4.2.1 Removing the Local Search Component

We disabled the LS component and ran experiments on the 17 sample MCGRP instances. To remove the

unpredictable effect of the kick mechanism that would make comparison more difficult, we disabled it and

ran two experiments:

• AILS without the kick (Basic Configuration)

20

• AILS without the kick and with LS disabled

The results are found in Table 2. The first two columns give the instance names and their τ values. The

following five columns give the results from AILS without the kick, here called the ”Basic Configuration”.

For each instance, the minimum, maximum, and average cost over the ten random seeds for the best solution

found within the timeout are given. As usual, the constant sum of service costs is not included. The column

marked ”RSD%” gives the relative standard deviation for the ten cost values, in percent. The average CPU

time (seconds) to find the solutions is given in the following column marked secinc. The next five columns,

marked ”No Local Search”, give the corresponding results for the Basic Configuration with LS disabled. The

rightmost column marked ”Δ%” gives the percentage difference of the average results relative to the Basic

Configuration.

We make two important observations from these results. First, the Local Search Component contributes

substantially to the performance of AILS. The average deterioration for the sample when the LS component is

disabled is more than 5%. There is a consistent deterioration for all instances, and the maximum deterioration

is almost 11%.

Second, the RSD values are low for all instances of the sample. For the Basic Configuration, the average

RSD is 0.31%, with a maximum of 0.62%. Without the LS component, the average variation is slightly

higher at 0.48% with a maximum of 0.94%, which is still low. This is a clear indication that the AILS is

robust with respect to selection of random seed.

4.2.2 Removing the Tree-Destructor

We investigated the merit of the novel Tree-Destructor operator in a similar way as for the LS component.

Table 3, which has the same layout as Table 2, shows a comparison between the Basic Configuration as defined

in Section 4.2.1 above, and the Basic Configuration with the Tree-Destructor disabled. Again, the results

show a small variation over ten different seed values. Although the version without the Tree-Destructor only

shows a small average deterioration relative to the Basic Configuration, a deterioration is observed for 16

out of 17 instances of the sample. Moreover, when we compare the best cost values found over the ten seeds

(in bold), we observe that the Basic Configuration is slightly better.

Based on the results and observations presented we decided to use the Basic Configuration, but with

the kick enabled, for our final computational experiments. For all experiments presented below, the timeout

