
How is Security Testing Done in Agile Teams?
A Cross-Case Analysis of Four Software Teams

Daniela Soares Cruzes1(✉), Michael Felderer2, Tosin Daniel Oyetoyan1,
Matthias Gander2, and Irdin Pekaric2

1 SINTEF Digital, Trondheim, Norway
{danielac,tosin.oyetoyan}@sintef.no

2 University of Innsbruck, Innsbruck, Austria
{michael.felderer,matthias.gander,irdin.pekaric}@uibk.ac.at

Abstract. Security testing can broadly be described as (1) the testing of security
requirements that concerns confidentiality, integrity, availability, authentication,
authorization, nonrepudiation and (2) the testing of the software to validate how
much it can withstand an attack. Agile testing involves immediately integrating
changes into the main system, continuously testing all changes and updating test
cases to be able to run a regression test at any time to verify that changes have
not broken existing functionality. Software companies have a challenge to
systematically apply security testing in their processes nowadays. There is a lack
of guidelines in practice as well as empirical studies in real-world projects on
agile security testing; industry in general needs a more systematic approach to
security. The findings of this research are not surprising, but at the same time are
alarming. The lack of knowledge on security by agile teams in general, the large
dependency on incidental pen-testers, and the ignorance in static testing for
security are indicators that security testing is highly under addressed and that more
efforts should be addressed to security testing in agile teams.

Keywords: Security testing · Agile testing · Case study research

1 Introduction

Security testing can broadly be described as (1) the testing of security requirements that
concerns confidentiality, integrity, availability, authentication, authorization, non-repu‐
diation [16] and the testing to validate the ability of the software to withstand attack
(resiliency) [28]. This process can be performed by showing conformance with the
security properties, similar to requirements-based testing; or by trying to address known
vulnerabilities, similar to traditional fault-based testing. It is essential to take testing into
account in all phases of the secure software development lifecycle, i.e., analysis, design,
development, deployment, as well as maintenance. Thus, security testing must be
holistic covering the whole secure software development lifecycle. Proper security
testing requires a mix of techniques as there is no single testing technique that can be
performed to effectively cover all security testing and their application within testing

© The Author(s) 2017
H. Baumeister et al. (Eds.): XP 2017, LNBIP 283, pp. 201–216, 2017.
DOI: 10.1007/978-3-319-57633-6_13

activities at unit, integration, and system level [2]. Nevertheless, many companies adopt
only one security testing approach, for instance penetration testing.

Agile testing is one approach that is increasingly being adopted by software compa‐
nies. This approach does not just mean testing on agile projects, but testing an application
with a plan to learn about it and let the product information and customer feedback guide
the testing. Agile testing involves immediately integrating changes into the main system,
continuously testing all changes and updating test cases to be able to run a regression
test at any time to verify that changes have not broken existing functionality [18, 23].
In agile software development, there is a focus on the feature implementation and
delivery of value to the customer and, as such, non-functional aspects of a system should
also be of attention. Non-functional requirements testing is challenging due its cross-
functional aspects and lack of clarity of their needs by business in the most part of
projects, therefore, although important, the non-functional requirements are often
neglected in agile testing for many reasons, such as experience, culture, awareness,
priority, cost and time pressure [5].

There is a lack of guidelines in practice as well as empirical studies in real-world
projects on security testing; for agile projects in general needs a more systematic
approach to security. The main contribution of this paper is to deepen relevant knowl‐
edge and experience on the characterization of security testing in an agile context. Based
on the “traditional waterfall testing approaches and techniques”, we have analyzed four
teams and asked about how they perform these in the agile context. We then provide
recommendations of ways to improve it based on lessons learned and good practices
from the cases. In addition, we provide an improved understanding on how research and
practice are aligned.

The remainder of the paper is organized as follows. In Sect. 2, we provide back‐
ground on software and security testing. It also forms the backbone of the used interview
guide. Section 3 presents the research methodology and describes how the studies were
conducted. Section 4 presents the main findings of the case studies. Section 5 discusses
the cross-case analysis findings. Finally, Sect. 6 concludes the paper and highlights
directions of future work.

2 Background on Software and Security Testing

Software testing consists of all software development lifecycle activities, both static and
dynamic, concerned with evaluation of software products and related artifacts to deter‐
mine that they satisfy specified requirements, to demonstrate that they are fit for purpose
and to detect defects. Testing can be classified according to the three dimensions objec‐
tive, scope, and accessibility shown in Fig. 1.

