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Abstract

Vertical equilibrium (VE) models have proved to be attractive for simulation of CO2 storage scenarios. Their primary advantage

is a substantial reduction in computational requirements compared to standard 3D simulation tools. In this work, we aim to

include the effects of geomechanics on aquifer flow while preserving computational efficiency. When fluids are injected into a

geological formation, changes in pore pressure leads to rock deformation, which influence the flow properties of the formation.

To fully model this effect, a two way coupling between flow and mechanics equations is generally necessary, including the full

under- and overburden. This leads to a computationally expensive system, thus reducing the computational advantage of using VE

models. Within a linear poroelastic framework, the full effect of deformation on flow is captured through changes in volumetric

strain, which can be precomputed for a given pressure basis at grid generation time and used directly in the flow equations during

simulation. This allow us to model the full effect of geomechanics on aquifer flow while eliminating the need for solving the

mechanics equations at simulation time. We demonstrate the approach on 2D and 3D examples, and compare with results obtained

from a standard VE flow models and a model that includes the full poroelastic set of equations. Compared to the latter, we observe

a significant computational benefit using our proposed approach. On the other hand, the impact of geomechanics appears to be

primarily captured by a well-chosen rock compressibility coefficient, suggesting that a fully coupled model might not be required

in many practical cases.
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1. Introduction

The storage of CO2 in the subsurface is a key component of carbon capture and storage (CCS) strategies, which

have been widely proposed as a strategy to combat climate change. In order for CCS to contribute meaningfully to

global mitigation goals, very large amounts of CO2 needs to be geologically stored, calling for large-scale operations

and geological sites that can store hundreds of megatonnes of CO2 for thousands of years [1].

Like any fluid injection or extraction operation in the subsurface, the storage of large amounts of CO2 within a

geological formation will lead to significant changes in the fluid pressure field. Changes in the underground balance

between pressure and mechanical forces will lead to some degree of deformation in the rock matrix, which again

affects important flow parameters, in particular rock porosity and permeability. To properly account for these effects,

the modeling of fluid flow in a storage aquifer will need to be coupled with a geomechanical model that includes not

only the aquifer itself but also the surrounding rock matrix. In the context of CO2 storage, this has been done in e.g.

[2,3] and [4]. The full coupling between flow and geomechanics is significantly more computationally demanding

than the solution of the flow equations in isolation. Operator splitting strategies have been developed to allow such

coupled problems to be solved more efficiently [5,6]. This approach makes it possible to use separate solvers for the

flow and mechanics part of the problem, allowing re-use of existing, highly sophisticated simulation tools. On the

other hand, the computational requirements remain high, and access to both types of solvers is required at simulation

time.

Compared with conventional reservoir simulation, the modeling of CO2 storage and long-term migration must take

very large spatial and temporal scales into account, and involves fluid phenomena that are numerically difficult to

capture using industry-standard 3D flow simulators [7,8]. Consequently, the last decade has seen an increased focus

in the research community on simplified models, in particular models derived from the assumption of vertical equi-

librium (VE). Such models were initially developed for reservoir simulation when computing resources were scarce

[9–11], and have more recently been reintroduced in the context of CO2 storage [12]. VE models are advantageous in

that they reduce the dimensionality of the problem, leading to a significant reduction in computational requirements.

Moreover, they provide “infinite vertical resolution”, and therefore allow accurate modeling of thin gas tongues below

a confining caprock. Past studies indicate that results from VE models compare well with those obtained from con-

ventional 3D simulation [13,14]. VE models for simulating CO2 storage have been developed to include effects such

as capillarity [15], dissolution [16], compressibility [17], caprock rugosity [18] and thermal effects [19]. A simplified

geomechanical model for use in a VE context was recently proposed in [20].

The low computational cost of VE models permits their use in workflows that require a large number of independent

simulations, such as in the optimization of injection rates [21] or model calibration based on measured historical data

[22]. In order for such use cases to remain possible, the inclusion of geomechanical impacts in the VE framework must

be done in a way that does not change computational requirements with orders of magnitude. In [20], a simplified

mechanical model for the aquifer is proposed, but the method still requires a full mechanical model for the surrounding

rock matrix and the access to a dedicated mechanical solver at simulation time.

In the present work, we propose a method that allow us to include the full impact of geomechanics on flow to any

desired degree of approximation, while dispensing with the need to couple with a mechanics solver during simulation.

We achieve this by precomputing mechanical responses for a set of pressure basis functions and storing these in

approximate form with the simulation grid. These responses are then used by the flow simulator in a manner similar to

the common use of pore volume compressibility coefficients in conventional reservoir simulators. Our work extends on

previous results in [23] by including two-phase flow, heterogeneous flow properties and strain-dependent permeability,

using a vertical equilibrium approach for the flow equation. Details on the approach is described in Section 2 and

Section 3. We provided some results using a 2D and 3D case in Section 4 and discuss the observed impact and related

issues in Section 5.
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2. Mathematical model

2.1. The physical system

We considered CO2 injection into an aquifer surrounded by an over- and underburden, as illustrated in Figure 1.