21

T
a
b
le

2
:
A
ss
es
sm

en
t
o
f
th
e
L
o
ca
l
S
ea
rc
h
C
o
m
p
o
n
en
t
o
f
A
IL
S

B
a
si
c
C
o
n
fi
g
u
ra
ti
o
n

N
o
L
o
ca
l
S
ea
rc
h

In
st
a
n
ce

τ
M
in

co
st

M
a
x
co
st

A
v
g
.
co
st

R
S
D
%

se
c i

n
c

M
in

co
st

M
a
x
co
st

A
v
g
.
co
st

R
S
D
%

se
c i

n
c

Δ
%

C
B
M
i
x
4

9
8

7
4
5
0

7
5
6
9

7
5
0
7
.0

0
.5
0

2
3
6
6
.1
1

7
9
4
2

8
1
0
4

8
0
4
1
.1

0
.6
0

2
6
3
.4
6

7
.1
1

C
B
M
i
x
7

1
6
8

9
3
9
8

9
6
0
1

9
4
9
1
.9

0
.5
5

2
0
0
5
.1
3

1
0
0
7
2

1
0
2
4
0

1
0
1
8
4
.0

0
.5
2

8
9
0
.3
0

7
.2
9

C
B
M
i
x
8

1
7
7

1
0
3
0
5

1
0
4
7
4

1
0
3
7
0
.6

0
.4
9

2
7
8
2
.0
4

1
1
1
0
0

1
1
3
8
3

1
1
2
0
6
.4

0
.7
2

6
9
3
.5
0

8
.0
6

C
B
M
i
x
1
5

9
1

8
2
1
4

8
2
7
1

8
2
4
0
.5

0
.2
4

1
5
6
7
.6
1

8
7
9
6

9
0
3
1

8
9
4
5
.7

0
.7
4

1
0
5
8
.2
3

8
.5
6

C
B
M
i
x
1
6

1
6
9

8
7
1
4

8
7
4
3

8
7
3
4
.4

0
.1
5

1
7
2
6
.3
6

9
3
7
4

9
6
9
9

9
5
3
2
.9

0
.9
4

1
7
2
5
.9
6

9
.1
4

C
B
M
i
x
1
9

2
1
2

1
6
1
5
9

1
6
3
7
4

1
6
2
5
3
.1

0
.4
5

2
5
3
0
.3
3

1
7
6
8
6

1
8
0
2
2

1
7
8
3
3
.3

0
.5
2

7
4
7
.6
6

9
.7
2

B
H
W
9

1
7
8

8
7
5

8
8
9

8
7
9
.8

0
.4
3

2
3
3
9
.4
5

9
7
1

9
8
1

9
7
6
.4

0
.3
3

1
3
5
1
.7
6

1
0
.9
8

B
H
W
1
2

1
1
5

1
0
8
7
3

1
0
9
3
2

1
0
8
9
3
.9

0
.1
4

1
7
4
2
.8
9

1
1
2
6
4

1
1
4
9
2

1
1
3
8
7
.2

0
.5
8

2
0
4
1
.1
1

4
.5
3

B
H
W
1
5

1
2
8

1
5
3
7
1

1
5
4
4
6

1
5
4
0
3
.7

0
.1
4

2
0
0
6
.1
1

1
5
8
0
4

1
5
9
5
0

1
5
8
6
7
.5

0
.2
9

2
0
.7
0

3
.0
1

B
H
W
1
6

4
1
0

4
3
8
3
7

4
4
1
1
8

4
3
9
8
2
.8

0
.2
4

3
3
4
3
.9
7

4
5
7
3
8

4
6
3
9
7

4
6
0
2
3
.6

0
.3
9

6
9
.8
7

4
.6
4

B
H
W
2
0

2
9
3

1
6
2
1
5

1
6
3
8
5

1
6
2
7
9
.7

0
.3
6

2
5
6
6
.3
6

1
7
3
2
0

1
7
8
2
8

1
7
6
0
3
.4

0
.8
2

1
3
3
4
.5
5

8
.1
3

D
I
-
N
E
A
R
P
-
n
2
4
0
-
Q
4
k

2
4
0

1
8
1
8
1

1
8
2
6
6

1
8
2
0
2
.6

0
.1
5

2
6
7
8
.5
5

1
8
8
5
8

1
9
0
9
1

1
8
9
4
7
.6

0
.3
2

2
9
.7
0

4
.0
9

D
I
-
N
E
A
R
P
-
n
4
2
2
-
Q
8
k

4
2
2

1
4
4
4
2

1
4
4
4
2

1
4
4
4
2
.0

0
.0
0

6
2
1
.4
7

1
4
6
5
3

1
4
7
0
5

1
4
6
7
7
.0

0
.1
0

1
2
.7
6

1
.6
3

D
I
-
N
E
A
R
P
-
n
4
4
2
-
Q
8
k

4
4
2

4
3
2
4
9

4
3
3
6
0

4
3
2
7
0
.9

0
.0
7

1
4
9
5
.4
1

4
4
0
3
3

4
4
2
9
4

4
4
1
0
5
.2

0
.2
1

7
0
.6
0

1
.9
3

D
I
-
N
E
A
R
P
-
n
4
7
7
-
Q
2
k

4
7
7

2
2
8
8
0

2
3
1
0
4

2
2
9
7
3
.7

0
.2
8

2
0
6
9
.6
1

2
3
7
2
4

2
4
0
3
0

2
3
9
4
5
.6

0
.3
9

8
1
.1
7

4
.2
3

D
I
-
N
E
A
R
P
-
n
6
9
9
-
Q
4
k

6
9
9

3
9
7
6
1

4
0
5
0
5

4
0
1
8
5
.7

0
.6
2

2
9
3
6
.8
3

4
1
6
1
8

4
2
3
2
6

4
2
1
1
8
.2

0
.4
6

1
8
2
.3
1

4
.8
1

D
I
-
N
E
A
R
P
-
n
8
3
3
-
Q
1
6
k

8
3
3

3
2
3
5
3

3
2
8
5
2

3
2
5
1
7
.9

0
.4
9

3
1
9
1
.9
4

3
4
5
6
7

3
4
8
6
2

3
4
7
5
4
.5

0
.2
6

3
4
2
.7
2

6
.8
8

T
o
ta
l/
av

er
a
g
e

3
1
8
2
7
7

3
2
1
3
3
1

3
1
9
6
3
0
.2

0
.3
1

2
2
3
3
.5
4

3
3
3
5
2
0

3
3
8
4
3
5

3
3
6
1
4
9
.6

0
.4
8

6
4
2
.1
4

5
.1
7

22

T
a
b
le

3
:
A
ss
es
sm

en
t
o
f
th
e
A
IL
S
T
re
e-
D
es
tr
u
ct
o
r

B
a
si
c
C
o
n
fi
g
u
ra
ti
o
n

N
o
T
re
e
D
es
tr
u
ct
o
r

In
st
a
n
ce

τ
M
in

co
st

M
a
x
co
st

A
v
g
.
co
st

R
S
D
%

se
c i

n
c

M
in

co
st

M
a
x
co
st

A
v
g
.
co
st

R
S
D
%

se
c i

n
c

Δ
%

C
B
M
i
x
4

9
8

7
4
5
0

7
5
6
9

7
5
0
7
.0

0
.5
0

2
3
6
6
.1
1

7
4
7
5

7
5
7
2

7
5
2
9
.7

0
.3
7

2
7
8
0
.8
8

0
.3
0

C
B
M
i
x
7

1
6
8

9
3
9
8

9
6
0
1