Test objectives are reason or purpose for designing and executing a test. The reason
is either to check the functional behavior of the system or its nonfunctional properties.
Functional testing is concerned with assessing the functional behavior of an SUT
(System under Testing), whereas nonfunctional testing aims at assessing nonfunctional
requirements with regard to quality characteristics like security or performance.

202 D.S. Cruzes et al.

The test scope describes the granularity of the SUT and can be classified into compo‐
nent, integration and system testing. It also determines the test basis, i.e., the artifacts
to derive test cases. Component testing (also referred to as unit testing) checks the
smallest testable component in isolation. Integration testing combines components with
each other and tests those as a subsystem, that is, not yet a complete system. System
testing checks the complete system, including all subsystems. A specific type of system
testing is acceptance testing where it is checked whether a solution works for the user
of a system. Regression testing is a selective retesting to verify that modifications have
not caused side effects and that the SUT still complies with the specified requirements.

In terms of accessibility of test design artifacts we can classify testing methods into
white-box and black-box testing. In white-box testing, test cases are derived based on
information about how the software has been designed or coded. In black-box testing,
test cases rely only on the input/output behavior of the software. This classification is
especially relevant for security testing, as black-box testing, where no or only basic
information about the system under test is provided, enables to mimic external attacks
from hackers.

Security testing is testing of security requirements related to security properties like
confidentiality, integrity, availability, authentication, authorization, and non-repudia‐
tion in addition to testing the resilience of the system against attack. In security testing,
there are two principal approaches that can be distinguished, i.e., security functional
testing and security vulnerability testing [33]. Security functional testing validates
whether the specified security requirements are implemented correctly, both in terms of
security properties and security mechanisms. Security vulnerability testing addresses
the identification of unintended system vulnerabilities. It uses the simulation of attacks
and other kinds of penetration testing attempting to compromise the security of a system
by playing the role of a hacker trying to attack the system and exploit its vulnerabilities
[1]. Furthermore, security vulnerability testing requires specific expertise, which makes
it difficult and hard to automate [21]. By identifying risks in the system and creating
tests driven by those risks, security vulnerability testing can focus on specific parts of a
system implementation where an attack is likely to succeed.

Scope

Component

Integration

System

Accessibility

Objective

White-Box Black-Box

Functional

Nonfunctional

Fig. 1. Software testing dimensions objective, scope and accessibility (adopted from [16]).

How is Security Testing Done in Agile Teams? 203

Figure 2 abstracts from concrete security testing techniques mentioned before, and
classifies them according to their test basis within the secure software development life‐
cycle, which takes security aspects into account in each phase of software development,
i.e., analysis, design, implementation, deployment, maintenance, and additionally
testing.

Requirements Design Models Code Running System
Analysis Design Development Deployment Maintenance

Penetra on Tes ng
and Dynamic Analysis

Code-Based Tes ng
and Sta c Analysis

Security
Regression Tes ng

Model-Based
Security Tes ng

Fig. 2. Process for risk-based test strategy development (adopted from [16]).

Model-based security testing is grounded on requirements and design models created
during the analysis and design phase. Examples are misuse cases and threat models. In
misuse cases, test cases relating to an attacker’s perspective are captured and used to
exercise the system [31]. During the design, a threat model can be used to capture
security issues and translated into test cases that can be used for security testing [20].

Code-based testing and static analysis is based on source, bytecode, or binary created
during development. This testing approach in many cases uses static analysis tools to
find code-based defects [6]. There is a range of issues that could be focused by a static
analysis tool such as duplications, coding rules, code complexity, unit test coverage, and
structural complexity. As regards security testing, specific frameworks exist that provide
platform for common enumeration of security defects in the implementation and design.
The Common Weakness Enumeration (CWE) [8] provides a formal list of software
weaknesses. The OWASP Top-10 provides the list of the most common web application
vulnerabilities [26]. The SANS Top-25 list shows the most widespread and critical errors
that are applicable to all types of applications [11].

Penetration testing and dynamic analysis are based on running systems, either in a
test or production environment. It is referred to as a black-box testing approach because
the tester has no access to the source code of the system under test. Penetration testing
seeks to break into running software but from ethical point of view. As a result, the rule
of engagement must always be defined before such a test is carried out [28].

Refactoring and feature implementation may break existing security controls,
increase the attack surface, and introduce new vulnerabilities into the system. In the
agile context, it would be an activity that would need to be continuously performed to
validate that the security properties of the system is not compromised.