The permeability of the aquifer is sufficiently high to permit practical storage of CO2, whereas the surrounding rock

is considered impermeable and only included for its mechanical impact on the system. While the figure shows a

flat aquifer truncated at its lateral boundaries, our model may also include more general geometries and lap-outs or

otherwise vanishing aquifer boundaries, but it is assumed that the aquifer remains thin compared to its lateral extent.

In what follows, we will denote the aquifer domain by ΩA and the surrounding rock matrix by ΩS . Fluid flow will

thus only be considered in ΩA, whereas mechanical deformation occurs throughout Ω = ΩA ∪ΩS .

In this model, the top surface is free to move, i.e. the mechanical boundary condition is that of fixed (zero) stress.

The mechanical conditions on other boundaries may be freely chosen; our examples in Section 4 consider lateral roller

conditions (as indicated on figure) or clamped conditions.

Fig. 1. Left: The conceptual model. The aquifer is illustrated as a light band within a darker matrix of surrounding rock that extends up to the

ground level (green surface). Fluid flow only takes place in the aquifer, whereas mechanical deformations are computed for the full model. Right:
Cross-section view of the model, with mechanical boundary conditions indicated. Lateral boundaries can be of any type (‘roller’ type indicated on

figure).

2.2. The poroelastic model

Since CO2 storage operations typically do not involve significant compaction, we here assume that principal

stresses remain within the yield surface of the rock, with elastic material behavior. We describe the coupled sys-

tem involving rock deformation and fluid pressure within the theory of linear poroelasticity [24]. The system consists

of a set of force balance equations for mechanical stresses and a conservation equation for fluid flow, coupled by terms

that involve fluid pressure and volumetric strain.

The force balance equations describes a poromechanical system in static equilibrium the a spatial domain Ω with

boundary ∂Ω. Rotational equilibrium implies symmetry of the total stress tensor σ, which will be automatically

satisfied by our constitutive model, whereas translational equilibrium requires that body forces f are counterbalanced

by the divergence of stress:

∇ · σ + f = 0 (1)

With the convention that tensile stresses are positive, total stress equals the difference between effective stress σ′ and

pore pressure scaled by the Biot-Willis coefficient α:

σ = σ′ − αpI (2)

Effective stress and elastic stain ε are linked using Hooke’s law, where C is a fourth-order elasticity tensor:

σ′ = Cε (3)
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and the elastic strain tensor is defined in terms of 3D displacements u as:

ε =
1

2

(
∇u + (∇u)T

)
(4)

For an isotropic material, C can be entirely described by two elastic moduli, e.g. bulk K and shear G moduli, which

are allowed to be spatially heterogeneous. In particular, there may be a contrast in elastic properties between the

aquifer and the surrounding rock. Considering the body force to consist of gravity, i.e. f = −ρbg with ρb being bulk

density and g gravitational acceleration, and combining (1)-(4), we obtain the following expression for mechanical

equilibrium that includes fluid pressure:

∇ · (Cε) − ∇(αp) = ρbg (5)

Boundary conditions are defined independently for each spatial component, and subdivide ∂Ω into parts with imposed

stress and parts with imposed displacements.

In a one-phase fluid system, the flow equation can be written on the form:

(
1

K
(1 − α)(α − φ) + 1

Kf
φ

)
∂p
∂t
+ α
∂ε

∂t
+ ∇ · q = ψ (6)

Here, K and Kf represent the rock and fluid bulk moduli, φ the rock porosity, ε = tr(ε) volumetric strain, q vol-

umetric flux and ψ a source term. The accumulation term consists of one part depending on pressure and another

depending on volumetric strain. The pressure dependent term can be subdivided into separate terms for grain and

fluid compressibility. the volumetric flux q can be linked to fluid pressure through Darcy’s law:

q = − k
μ

(∇p − ρ f gz) (7)

where k represents the permeability of the medium, μ fluid viscosity and ρ f fluid density. As previously stated, fluid

flow occurs in the aquifer only, i.e. our flow domain is limited to ΩA. Boundary conditions consists of a subdivision

of ∂ΩA into regions of imposed flux and regions of imposed pressure, where the top and bottom surface of ΩA are

assumed to be of the first type, with zero flux (impermeable caprock).

Together, (5) and (6) describe the poroelastic system. The coupling between mechanics and flow occurs in the form

of a pressure term ∇(αp) in the flow equation and a volumetric strain term αε in the flow equation.

2.3. Two-phase flow and vertical equilibrium (VE) formulation

We expand the basic poroelastic system by introducing two fluid phases representing CO2 and resident brine. This

means introducing phase saturations sα and pressures pα, and replacing (6) with separate flow equations for each

phase, on the form:

φ
∂sα
∂t
+ sα

[(
φ

Kf ,α
+

1

K
(1 − α)(α − φ)

)
∂pα
∂t
+ α
∂ε

∂t

]
+ ∇ · qα = ψα (8)

Kf ,a now represents the inverse compressibility of phase α (CO2 or brine), which might depend on pressure (i.e. we do

not require linearity). ψα is a source term proper to phase α, whereas qα is the phase flux described by the multiphase

extension to Darcy’s equation:

qα = −λαk(∇pα − ραgz) (9)