9
4
9
1
.9

0
.5
5

2
0
0
5
.1
3

9
4
3
6

9
5
6
4

9
4
9
4
.1

0
.4
5

1
9
3
6
.4
0

0
.0
2

C
B
M
i
x
8

1
7
7

1
0
3
0
5

1
0
4
7
4

1
0
3
7
0
.6

0
.4
9

2
7
8
2
.0
4

1
0
3
2
6

1
0
4
8
2

1
0
3
9
0
.2

0
.4
6

2
2
5
5
.3
4

0
.1
9

C
B
M
i
x
1
5

9
1

8
2
1
4

8
2
7
1

8
2
4
0
.5

0
.2
4

1
5
6
7
.6
1

8
2
2
1

8
2
8
5

8
2
6
3
.6

0
.2
1

1
4
9
0
.5
4

0
.2
8

C
B
M
i
x
1
6

1
6
9

8
7
1
4

8
7
4
3

8
7
3
4
.4

0
.1
5

1
7
2
6
.3
6

8
7
1
0

8
7
5
5

8
7
3
8
.4

0
.2
0

2
2
8
2
.7
7

0
.0
5

C
B
M
i
x
1
9

2
1
2

1
6
1
5
9

1
6
3
7
4

1
6
2
5
3
.1

0
.4
5

2
5
3
0
.3
3

1
6
0
4
5

1
6
3
9
0

1
6
2
6
0
.6

0
.6
9

2
7
6
1
.1
9

0
.0
5

B
H
W
9

1
7
8

8
7
5

8
8
9

8
7
9
.8

0
.4
3

2
3
3
9
.4
5

8
7
3

8
8
9

8
8
0
.4

0
.5
2

2
1
5
3
.0
9

0
.0
7

B
H
W
1
2

1
1
5

1
0
8
7
3

1
0
9
3
2

1
0
8
9
3
.9

0
.1
4

1
7
4
2
.8
9

1
0
8
8
2

1
0
9
3
2

1
0
9
0
6
.3

0
.1
4

1
8
1
7
.3
4

0
.1
1

B
H
W
1
5

1
2
8

1
5
3
7
1

1
5
4
4
6

1
5
4
0
3
.7

0
.1
4

2
0
0
6
.1
1

1
5
3
7
0

1
5
4
8
8

1
5
4
2
3
.6

0
.2
2

2
0
8
6
.2
8

0
.1
3

B
H
W
1
6

4
1
0

4
3
8
3
7

4
4
1
1
8

4
3
9
8
2
.8

0
.2
4

3
3
4
3
.9
7

4
3
8
3
6

4
4
2
8
6

4
3
9
9
6
.2

0
.3
2

3
1
8
1
.3
7

0
.0
3

B
H
W
2
0

2
9
3

1
6
2
1
5

1
6
3
8
5

1
6
2
7
9
.7

0
.3
6

2
5
6
6
.3
6

1
6
1
9
7

1
6
3
7
8

1
6
2
6
0
.4

0
.3
3

3
1
5
4
.3
9

-0
.1
2

D
I
-
N
E
A
R
P
-
n
2
4
0
-
Q
4
k

2
4
0

1
8
1
8
1

1
8
2
6
6

1
8
2
0
2
.6

0
.1
5

2
6
7
8
.5
5

1
8
1
8
1

1
8
2
7
2

1
8
2
0
5
.9

0
.1
7

2
2
1
4
.6
6

0
.0
2

D
I
-
N
E
A
R
P
-
n
4
2
2
-
Q
8
k

4
2
2

1
4
4
4
2

1
4
4
4
2

1
4
4
4
2
.0

0
.0
0

6
2
1
.4
7

1
4
4
4
2

1
4
4
6
7

1
4
4
4
7
.0

0
.0
7

1
3
4
1
.3
9

0
.0
3

D
I
-
N
E
A
R
P
-
n
4
4
2
-
Q
8
k

4
4
2

4
3
2
4
9

4
3
3
6
0

4
3
2
7
0
.9

0
.0
7

1
4
9
5
.4
1

4
3
2
6
4

4
3
3
6
0

4
3
3
0
2
.7

0
.1
1

9
2
3
.4
8

0
.0
7

D
I
-
N
E
A
R
P
-
n
4
7
7
-
Q
2
k

4
7
7

2
2
8
8
0

2
3
1
0
4

2
2
9
7
3
.7

0
.2
8

2
0
6
9
.6
1

2
2
8
9
6

2
3
0
9
9

2
3
0
0
6
.9

0
.3
0

2
2
7
7
.0
7

0
.1
4

D
I
-
N
E
A
R
P
-
n
6
9
9
-
Q
4
k

6
9
9

3
9
7
6
1

4
0
5
0
5

4
0
1
8
5
.7

0
.6
2

2
9
3
6
.8
3

3
9
7
9
5

4
0
5
9
2

4
0
2
5
8
.9

0
.6
4

2
7
3
5
.5
0

0
.1
8

D
I
-
N
E
A
R
P
-
n
8
3
3
-
Q
1
6
k

8
3
3

3
2
3
5
3

3
2
8
5
2

3
2
5
1
7
.9

0
.4
9

3
1
9
1
.9
4

3
2
4
1
4

3
2
7
8
5

3
2
5
8
0
.7

0
.3
4

3
1
0
8
.6
1

0
.1
9

T
o
ta
l/
av

er
a
g
e

3
1
8
2
7
7

3
2
1
3
3
1

3
1
9
6
3
0
.2

0
.3
1

2
2
3
3
.5
4

3
1
8
3
6
3

3
2
1
5
9
6

3
1
9
9
4
5
.6

0
.3
2

2
2
6
4
.7
2

0
.1
0

23

sectot for AILS was set to 3600 seconds. For each instance, we also report the CPU time secinc to find the

solution with the given cost. All detailed experimental results are found in Tables A.1-A.15 in Appendix A

(online only).

4.3 Results on MCGRP benchmarks

All five MCGRP benchmarks that currently exist in the literature were used for empirical assessment of

AILS, namely, CBMix proposed by Prins and Bouchenoua (2005), BHW and DI-NEARP proposed by Bach et al.

(2013), and mggdb and mgval by Bosco et al. (2013). The CBMix benchmark consists of 23 randomly generated

instances on mixed graphs that imitate real street networks. They contain from 11 to 150 nodes, and from

27 to 332 links. The instances have a number of requests between 20 and 212, located on a combination of

nodes, edges, and arcs. On average, the 50% of the nodes, edges, and arcs have to be serviced.