2.1 Four Quadrants of Agile Testing

Crispin and Gregory [9] discuss the Agile Testing quadrants that are widely adopted in
practice. Each quadrant in Fig. 3 reflects different reasons to test. Traditionally, software
testing is involved late in the development process to detect failures, but typically not
to prevent them. Companies focus almost exclusively on the right hand side (Q3 and

204 D.S. Cruzes et al.

Q4), criticizing the product, but not playing a productive part in supporting the creation
and guidance of the product (Q1 and Q2). In agile testing, the testers are not only
involved in identifying, but also in preventing failures by continuous interaction with
developers and customers. Automation is an important enabler for agile testing. Auto‐
mation of the tests in Q1 is usually easiest to implement, and at the same time has a big
impact on the process effectiveness. Tests in Q3 are usually performed manually. Tests
in Q4 are heavily dependent on tools and specialized skill sets. But, manual exploratory
testing by a knowledgeable security tester is indispensable to detect issues that auto‐
mated tests can miss.

Fig. 3. Agile test quadrants [9]

Agile testing increases the need for improved communication and coordination
between testers and developers, in addition to a new mind-set at the personal and organ‐
izational levels. In the rush to deliver functionality, most agile teams lack to think about
security [5]. Authorization is often the only aspect of security testing that the agile teams
consider as part of business functionality.

During the last years there have been several efforts to reconcile software security
with the conflicting premises imposed by agile methodologies [4, 19, 24]. In a systematic
review of agile challenges for secure software development Queslati et al. [24] conclude
that the reported security assurance challenges are as follows: security assessment favors
detailed documentation; tests are, in general, insufficient to ensure the implementation
of security requirements; tests do not cover in general, all vulnerability cases; security
tests are in general difficult to automate; and continuous changing of the development
processes conflicts with audit needs of uniform stable processes.

Probably, the most widely known software security methodology is Microsoft’s
framework, which is integrated into the Microsoft Agile Security Development Life‐
cycle [22]. Other approaches also exist. Recently, Baca et al. [3] demonstrate how
security features can be integrated into an agile software development method process
at Ericsson AB. The approach focuses on risk management. Chólis et al. [7] describe a

How is Security Testing Done in Agile Teams? 205

case study of a software security testing process based on the Microsoft Software Devel‐
opment Lifecycle for Agile. The case company moves their software engineering teams
from waterfall to agile. The case shows that a synchronization between the tasks of agile
software engineering teams and the independent security team is possible. Türpe et al.
[34] report on a one-year study of penetration testing and its aftermath at a major software
vendor, and show how an agile development team managed to incorporate the test
findings. Rindel et al. [30] describes a case of building a secure identity management
system and its management processes. The project’s steering group required the use of
Scrum. In the implementations of this model the security testing, reviews and audits are
viewed as normal stories in the sprint backlog and executed as part of the daily scrum.

Furthermore, security testing approaches for agile projects have especially been
proposed for web applications [12, 32] and service-oriented systems [15]. These cases
show how it is possible to integrate security testing into agile software development for
specific system types. Our research comprises an independent study on the state of
practice in security testing in agile teams.

3 Research Methodology

The overall goal of this paper is to investigate the role of security testing in agile teams,
process-wise. For this purpose, we present the synthesis of the results of the four cases
in security testing, highlighting the security engineering process, testing phases and
techniques. The results of the interviews and context mapping provide insights into the
recommended practices and lessons learned in the context of agile testing. The following
three research questions (RQs) were investigated:

(RQ 1) How is the traditional security engineering process managed/organized in the
agile teams?

(RQ 2) How does the agile teams perform security testing in each testing phase?
(RQ 3) How are traditional security testing techniques generally used in the agile soft‐

ware development lifecycle?

This study is carried out in four teams in two countries, i.e., Austria and Norway,
within three organizations and denoted as 1, 2, 3-Team1, and 3-Team2, as shown in
Table 2. Organizations 1 and 2 are located in the same country while organization 3 is
located in another country. Organization 3 is a company with roughly 90 engineers. The
team setup are both co-located and distributed. 3-Team1 has teams distributed in sepa‐
rate locations while 3-Team2 has the core development teams (frontend and backend)
in the same location and interacts with a QA team that sits in a separate location. 3-team1
develops identity management APIs that are mainly consumed by other teams within
the organization. They do not interact with external users. 3-Team2 on the other hand,
develops solution for storage and processing of end user images and videos.