For the coupling term ∇(αp) with the mechanics equations, we here employ a simple weighted average of phase

pressures:

p =
∑
α

sαpα (10)

The vertical equilibrium formulation is obtained by assuming negligible vertical flow, which signifies that the

vertical pressure profile is considered hydrostatic. Furthermore, phase segregation is assumed, so that CO2 is present

as a separate zone of local thickness h wedged between the confining caprock and the underlying brine. Considering

the typically strong density difference between CO2 and brine, as well as the large length-to-height aspect ratio of a



 O.A. Andersen et al.  /  Energy Procedia   114  ( 2017 )  3113 – 3131 3117

pressure

depth (z)

h

PT

PT + ρcgz

PT + ρcgh + ρbg(z − h)

caprock

CO2 zone

sharp interface

brine zone

H

h

Fig. 2. Reconstructed pressure and saturation profiles from h and PT , under the sharp-interface vertical equilibrium assumption. Left: Hydrostatic

pressure profile. Extrapolated phase pressures shown as dashed lines. Right: Saturation profile along a vertical column with plume thickness h and

aquifer thickness H.

typical aquifer, these assumptions are frequently reasonable [15,25]. These assumptions allow for reconstruction of

vertical pressure and saturation profiles from a dimensionally reduced set of upscaled variables. For the purpose of

presentational clarity, we limit ourselves to the case with vertically constant porosity and permeability, no residual

saturation and a sharp interface between phase regions, although neither of these assumptions are strictly required. As

upscaled variables, we use fluid pressure at the caprock level PT and local CO2 plume thickness h, both of which are

functions of lateral coordinates only. With the simplifications above, the 3D reconstruction of pressure and saturation

becomes (see also Figure 2):

sc(x, y, z) =

⎧⎪⎪⎨⎪⎪⎩
1 , z < h(x, y)

0 , z > h(x, y)
(11)

p(x, y, z) =

⎧⎪⎪⎨⎪⎪⎩
PT (x, y) + ρcgz , z ≤ h(x, y)

PT (x, y) + ρcgh + ρbg(z − h) , z > h(x, y)
(12)

Above, sc represents CO2 saturation, g the gravitational constant and ρc and ρb the CO2 and brine densities, respec-

tively. p represents local fluid pressure (individual phase pressures are indicated by dashed lines on Figure 2, but not

strictly needed here as our particularly simple saturation profile has only one phase present at any given point).

The upscaled equations are obtained by vertical integration of (8) from top to bottom of the aquifer. The reader is

referred to previously published literature, e.g. [12,26], for details on the integration process. Here we limit ourselves

to presenting the resulting equations, which for CO2 are:

φ
∂h
∂t
+ h

[(
φ

Kf ,c
+

1

K
(1 − α)(α − φ)

)
∂PT

∂t
+ α
∂ε̄

∂t

]
+ ∇|| ·Q = Ψc (13)

Q = −ΛcK||
(∇||PT − ρcg∇||ζ) (14)

Newly introduced symbols here include ε̄ (vertically averaged volumetric strain), Q (upscaled Darcy flux),Φ (upscaled

CO2 source term), Λc = h/μc (upscaled mobility) and ζ which represents caprock depth as a function of lateral

coordinates. In addition, the symbol ∇|| represent the two-dimensional del operator. The upscaled equations for brine

are similar, as long as h is substituted by H − h (H being the local thickness of the aquifer), subscript c by subscript b,

and subtracting the additional term (ρb − ρc)g∇||h from the expression inside parentheses of (14).
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3. Decoupling the model

3.1. Geertsma’s uniaxial poroelastic expansion coefficient

For standard reservoir simulation, the impact of changes in pore volume due to pressure-induced rock deformation

is usually approximated using a pore volume compressibility coefficient cφ, which amounts to substituting the rock-

related part of the expression within brackets in (8), i.e. 1
K (1 − α)(α − φ) ∂p

∂t + α
∂ε
∂t with simply cφ

∂p
∂t . For this, the

strain-dependent term must be reformulated as α ∂ε
∂p
∂p
∂t , and some constant must be chosen to approximate the factor

∂ε
∂p . An exact representation is not possible, since volumetric strain at a given point x theoretically depends on the

aquifer-wide pressure field, not only the pressure at x. However, a reasonable approximation can be obtained from

the chosen poroelastic parameters by assuming zero lateral strain and constant vertical (total) stress. In that case, we

have:
∂ε

∂p
=
α

Kv
= cm (15)

where Kv is the rock’s uniaxial bulk modulus, which is related to the bulk K and shear G moduli as Kv = K+4/3G. The

constant cm, defined by (15), is called Geertsma’s uniaxial poroelastic expansion coefficient [24]. The assumptions of

zero lateral strain and constant vertical stress describe the situation of an uniform pressure increase in an horizontal, flat

and infinite aquifer embedded in a larger rock matrix with a free-moving top surface at constant load. By symmetry,

any deformation (and thereby strain) will be vertical in this case.

Incidentally, it can be shown that cm also exactly describes the relation between local pressure and volumetric strain

in a unbounded, homogeneous 3D domain [24], for any pressure field (i.e. not necessarily uniform). This suggests that

in the general case, any non-local influence of pressure on volumetric strain must in some way be related to boundary

conditions or inhomogeneities in the poroelastic properties of the medium.