The BHW set has 20 test problems generated by modifying well-known instances from the CARP literature,

including gdb instances (see Golden et al. (1983)), val instances (see Benavent et al. (1992)), and egl

instances (see Li and Eglese (1996)). Instances contain from 11 to 72 nodes, 0 to 51 edges, and 22 to 380

arcs. The number of requests varies from 20 to 410, and on average, about 62% of the nodes, edges, and

arcs have requests.

The DI-NEARP benchmark with 24 instances originates from six real-life newspaper carrier routing cases

in Norway. There are four different variants, corresponding to a reasonable range of capacity values for each

case. The instances contain from 563 to 1120 nodes, from 815 to 1450 edges, but no arcs. The number of

requests varies from 240 to 833, and roughly 1/3 of the nodes and edges require service.

In contrast with CBMix, BHW, and DI-NEARP, mggdb and mgval include a fleet size constraint. Both consist

of six subsets, each corresponding to a specific value of the parameter β ∈ {0.25, 0.30, 0.35, 0.40, 0.45, 0.50}
that controls the number of required links in the original CARP instance that have been shifted to adjacent

vertices. Each of the six mggdb subsets has 23 instances with between 18 and 48 tasks, and between 3 and

10 vehicles. For mgval, each of the six subsets has 34 instances. The number of tasks is between 38 and 129,

and fleet size varies between 2 and 10.

In Table A.1, we compare upper bounds for the CBMix instances yielded by all five MCGRP approximation

methods that we have found in the literature, namely:

• MA: the memetic algorithm by Prins and Bouchenoua (2005), run on an Intel Pentium III at 1.0 GHz;

24

• SA: the simulated annealing algorithm by Kokubugata et al. (2007), run on an Intel Pentium IV at

1.8 GHz;

• Spider: the commercial VRP solver tested in Hasle et al. (2012), run on an Intel Core i7 at 3.07 GHz;

• MH: a matheuristic proposed in Bosco et al. (2014), run on an Intel Xeon Quad at 3.0 GHz;

• AILS: our proposed metaheuristic, run on an Intel Xeon E5530 at 2.4 GHz.

For MA and SA, the termination condition was the number of iterations without new accepted solutions.

Spider, MH, and AILS were stopped after a given CPU time limit. MA, Spider, MH, and AILS were run

just once on each instance, whereas SA was run ten times by varying the random seed generator. It is worth

noting that Spider has been implemented to solve a large variety of routing problems; it is not specifically

designed for the MCGRP. In each line of Table A.1, we give the name of the instance addressed, the τ value,

the best known lower bound (column LB) from Bach et al. (2013), Bosco et al. (2013), Bach et al. (2014),

and Irnich et al. (2015), as well as upper bounds and CPU times yielded by the branch-and-cut-and-price

exact method of Bach et al. (2014) (columns marked B&C&P). The latter results were obtained with an Intel

Core 2 Duo CPU P8700 at 2.53 GHz, and CPLEX 12.4 to solve the LP-relaxation. The time limit sectot

was six hours. Note that for all exact method results, the reported CPU times are equal to the time limit,

unless an optimal solution has been proven, as the time to find the best upper bound is not known. For MA,

we give the solution value z it obtains, and the CPU seconds required to run to completion, sectot. For SA,

we give the average solution value avg z over the 10 attempts and the average CPU time sectot in seconds

to run to completion. For Spider, that was run a single time for two hours on each instance, we provide the

solution value z and the CPU time in seconds in which the incumbent solution was found, secinc. For MH,

the time limit has not been reported. AILS was given a time limit of one CPU hour. For both, we report the

cost and the time secinc in seconds needed to reach the reported solution value. The bottom three lines give,

for each method, the number of optimal upper bounds, the number of best known upper bounds (including

optimal values), and the number of instances for which no feasible solution has been found within the time

limit. The best objective function values obtained are reported in bold. We observe that the AILS is very

effective on the CBMix benchmark. It produces all best known solutions but one, 19 of them for the first

time. The sum of objective values over all instances is 1.8% lower than for the best competitor MH, even

though the average CPU time to find the reported solutions is substantially lower on a similar computer.

25

In Table A.2 we present the results we obtained on the BHW test set, in a similar way as in Table A.1.

Here, the lower bounds reported are the best among the two exact methods that have been tested on

this benchmark, and we refer to Bach et al. (2013), and Bach et al. (2014). For BHW, the only competing

approximation method is Spider. We observe that the branch-and-cut-and-price of Bach et al. (2014) yields

four proven optimal solutions. For these instances, optimal solutions are also found by both approximation

methods. In addition, the Bach et al. (2014) method provides three upper bounds that are not competitive,

and no upper bound for the remaining 13 instances. Compared to the competition, AILS provides better

or equally good solutions on all BHW instances, with 1.8% lower total cost than Spider, and 15 new best

solutions. BHW5 was closed for the first time by AILS.

In Table A.3 we compare again the performance of AILS with Spider, this time on the DI-NEARP bench-

mark. The lower bounds are taken from Bach et al. (2013), as no exact method has been tested so far on

this set of 24 large-size instances. Also here, the performance of the AILS is good. Indeed, it yields novel

best known solutions to all but two instances, lowering the total cost with 1.4% relative to Spider. For

some instances, both algorithms find the incumbent solution close to timeout. This is an indication of the

complexity of this test bed, and we believe further improvements are possible for many of these instances.