3.2. Numerical generalization of Geertsma’s coefficient

The use of Geertsma’s poroelastic expansion coefficient to determine a good value for cφ can be generalized in order

to take general boundary conditions and elastic heterogeneities into account. To do this, we consider the interpretation

of cm as the volumetric expansion resulting from a uniform pressure increase in an infinite flat aquifer. For a specific

simulation model with arbitrary boundary conditions, irregular geometry and heterogeneities, we define an spatially

dependent parameter that represent the volumetric change caused by a uniform pressure increase throughout the flow

domain. This parameter, which will equal cm for the infinite, uniform case, can be numerically obtained by using

a mechanics solver. In general, the obtained volumetric strain field cnum
m will not be uniform due to the influence

of boundary conditions, nonuniform geometry or heterogeneous elastic properties. For instance, regions close to a

clamped (zero displacement) boundary will generally have lower values for cnum
m . As a consequence, each cell in the

simulation grid will be attributed its own specific value of cφ. A 2D example is presented in Figure 3, where we

have used a finite-element based solver to compute the volumetric strain in a horizontal aquifer embedded in a larger

rock matrix, induced by a uniform pressure increase. On the figure, we plot Δε/Δp computed under two different

sets of lateral boundary conditions, “clamped” or “roller”, and compare with the theoretical value of cm. (“Roller”

conditions here refer to zero lateral displacement and fixed vertical stress, whereas “clamped” conditions refers to zero

displacement in all directions). As can be seen from the illustration, roller boundary conditions leads to a uniform cnum
m

field that is practically coincident with cm, whereas clamped conditions lead to a field that is similar to cm away from

boundaries and considerably attenuated towards the edges. Parameters used to generate this example are provided in

Table 1. In Section 4, we compare the approach of using cnum
m with the more sophisticated method described in 3.3, as

well as the solution from a fully coupled model.

3.3. The use of precomputed response functions

By using Geertsma’s expansion coefficient (or its numerical generalization) to model pore volume changes, we

presuppose that volumetric strain in the aquifer depends solely on local pressure. However, the volumetric strain

at any point theoretically depends on the global pressure field obtained by solving the full poroelastic equations.
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Table 1. Parameter values used for example presented in 3.2

Parameter Value

Dimensions 2 (x, z)

Aquifer length/thickness 10 km / 100 m

Overburden thickness 950 m

Biot-Willis coefficient (α) 0.9

Aquifer bulk and shear moduli 10 GPa / 0.8 GPa

Surrounding rock bulk and shear moduli 40 GPa / 10 GPa
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Fig. 3. Computing cnum
m for a two-dimensional flat and horizontal aquifer. The x-axis represents spatial position along the aquifer, whereas the

y-axis represents the local change in volumetric strain for a unit, global pressure increase throughout the aquifer domain.

Reciprocally, a localized pressure perturbation will lead to global changes in volumetric strain. As long as boundary

conditions do not change, changes in volumetric strain will only depend on changes in the pressure field, which means

that any given pressure field is associated with a unique volumetric strain field. Since our equation system is linear,

the impact on global volumetric strain from changes to the global pressure field can be obtained using the principle of

superposition. If we for each function in our pressure basis precompute the associated impact on the global volumetric

strain field, we can later reconstruct the exact volumetric strain associated with any pressure field by summing up the

contributions. More formally, if we consider our pressure basis to consist of the m functions {φi}i=1...m, the pressure

field is expressed using scalar coefficients {pi}i=1...m as:

p(x) =

m∑
i=1

piφi(x) (16)

We note the initial pressure field p0 with coefficients {p0
i }i=1...m, and define p̃ = p − p0 and p̃i = pi − p0

i , pressure can

also be expressed as:

p(x) = p0 + p̃ = p0 +

m∑
i=1

p̃iφi (17)

The volumetric strain field ε depends linearly on pressure p, boundary conditions bc and body forces f, and can be

formally divided in two parts:

ε = ε(p, bc, f)

= ε(p0, bc, f) + ε(p − p0, 0, 0)

= ε0 + ε̃(p̃)
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Fig. 4. Example of a response function. The curves represent volumetric strain as a function of distance from a central pressure perturbation.

The left plot includes the value of the perturbed gridcell itself. On the right plot, the central value is suppressed and the curves rescaled to show

percent-wise magnitude compared with the (removed) central value. The vertical grid resolution of the aquifer is 10 cells for the blue curves, and

a single cell for the red curves. With just one vertical cell, the internal bulging effect in the aquifer is not captured, which significantly changes the

nature of the response.