Tables A.4-A.9 compare the performance of AILS on the 138 mggdb instances with all (to our knowledge)

competitors in the literature:

• B&C: the branch-and-cut method by Bosco et al. (2013), run on two Intel Xeon Quad at 3 GHz, using

CPLEX 12.2;

• B&C&P: the branch-and-cut-and-price exact method of Bach et al. (2014), run on Intel Core 2 Duo

CPU P8700 at 2.53 GHz, and CPLEX 12.4;

• B&C2: the branch-and-cut method by Irnich et al. (2015), with the same hardware and basic software

as for B&C;

• MH: a matheuristic proposed in Bosco et al. (2014), run on an Intel Xeon Quad at 3.0 GHz;

• AILS: our proposed metaheuristic, run on an Intel Xeon E5530 at 2.4 GHz.

.

26

B&C2 has been run only on the first three of the mggdb subsets. We report CPU times for B&C2 for

these instances, and for B&C&P for the remaining instances. Again, note that the reported CPU times for

exact methods are equal to the time limit, unless an optimal solution has been proven. The lower bounds

are the best ones among the three exact methods reported in the MCGRP literature. For details, we refer

to Bosco et al. (2013), Bach et al. (2014), and Irnich et al. (2015).

For 121 of the 138 mggdb instances, optimal solutions have been proven by the three exact methods. For

114 of these, AILS finds solutions with optimal upper bounds, in less than one second for most of the cases.

For 128 of the 138 instances, AILS finds a solution with the best known upper bound. The MH matheuristic

finds 65 optimal solutions and 67 best known upper bounds. The average CPU time for finding the reported

solutions is 18.5 seconds for MH and 7.5 seconds for AILS. Over the mggdb benchmark, AILS provides 1.4%

better upper bounds than MH. The average gap between the AILS upper bounds and the best known lower

bounds is less than 0.7%.

Similarly, in Tables A.10-A.15, we compare results for a total of 204 mgval instances for the same methods

as for mggdb, and AILS. Again, the B&C2 has been run only on the first three subsets. B&C&P has provided

results on the last subset (β = 0.50) only. For the exact methods, CPU times are reported for B&C2 for

the first three subsets, for B&C&P for the last subset, and for B&C for the remaining two subsets. In

total, 105 optimal values have been proven for mgval. MH finds 84 of these, whereas AILS finds 102. MH

produces 103 best known upper bounds versus 189 for AILS. The average gap to the best lower bound is

4.2% for MH and 1.9% for AILS. Note that no non-trivial lower bound is known for 18 of the mgval-0.40

and mgval-0.45 instances. The average CPU time for finding the reported solutions is 1099.2 seconds for

MH and 93.7 seconds for AILS.

We conclude from the observations presented above that AILS is a highly competitive approximation

method for the MCGRP. Over a total of 409 instances for the five MCGRP benchmarks used in the literature,

it yields 381 best known upper bounds and 224 out of 234 currently known optimal solution values within a

reasonable time limit.

4.4 Results on CVRP and CARP Instances

In Tables 4 and 5, we compare AILS with some of the best performing approximation methods for the

CARP and the CVRP, according to the recent surveys in Prins (2014) (Section 7.6), and Laporte et al.

27

(2014) (Section 4.7), respectively. Note that the reported gap values are calculated relative to the best

known solutions as of 2012, some of which have been improved since then, but relative performance should

be clear. Again, we refer to Prins (2014) and Laporte et al. (2014) for updated details on a subset of the

benchmarks.

For the CARP, we tested seven well-known benchmarks, 23 gdb instances proposed in Golden et al.

(1983), 34 val instances proposed in Benavent et al. (1992), 24 egl instances proposed in Li and Eglese

(1996), and 100 bmcv instances proposed in Beullens et al. (2003) in four datasets (C, D, E and F). In Table

4, we compare our approach against six highly competitive CARP metaheuristics:

• GLS: proposed by Beullens et al. (2003), based on guided local search (run on a Pentium II at 500

MHz);

• MA-CARP: proposed by Lacomme et al. (2004a), based on genetic algorithms (run on a Pentium III

at 1 GHz);

• BACO: proposed by Lacomme et al. (2004b), based on ant colony optimization (run on a Pentium III

at 800 MHz);

• VNS: proposed by Polacek et al. (2008), based on variable neighborhood search (run on a Pentium

IV at 3 GHz). Polacek et al. (2008) reported two sets of results, here we only report the “3.0 GHz”

solutions;

• TSA: proposed by Brandão and Eglese (2008), based on tabu search (run on a Pentium Mobile at

1.4 GHz). Brandão and Eglese (2008) report results of two versions of TSA, here we show the best

configuration, i.e., the second one;

• Ant-CARP: proposed by Santos et al. (2010), based on ant colony optimization (run on an Intel

Pentium III at 1 GHz). Santos et al. (2010) report results of two versions of the Ant-CARP, the

median of the best one is reported here (Ant-CARP 12);

Note that ’–’ means that the method has not been tested on this benchmark. We also compare with MA,

the memetic algorithm for the MCGRP by Prins and Bouchenoua (2005), run on an Intel Pentium III at 1.0

GHz. We observe that AILS is among the very best competitors on the CARP.