We here use ε0 to denote initial volumetric strain, and ε̃ to denote the change in ε caused by p̃, considering boundary

conditions and body forces fixed. We further have:

ε̃(p̃) = ε̃

⎛⎜⎜⎜⎜⎜⎝
m∑

i=1

p̃iφi

⎞⎟⎟⎟⎟⎟⎠ =
m∑

i=1

p̃iε̃(φi) (18)

Knowing the set of response functions {ε̃(φi)}i=1...m will therefore allow us to determine the volumetric strain field

associated with any pressure field that can be expressed in the basis {φi}i=1...m. We also have:

∂ε

∂pi
=
∂ε̃

∂pi
= ε̃(φi) (19)

By replacing the use of cm in 3.1 with ε(φi), we establish a set of non-local pore volume compressibility coefficients cφ
to use with the flow equation. These will exactly represent the impact of mechanics on flow, thereby eliminating the

need for coupling with the mechanical system when running the simulation. The response functions {ε̃(φi)}i=1...m can

be computed at grid generation time and stored along with the grid description. Although volumetric strain is defined

on Ω, we only need to keep track of the part covering ΩA. Assuming that the response functions are made available

as part of the input data, the only substantial change necessary for a standard flow simulator to model geomechanical

impact is added support for non-local pore volume compressibility coefficients. However, the applicability of the

method hinges on a few practical observations/points, which we now proceed to address.

Table 2. Parameter values used to compute the response illustrated in Figure 4

Parameter Value

Aquifer thickness / depth 100 m / 1000 m

Aquifer/overburden Young’s modulus 1 GPa / 10 GPa

Perturbation radius 10 m (1 cell)

Perturbation height 100 m (height of aquifer)

Impulse magnitude 1 Pa

Grid block size 10 m

Vertical aquifer resolution 1 cell (red), 10 cells (blue)

First, although theoretically the support of each ε̃(φi) is global, the response tends to decay quickly as the distance

from the support of φi grows. This behavior can to some degree be attributed to the free-moving top surface (not of

the aquifer itself but of the full mechanical domain including the overburden). On Figure 4 we see the radial profile
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of a response function computed for a cylindrical pressure perturbation in a horizontal aquifer (parameters given in

Table 2). By examining the blue curve, we see that the change in volumetric strain is by far largest within the support

of the perturbation itself. It then drops to a negative value in the immediate neighborhood, reflecting compression

caused by the expanding center region, and then rises to a positive value associated with the effect of caprock uplift,

after which it gradually decays to zero. If the horizontal resolution of the mechanical grid inside the aquifer is too

low, the compression caused by the expanding central region on its neighborhood is not properly captured, and the

response function changes both quantitatively and qualitatively (red curves on Figure 4).

The relatively localized impact of the response functions means that they do not need to be stored in their entirety.

As the magnitude of ε̃(φi) drops below a specified small threshold value, it can be truncated with little loss of precision

in the final simulation result. Truncation means that the matrix of stored responses can be stored in a sparse format,

which may be crucial for grids with a large number of cells. A sparse matrix structure is also a practical necessity

when solving large linear systems using iterative approaches.

When a response function is truncated, it also needs to be rescaled to ensure that the total volumetric change in the

aquifer is preserved. Interestingly, if φi is defined as the indicator function on gridcell i (i.e. equal to one inside cell i
and zero elsewhere), it can be shown [23] that we have the following (exact) relation:

∫
ΩA

ε̃(φi)dx = (cnum
m )i (20)

where (cnum
m )i here denotes the value of cnum

m on cell i. This signifies that the approach based on precomputed response

functions and cell indicator functions as pressure basis has the following two limit cases: (1) it reproduces the fully

coupled model when the truncation threshold goes to zero; (2) it becomes equivalent with the local approach described

in 3.2 when the truncation threshold is raised high enough to concentrate the whole response within a single gridcell.

For the computation of volumetric strain responses, other choices of pressure basis functions are of course possible.

For instance, a coarser basis where φi represents a whole vertical pillar of cells in the aquifer is a natural choice when

the flow equations are formulated under the VE assumption, since the vertical pressure profile will then have to be

reconstructed anyway. Since the key assumption behind VE models is hydrostatic pressure, a given overpressure at

the top of the aquifer will translate to a similar overpressure throughout the vertical column. The use of pressure basis

functions representing vertical stacks of cells becomes natural, and significantly reduces the number of responses

that must be precomputed. There is a slight approximation involved in this approach, since there is a kink in the

hydrostatic pressure profile in the presence of CO2 (c.f. Figure 2). However, by using the phase-weighted pressure

average specified in (10) to compute the average pressure perturbation in a column, the introduced error remains small.

The initial computation of response functions is expensive, since each basis function (in principle) requires a

separate solution of the linear elasticity equations. However, the complete task needs to be carried out only one

time, as part of the grid generation process. Moreover, there are some ways to make the computation more efficient.

Since the magnitude of the response functions can be practically neglected beyond a certain distance, it is possible to

compute several responses in a single solve, as long as they remain sufficiently spatially separated. In addition, since

only the right-hand side of the equation system changes for each solution, it is beneficial to invest some initial time in

computing a good preconditioner for the system. Finally, the task is trivially parallelizable across multiple processing

cores, since each response function can be computed completely independently of the others.

4. Results

In this section, we compare the different approaches of modeling geomechanical impact on flow with a two-phase

VE model applied on a couple of CO2 injection examples. Our first example is a 2D model where CO2 is injected

with a fixed bottom-hole pressure into a thin, closed reservoir of limited extent. The second example is a 3D case

where we consider a fixed-rate CO2 injection into an open formation.

For both examples we aim to enhance the non-local interdependence between pressure and volumetric strain by

specifying a relatively strong contrast in elastic properties between aquifer and surrounding rock. To introduce local

variations in the pressure field, We moreover define a heterogeneous and strain-dependent permeability field, where

initial permeability of the rock, k0 is set to a realization of a quasi-gaussian scalar field with a specified average value.

Permeability k is dynamically linked to the current porosity value φ (resulting from changes in pressure and volumetric
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strain) through the relation [27]:

k = k0(φ/φ0)α (21)

We here use an exponent value of α = 20, which is in the upper range of values experimentally reported in [27], and

which for the pressure differentials in our examples never lead to local permeability changes significantly exceeding

a factor of two.

The density and compressibility of CO2 are computed from local conditions using an equation of state [28], whereas

the significantly less compressible water is modeled using a linear relation.

We compare the solutions obtained from the precomputed response and from the approaches using (local) pore vol-

ume compressibility coefficients with the solution of the fully coupled system, used as reference. For both examples,

pressure responses were truncated at 1 × 10−3 of their central value. The fully coupled solution was computed using

an iterative scheme based on operator splitting. For the second example, we also compare computational runtimes.

The numerical code was developed in-house using MATLAB, based on functionality from the Matlab Reservoir

Simulation Toolbox (MRST) [29] and its CO2 storage module MRST-co2lab [30]. A fully-implicit, first order, finite-

volume discretization scheme was used for the VE flow equations, whereas the mechanics equations were discretized

using virtual elements [31] supplied with additional stiffness terms for correct modeling of higher-order energies,

effectively making the scheme equivalent with a first-order finite-element approach as long as cell shapes are restricted

to prisms.

4.1. 2D example: fixed-pressure injection into a closed formation

In this first example, we consider a thin (10 m), closed reservoir ΩA consisting of soft rock at a depth of 1000 m,

embedded in a considerably stiffer surrounding rock matrixΩS . Distance measurements are given in Figure 5, whereas

other simulation parameters are listed in Table 3. A vertical average of the stochastically generated permeability field

in the reservoir is shown in Figure 6. During the total simulated period of 1000 days, CO2 is continuously injected at

a fixed bottom-hole pressure into the middle of the reservoir (x = 2 km). We compare the resulting pressure field and

CO2 plume thickness obtained from using: (1) fully coupled geomechanics (“full”); (2) precomputed responses (“pr”);

(3) local poroelastic expansion coefficients based on numerically computed cnum
m (“local”); and (4) local poroelastic

expansion coefficients based on Geertsma’s uniaxial expansion coefficient cm (“uniform”).

The “pr” model uses precomputed responses for each of the 161 vertical columns in the reservoir. In order to

illustrate their shape and extent, five of these are drawn in the left plot of Figure 7, where their relatively local extent

can be clearly seen. Away from the boundary, the responses have a very similar shape, which is to be expected

given the simple geometry and the constant elastic parameters in each of ΩS and ΩA. Compared with Figure 4, the

responses drawn here do not exhibit a local compression region. This is explained by the very thin nature of the

reservoir compared to the lateral extent of each pillar, which constitutes the support of each pressure basis function.

As a consequence, any local bulge effect is overwhelmed by the caprock uplift effect. In the right plot in the same

figure, we see the values for cnum
m and cm, used in the “local” and “uniform” models respectively.

Reservoir pressure and CO2 plume thicknesses corresponding to day 1, day 10 and day 100 are shown in Figure 8.

At day 10, there is a noticeable discrepancy in pressure between the “full” and “pr” models on one hand, and the

“local” and “constant” models on the other. At day 100, pressures from all models are roughly in agreement, whereas

at day 1000, the “constant” model diverges from the other. This is to be expected since at this point the induced

pressure increase has reached the lateral boundaries, and the use of cm in the “constant” model does not capture any

information regarding specific boundary behavior. Regardless of pressure differences, the impact on the CO2 plume

appears to be very small, with all models in good agreement for all selected timesteps.

4.2. 3D example: fixed-rate injection into open aquifer

In our second example, we apply our models to a 3D model where CO2 is injected at a constant rate into an open

aquifer of constant thickness (20 m) at a depth of 1800 m. The simulation model can thus be considered to consist

of three layers: the overburden (extending from surface level down to aquifer), the aquifer itself, and the underburden

(extending from the aquifer bottom downwards to a depth of 4000 m). Contrary to the first example, the flow domain

here extends out to the lateral boundaries of the model, where a fixed, hydrostatic, pressure boundary condition is
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Table 3. Parameter values used in the 2D example of subsection 4.1

Parameter Value

Reservoir thickness (m) 10

Lateral resolution (cells) 201

Vertical resolution (cells) 10 (ΩS above ΩA) / 4 (ΩA) / 10 (ΩS below ΩA)

Young’s modulus (GPa) 20 (in ΩS ) / 1 (in ΩA)

Poisson’s ratio 0.3 (in ΩS ∪ΩA)