28

For the CVRP, four heavily investigated benchmarks were used: 14 instances proposed in Christofides

and Eilon (1969) and Christofides et al. (1979), 13 instances proposed in Taillard (1993), 20 instances from

Golden et al. (1998), and 12 instances from Li et al. (2005). The four first lines in Table 5 shows the average

gap for four of the best performing metaheuristics for the CVRP. The last two rows show results for two

MCGRP metaheuristics, namely the memetic algorithm of Prins and Bouchenoua (2005) and AILS. The

CVRP metaheuristics are the following:

• GRASP: proposed by Prins (2009), based on GRASP and evolutionary local search (run on a 2.8 GHz

Pentium 4);

• MB: proposed by Mester and Bräysy (2007), based on active-guided evolution strategies (run on a 2.8

GHz Pentium 4);

• MA-CVRP: proposed by Nagata and Bräysy (2009), based on memetic algorithm (run on a 3.2 GHz

Xeon);

• PARALLEL: proposed by Gröer et al. (2011), based on parallel algorithm (run on 50 computers, each

dual-core 2.3 GHz Xeon);

We see that AILS is highly competitive also for the CVRP, except for the Golden et al. (1998) instances

where the quality is still reasonable. AILS finds a new best known solution for the D151-14c (CMT9) instance

proposed in Christofides et al. (1979) in 180.1 CPU seconds. The detailed solution is given in Appendix B

(online only).

Table 4: Average percentage above the BKS for top-performing CARP algorithms in the literature.

Problem set

Algorithm gdb val egl C D E F

GLS 0.000 0.032 – 0.047 0.011 0.098 0.000
MA-CARP 0.025 0.132 0.805 – – – –
BACO 0.154 0.351 2.348 – – – –
VNS – 0.056 0.538 – – – –
TSA 0.070 0.100 0.725 0.054 0.164 0.168 0.249
Ant-CARP 0.102 0.083 0.558 0.210 0.083 0.360 0.199

MA 0.285 – – – – – –
AILS 0.000 0.054 0.328 0.024 0.155 0.125 0.017

29

Table 5: Average percentage above the BKS for top-performing CVRP algorithms in the literature.

Problem set

Algorithm
Christofides et al.

(1969, 1979) Taillard (1993)
Golden et al.

(1998) Li et al. (2005)

GRASP 0.071 – 0.525 –
MB 0.027 0.236 0.263 0.202
MA-CVRP 0.030 0.096 0.210 –
PARALLEL 0.085 0.131 0.411 0.299

MA 0.389 – – –
AILS 0.159 0.167 1.455 0.433

5 Conclusions

The Mixed Capacitated General Routing Problem, also called the Node, Edge, and Arc Routing Problem,

provides a capacitated multi-vehicle VRP variant that captures an arbitrary mixture of requests on links

and nodes. As far as we know, the problem was first studied by Pandi and Muralidharan (1995). Despite

the fact that the MCGRP is scientifically interesting and has considerable practical value, it has received

limited attention. Recently, however, several metaheuristics, a lower bound procedure, an ILP formulation,

three exact methods, and a matheuristic have been proposed.

In this paper, we report the design and investigation of a new hybrid metaheuristic, called AILS, con-

taining several innovations and non-standard mechanisms, for solving MCGRP instances also of industrial

size. Computational experiments on five MCGRP benchmarks show excellent performance, with best known

solutions to 64 of 67 instances of the CBMix, BHW, and DI-NEARP benchmarks in reasonable time, 55 of which

are new. For the smaller size mggdb and mgval benchmarks designed to investigate exact methods, AILS

finds 317 of 342 best known upper bounds, and 216 out of 226 proven optimal solutions. A comparative

assessment of the AILS metaheuristic on 181 CARP and 59 CVRP instances proves that our metaheuristic

is also among the best for special cases of the MCGRP, in fact improving the best known solution for the

much studied D151-14c CVRP instance proposed by Christofides et al. (1979).

30

Acknowledgements

This work has been partly financed by the Research Council of Norway, under contracts 176869/V30,

187293/I40, 205298/V30, and 217108/I40. We thank two anonymous referees whose comments have greatly

improved the quality of this paper.

References

L. Bach, G. Hasle, and S. Wøhlk. A lower bound for the node, edge, and arc routing problem. Computers

& Operations Research, 40(4):943–952, 2013. ISSN 0305-0548.

L. Bach, J. Lysgaard, and S. Wøhlk. A Branch-and-Cut-and-Price Algorithm for the Mixed Capacitated

General Routing Problem. In Lukas Bach: Routing and Scheduling Problems - Optimization using Exact

and Heuristic Methods, Ph.D. Thesis, chapter 2, pages 37–75. Aarhus University, 2014.

R. Baldacci and A. Mingozzi. A unified exact method for solving different classes of vehicle routing problems.

Mathematical Programming, 120:347–380, 2009.

R. Baldacci, N. Christofides, and A. Mingozzi. An exact algorithm for the vehicle routing problem based on

the set partitioning formulation with additional cuts. Mathematical Programming, 115:351–385, 2008.

E. Bartolini, J.-F. Cordeau, and G. Laporte. Improved lower bounds and exact algorithm for the capacitated

arc routing problem. Mathematical Programming, 137(1–2):1–44, 2011.

E. Benavent, V. Campos, A. Corberán, and M. Mota. The Capacitated Arc Routing Problem. Lower Bounds.

Networks, 22:669–690, 1992.

P. Beullens, L. Muyldermans, D. Cattrysse, and D. Van Oudheusden. A Guided Local Search Heuristic for

the Capacitated Arc Routing Problem. European Journal of Operational Research, 147(3):629–643, 2003.