Biot-Willis coefficient 1

Reservoir porosity 0.2

Average permeability (millidarcy) 8.8

Brine density (kg/m3) 1000

Brine bulk modulus (GPa) 2.5

Viscosity (Pa·s) 8.0 × 10−4 (brine) / 6.0 × 10−5 (CO2)

Initial (hydrostatic) pressure at caprock (MPa) 10

Reservoir temperature (◦C) 40

Injection overpressure (MPa) 10

pressure response truncation value 1.0 × 10−3

Solution computed for the following days 1, 10, 20, 50, 100, 150, 200, 400, 800, 1000

1810m

5000m

1000m

800m

4000m

injection well

ΩS reservoir (ΩA)

Fig. 5. Diagram of simulation domain used in example of subsection 4.1. The long, white rectangle in the middle represents the reservoir, whereas

the gray area represent the surrounding rock matrix. Mechanical boundary conditions are set to zero-displacement at the bottom and the sides, and

constant stress (atmospheric pressure) on top.

imposed. For the mechanics, clamped conditions are used at the bottom, roller conditions at the sides, and constant

stress (atmospheric pressure) on top. Other relevant simulation parameters are provided in Table 4. Given the uniform

geometry, the roller boundary conditions and the constant elastic parameters within ΩA and ΩS , there is no difference

between cm and cnum
m , so we do not make a distinction, but simply refer to the “local” model. A vertical average of the

stochastically generated aquifer permeability field used is shown in Figure 9.

Simulation results are shown in figures 10–13. On Figure 10, we show a top view of the aquifer pressure field for

the first day after injection start as well as after two years of continuous injection. We also plot the error introduced

by our two approximate methods (“pr” and “local”). We see that for both timesteps, the error from the “pr” model

remains at the order of 1 × 10−3 or less, whereas the “local” model initially has a maximal error of about 8 percent,

which is reduced to an error comparable with the “pr” model after two years. For both approximate models, but in

particular for the “local” model, the errors are mainly concentrated in a small area around the injection well, where

pressure variation is largest. On Figure 11 we show a similar analysis for CO2 plume height. The solution for the full

model shows a somewhat irregular, star-shaped plume extending out to the lateral boundaries. The irregular shape is

caused by the heterogeneous permeability field. The errors introduced by the “pr” and “local” models remain very

small at all times. Interestingly, the error becomes zero around the injection well after two years, which is to be

expected since the plume then extends all the way down to the aquifer bottom. On Figure 12 and Figure 13, we plot

cross-sections of pressure and CO2 plume profiles along with the errors introduced by the “pr” and “local” models.
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Fig. 6. Reservoir permeability field used for example in subsection 4.1. Mean value is 0.01 darcy.
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Fig. 7. Left: response functions corresponding to unit pressure impulses at five selected reservoir columns (example in subsection 4.1). Right: Cell-

wise values of cm, used to compute compressibility coefficients for the “constant” model; and cnum
m , used to compute compressibility coefficients

for the “local” model (example in subsection 4.1).

We see that while the “pr” model performs better than the “local” model, the only significant errors are found in the

pressure field, and only around the injection area at the beginning of the simulated period.

Finally, we have a look at the associated computational requirements. Table 5 presents the time spent on computing

the simulation, using the three different models. Care should be taken when interpreting these numbers, considering

the prototype nature of the simulation software used. The figures nevertheless suggest that the precomputed responses

approach may provide a considerable computational advantage compared to the fully coupled model, but still intro-

duces compared to the “local” model. The reason the “pr” model requires more computation than the “local” model

despite not introducing additional equations or unknowns is the less sparse nature of the linear equations involved,

which requires additional time for the iterative linear solvers (“bicgstab”, in this case) to handle. Also, the initial

computation of response functions took 3500 seconds. This, however, is a cost that incurs only once.

5. Discussion

In this paper we have explained and tested a few approaches for including the effects of geomechanics on two-phase

flow. We did this in the setting of modeling CO2 injection using a vertical equilibrium framework. The approximate

approaches do not require coupling with a mechanics solver at runtime, thus simplifying the workflow and freeing up

computational resources.
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Fig. 8. Selected timesteps of simulation results from example in subsection 4.1. Columns represent day 10 (left), day 100 (middle) and day 1000

(right). The upper row shows the pressure field at the top of the reservoir, using the four different methods. The middle row shows the relative
error between each of the three approximate approaches (“pr”, “local” and “constant”) compared to the benchmark (“full”). The relative error is

obtained by dividing pressure discrepancy by total pressure variation. The bottom field shows CO2 plume thicknesses (y-axis inverted to illustrate

actual plume shape).
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Table 4. Parameter values used in the 3D example of subsection 4.2

Parameter Value

Lateral extent (km) 4 (east-west and north-south)

Aquifer depth (m) 1800

Aquifer thickness (m) 20

Lateral resolution (cells) 61

Vertical resolution (cells) 10 (ΩS above ΩA) / 4 (ΩA) / 10 (ΩS below ΩA)

Young’s modulus (GPa) 20 (in ΩS ) / 6 (in ΩA)

Poisson’s ratio 0.15 (in ΩS ) / 0.2 (in ΩA)

Biot-Willis coefficient 0.9

Reservoir porosity 0.17

Average permeability (millidarcy) 13

Initial (hydrostatic) pressure at caprock (MPa) 17.8

Reservoir temperature (◦C) 90

Brine density (kg/m3) 1000

Brine bulk modulus (GPa) 2.5

Viscosity (Pa·s) 3.2 × 10−4 (brine) / 6.0 × 10−5 (CO2)

Injection rate (m3/s) 0.02

pressure response truncation value 1.0 × 10−3

Solution computed for the following days 1, 5, 10, 30, 365, 730

Fig. 10. Top view of aquifer pressure field (in Pa) at caprock level, after 1 day (top row) and after two years (bottom row) of CO2 injection. The

left column represents the “benchmark” result obtained by the fully coupled model. The middle and right columns represent the relative errors of

the “pr” and the “local” models, respectively (ratio of pressure discrepancy to total pressure variation).

Table 5. Computing time for the different approaches

Approach Runtime (seconds)

Fully coupled (splitting scheme) 1262

Precomputed responses 81.8

Local, using cnum
m 6.4

It should be pointed out that none of the approaches for modeling geomechanics require flow equations to be based

on the VE assumption. In particular, the model using precomputed responses can equally well be applied in the setting

of a full 3D reservoir simulator, and in fact, our results indicate that situations requiring full 3D simulations may be

the most relevant use cases for the precomputed response approach. This is because, at least for the cases presented in
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Fig. 11. Top view of CO2 plume thickness (in meters), after 1 day (top row) and after two years (bottom row) of CO2 injection. The left column

represents the “benchmark” result obtained by the fully coupled model. The middle and right columns represent the relative errors of the “pr” and

the “local” models, respectively (local height discrepancy divided by maximum plume height) .

this paper, the local model based on cnum
m appears to produce good results except for at early times around the injection

well. However, the use of VE models is most relevant at larger spatial and temporal scales. A simple estimate of the

time Tdr necessary for brine to drain out of a CO2 plume, resulting in fluid segregation, was presented in [32] as:

Tdr ∼ Hφ
λ∗

br
kΔρg

(22)

with H being aquifer thickness, φ porosity, k permeability, Δρ density difference between brine and CO2 and g the

gravitational constant. In addition, λ∗
br

represents a characteristic brine mobility. If we apply this formula on the two

examples examined in the previous section and assume λ∗
br
= 1

2μb
(with μb being brine viscosity), we obtain values Tdr

that are just short of 2 years in both cases. However, by this time the impact of geomechanical deformation appears to

be equally well represented using the local model based on cnum
m . There may be other cases where the geomechanical

impact of CO2 injection and migration requires a more sophisticated model for mechanics at temporal scales relevant

for VE simulation, but so far most of our experiments involving realistic parameters indicate that the use of cnum
m

remains a good approximation. Even if variations in caprock geometry are introduced, leading CO2 to collect in

structural traps, the additional capillary overpressure (difference between broken and whole line at caprock level in

Figure 2) is generally not large or abrupt enough to introduce a significant difference between the “local” and the “pr”

model above.

Another point to mention is that the discretization of the mechanical grid does matter. If the discretization is too

coarse, the resulting error in volumetric strain may be more important than the improvement we seek to obtain by

coupling geomechanics with the flow model in the first place. One example is provided by the red graph in Figure 4,

which demonstrates the importance of vertical resolution within the aquifer. Another example is shown in Figure 14,

where we for a 2D test example plot the global volumetric strain profile induced by a 476 meters wide, unit pressure

increase in a 50 meter thick, horizontal aquifer, using different lateral grid resolutions. The coarsest grid, where the

pressure increase is exactly covered by one grid cell, leads to a volumetric strain profile that is significantly more

spatially spread out compared to solutions obtained using progressively finer grids. The volumetric strain profile

appears to converge to something that is in-between the coarse solution and the approximated strain obtained from

simply multiplying the pressure perturbation by cm (indicated by black dots). This indicates that a sufficiently high

grid resolution is needed in order for the full coupling of a geomechanics model to provide any real improvement in

precision compared to the simple use of a local multiplier in the flow model.
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Fig. 12. Cross-section plot of pressure field at top of aquifer (left column) and model relative error (right column) for the simulation in subsec-

tion 4.2. Results are plotted for the aquifer state after 1 day (top row), 1 month (middle row) and two years (bottom row). Relative error is defined

as model discrepancy divided by total pressure variation.
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Fig. 13. Cross-section plot of CO2 plume (left column) and model relative error (right column) for the simulation in subsection 4.2. Results are

plotted for the aquifer state after 1 day (top row), 1 month (middle row) and two years (bottom row). Relative error is defined as model discrepancy

divided by maximal plume height.
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Fig. 14. Volumetric response (2D case) for a unit, 476 meter wide pressure perturbation, computed using progressively finer lateral grid resolutions.

We therefore foresee that in most situations, the use of pore volume compressibility coefficients derived from

cnum
m is likely to provide the best trade-off between precision and computational resources when using VE models to

investigate long-term, large-scale CO2 storage issues. For simulation of shorter periods, where full 3D equations is

the more natural choice, the use of precomputed responses to model the full impact of geomechanics can be a more

attractive option.
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