L. Bodin, V. Maniezzo, and A. Mingozzi. Street routing and scheduling problems. In Randolph W. Hall

and Frederick S. Hillier, editors, Handbook of Transportation Science, volume 56 of International Series in

Operations Research & Management Science, pages 413–449. Springer US, 2003. ISBN 978-0-306-48058-4.

31

A. Bosco, D. Laganà, R. Musmanno, and F. Vocaturo. Modeling and solving the mixed capacitated general

routing problem. Optimization Letters, 7(7):1451–1469, 2013.

A. Bosco, D. Laganà, R. Musmanno, and F. Vocaturo. A matheuristic algorithm for the mixed capacitated

general routing problem. Networks, 64(4):262–281, 2014.

J. Brandão and R. Eglese. A deterministic tabu search algorithm for the capacitated arc routing problem.

Computers & Operations Research, 35(4):1112–1126, 2008.

N. Christofides and S. Eilon. An algorithm for the vehicle-dispatching problem. Oper. Res. Quart., 20(3):

309–318, 1969.

N. Christofides, A. Mingozzi, and P. Toth. The vehicle routing problem. In N. Christofides, A. Mingozzi,

P. Toth, and C. Sandi, editors, Combinatorial Optimization, pages 315–338. Wiley, Chichester, 1979.

A. Corberán and D. Laporte. Arc Routing: Problems, Methods, and Applications. SIAM Monographs on

Discrete Mathematics and Applications, Philadelphia, 2014.

A. Corberán and C. Prins. Recent results on arc routing problems: An annotated bibliography. Networks,

23:50–69, 2010.

A. Corberán, A.N. Letchford, and J.M. Sanchis. A cutting plane algorithm for the general routing problem.

Mathematical Programming, Series A, 90:291–316, 2001.

A. Corberán, G. Mejia, and J.M. Sanchis. New results on the mixed general routing problem. Operations

Research, 53:363–376, 2005.

A. Corberán, E. Mota, and J.M. Sanchis. A comparison of two different formulations for arc routing problems

on mixed graphs. Computers & Operations Research, 33:3384–3402, 2006.

A. Corberán, I. Plana, and J.M. Sanchis. A branch & cut algorithm for the windy general routing problem

and special cases. Networks, 49:245–257, 2007.

M. Dell’Amico, J.C. Dı́az Dı́az, andM. Iori. The bin packing problem with precedence constraints. Operations

Research, 60:1491–1504, 2012.

32

B. Golden, S. Raghavan, and E. Wasil (eds.). The Vehicle Routing Problem: Latest Advances And New

Challenges, volume 43 of Operations Research/Computer Science Interfaces Series. Springer, Berlin, 2008.

B.L. Golden and R.T. Wong. Capacitated Arc Routing Problems. Networks, 11(3):305–315, 1981.

B.L. Golden, J.S. DeArmon, and E.K. Baker. Computational experiments with algorithms for a class of

routing problems. Computers & Operations Research, 10:47–59, 1983.

B.L. Golden, E.A. Wasil, J.P. Kelly, and I.M. Chao. Metaheuristics in Vehicle Routing. In T. Crainic and

G. Laporte, editors, Fleet management and logistics, pages 33–56. Boston, MA: Kluwer, 1998.

C. Gröer, B. Golden, and E. Wasil. A Parallel Algorithm for the Vehicle Routing Problem. INFORMS

Journal on Computing, 23:315–330, 2011.

J.C.A. Gutiérrez, D. Soler, and A. Hérvas. The capacitated general routing problem on mixed graphs.

Revista Investigacion Operacional, 23:15–26, 2002.

G. Gutin and A.P. (eds.) Punnen. The Traveling Salesman and its Variations. Kluwer, Dordrecht, 2002.

G. Hasle. Arc routing applications in newspaper delivery. In A. Corberán and D. Laporte, editors, Arc Rout-

ing: Problems, Methods, and Applications, pages 371–395. SIAM Monographs on Discrete Mathematics

and Applications, Philadelphia, 2014.

G. Hasle, O. Kloster, M. Smedsrud, and K. Gaze. Experiments on the node, edge, and arc routing problem.

Technical Report A23265, ISBN 978-82-14-05288-6, SINTEF, 2012.

S. Irnich, D. Laganà, C. Schlebusch, and F. Vocaturo. Two-phase branch-and-cut for the mixed capacitated

general routing problem. European Journal of Operational Research, 243(1):17–29, 2015.

H. Kokubugata, A. Moriyama, and H. Kawashima. A practical solution using simulated annealing for

general routing problems with nodes, edges, and arcs. In Engineering Stochastic Local Search Algo-

rithms. Designing, Implementing and Analyzing Effective Heuristics, volume 4638, pages 136–149. Springer

Berlin/Heidelberg, 2007.

P. Lacomme, C. Prins, and W. Ramdane-Chérif. Competitive memetic algorithms for arc routing problems.

Annals of Operations Research, 131(1):159–185, 2004a.

33

P. Lacomme, C. Prins, and A. Tanguy. First competitive ant colony scheme for the carp. In M. Dorigo,

M. Birattari, C. Blum, L.M. Gambardella, F. Mondada, and T. Stützle, editors, Ant Colony Optimization

and Swarm Intelligence, volume 3172 of Lecture Notes in Computer Science, pages 426–427. Springer

Berlin Heidelberg, 2004b. ISBN 978-3-540-22672-7.

G. Laporte, S. Ropke, and T. Vidal. Heuristics for the Vehicle Routing Problem. In P. Toth and D. Vigo,

editors, Vehicle routing: problems, methods, and applications, chapter 4, pages 87–116. SIAM, 2014. ISBN

978-1-611973-58-7.

F. Li, B. Golden, and E. Wasil. Very large-scale vehicle routing: New test problems, algorithms, and results.

Computers & Operations Research, 32(5):1165–1179, 2005.

L.Y.O. Li and R.W. Eglese. An Interactive Algorithm for Vehicle Routing for Winter-Gritting. Journal of

the Operational Research Society, 47:217–228, 1996.

H.R. Lourenço, O.C. Martin, and T. Stützle. Iterated local search: Framework and applications. In M. Gen-

dreau and J.-Y. Potvin, editors, Handbook of Metaheuristics, second edition, volume 146 of International

Series in Operations Research & Management Science, pages 363–398. Springer, Berlin, 2010.

S. K. Mandal, D. Pacciarelli, A. Løkketangen, and G. Hasle. A memetic NSGA-II for the bi-objective mixed

capacitated general routing problem. Journal of Heuristics, 21(3):359–390, 2015.

R. Martinelli, D. Pecin, M. Poggi, and H. Longo. A branch-cut-and-price algorithm for the capacitated arc

routing problem. In M.P. Pardalos and S. Rebennack, editors, Experimental Algorithms, volume 6630 of

Lecture Notes in Computer Science, pages 315–326. Springer Berlin Heidelberg, 2011.

D. Mester and O. Bräysy. Active-guided evolution strategies for large-scale Vehicle Routing Problems.

Computers & Operations Research, 34:2964–2975, 2007.

Y. Nagata and O. Bräysy. Edge Assembly based Memetic Algorithm for the Capacitated Vehicle Routing

Problem. Networks, 54:205–215, 2009.

C.S. Orloff. A fundamental problem in vehicle routing. Networks, 4(1):35–64, 1974.

R. Pandi and B. Muralidharan. A capacitated general routing problem on mixed networks. Computers &

Operations Research, 22:465–478, 1995.

34

D. Pisinger and S. Røpke. A general heuristic for vehicle routing problems. Computers & Operations

Research, 34(8):2403–2435, 2007.

M. Polacek, K.F. Doerner, R.F. Hartl, and V. Maniezzo. A variable neighborhood search for the capacitated

arc routing problem with intermediate facilities. Journal of Heuristics, 14(5):405–423, 2008.

C. Prins. A GRASP * Evolutionary Local Search Hybrid for the Vehicle Routing Problem. In F.B. Pereira

and J. Tavares, editors, Bio-inspired Algorithms for the Vehicle Routing Problem, volume 161 of Studies

in Computational Intelligence, pages 35–53. Springer, Berlin, 2009.

C. Prins. The Capacitated Arc Routing Problem: Heuristics. In A. Corberán and G. Laporte, editors, Arc

routing: problems, methods, and applications, chapter 7, pages 131–157. SIAM, 2014. ISBN 978-1-611973-

66-2.

C. Prins and S. Bouchenoua. A Memetic Algorithm Solving the VRP, the CARP and General Routing

Problems with Nodes, Edges and Arcs. In Recent Advances in Memetic Algorithms, volume 166, pages

65–85. Springer Berlin / Heidelberg, 2005.

S. Røpke and D. Pisinger. An Adaptive Large Neighborhood Search Heuristic for the Pickup and Delivery

Problem with Time Windows. Transportation Science, 40(4):455–472, 2006.

L. Santos, J. Coutinho-Rodrigues, and J. R. Current. An improved ant colony optimization based algorithm

for the capacitated arc routing problem. Transportation Research Part B: Methodological, 44(2):246–266,

2010.

P. Shaw. A New Local Search Algorithm Providing High Quality Solutions to Vehicle Routing Problems.

Technical report, University of Strathclyde, 1997.

P. Shaw. Using Constraint Programming and Local Search Methods to Solve Vehicle Routing Problems. In

Proceedings CP-98 (Fourth International Conference on Principles and Practice of Constraint Program-

ming), 1998.

SINTEF. TOP website. URL http://www.sintef.no/top.

É.D. Taillard. Parallel iterative search methods for vehicle routing problems. Networks, 23:661–673, 1993.

35

P. Toth and D. Vigo. An overview of vehicle routing problems. In P. Toth and D. Vigo, editors, The Vehicle

Routing Problem, pages 1–26. SIAM Monographs on Discrete Mathematics and Applications, Philadelphia,

2002.

P. Toth and D. Vigo. Vehicle Routing: Problems, Methods, and Applications. SIAM Monographs on Discrete

Mathematics and Applications, Philadelphia, second edition, 2014.

T. Vidal, T.G. Crainic, M. Gendreau, N. Lahrichi, and W. Rei. A hybrid genetic algorithm for multidepot

and periodic vehicle routing problems. Operations Research, 60:611–624, 2012.

S. Wøhlk. New lower bound for the capacitated arc routing problem. Computers & Operations Research,

33:3458–3472, 2006.

S. Wøhlk. A decade of capacitated arc routing. In B. Golden, S. Raghavan, and E. Wasil, editors, The Vehicle

Routing Problem: Latest Advances And New Challenges, volume 43 of Operations Research/Computer

Science Interfaces Series, pages 29–48. Springer, Berlin, 2008.

36