We prepared semi-structured interview guide (see Table 1) using a qualitative data
collection approach that is based on in-depth literature review of the state-of-the-art in
security testing. The interviews were compared with the collected information about the
organizational contexts and interactions with the companies. The resulting interview

206 D.S. Cruzes et al.

audios were then analyzed using the thematic analysis approach [10] to crosscheck and
compare the answers in order to find behavioral confirmation and disconfirmation as
well. The transcripts and recordings of the interviews were categorized, tabulated, and
also analyzed by coding of the interviews. All the transcriptions and coding were vali‐
dated with other researchers before analysis. By doing so, another researcher independ‐
ently double-checked the codes and data to tag the key words, phrases and paragraphs.
It is important to note that basic information on each context was considered (see
Table 2). This information served as a context to better understand the points of view
of each participant connected to the results. In this analysis, we considered in which
areas the cases suggest the same points, where they differ, and where the cases conflict.

Table 1. Semi-structured interview guide

Questions
1 Can you briefly describe the kind of system you develop? Back-end or Front-End?
2 Can you give us a brief introduction of how your development team is organized?

(Developers, Testers, Architects, CSOs, etc.), (Distributed, Co-located, etc.)
3 How is your agile software development process? Which practices do you adopt?

(Fill in the table with agile and lean practices)
4 How is your security engineering process (for example, security requirements,

secure design, secure coding, security testing) organized/managed in your team?
Can you describe how you organize your security testing along these axes of the
Fig. 1?

5 Can you describe the kind of security testing that you perform in each testing phase
listed below?
Phases of testing Components
Unit Testing Classes, functions, statements, data
Integration Testing Modules, packages, etc.
System Testing System
Regression Testing Classes, Modules, System
UAT Testing System
Production/Configuration Testing System

6 Figure 2 shows the security testing techniques generally used in secure software
development lifecycle. Could you talk about how you perform these activities in
your agile software development? How often are security testing or security related
activities done in your agile cycles? How do you decide when to perform them?
How do you decide when not to perform them?

7 Do you see benefits of performing security testing?
8 On the test automation and continuous integration. Do you automate your testing

activities? To what extent? How do you incorporate security testing in this process?
9 Anything you would like to add?

How is Security Testing Done in Agile Teams? 207

Table 2. Teams under study

Team Team Size Type of software Other context
information

1 20 Frontend and
backend developers
divided in teams of 5

Medical Information System Applies a Scrum-based
agile process; the
software is certified
according to medical
standards

2 6 developers Security service tools Scrum-based agile
process

3–A 21 developers (UI,
Backend, Mobile, and
Infrastructure)

Identity Management APIs
that are consumed by other
business units and teams

A mix of Agile
Practices. Not
specifically scrum by
the book. DevOps
approach is also spread
used

3–B 22 developers
(Frontend (web/
mobile) and backend
teams)

Mobile client and backend
system for close storage and
processing of images and
videos

A mix of Agile
Practices. Not
specifically scrum by
the book. DevOps
approach is also spread
used

4 Results

We collected our main findings in a mind map shown in Figs. 4, 5 and 6. These results
are then discussed in more detail in the next subsections.

4.1 RQ 1: How Is the Traditional Security Engineering Process Managed/
Organized in the Agile Teams?

We found three main themes from the interviews in relation to the roles and responsi‐
bility (Fig. 4). The first observation is that larger companies have their own chief security
officer, who is not part of the teams to not interfere with any daily team activities.
Sometimes the responsibility of the chief security officer overlaps with the project owner
in order to ensure that the applications being developed do not impose security risks.
One team mentioned that their project owner (PO) or project manager (PM) has domain-
specific security knowledge, which is not the case for the other teams. In fact, for the
smaller companies, there is no such chief security officer role. One problem that the
teams experienced with involving the security officer is that it is hard to identify when
to include him in the activities.

The second observation is that external experts are normally hired for penetration
testing. However, a problem experienced by one of the companies is that external
consultants do not have sufficient domain knowledge needed for security testing. There‐
fore, some domain-specific vulnerabilities are left undiscovered. The periodicity of the

208 D.S. Cruzes et al.

execution of these tests is quite ad-hoc, sometimes linked to big deliveries or when there
are too many changes in the source code. The results of the tests are not completely
integrated in the development process and almost never get into the planning of the
activities of the sprint.

The third observation is that testers or QA personnel focus on the system level in the
case this role still exists and the developers take care of the daily activities and developers
are expected to have knowledge on security both during coding and sometimes for
testing their own code. This knowledge is also needed when reading the output of the
security tools. One interviewee said: “We generally organize mainly as software devel‐
opers, we generally have a software engineering role and we are expected to be with a
broad knowledge, and skill set, computer science engineering and security and safe
programming”. But there is no specific validation of this stated ‘broad knowledge and
skill set’. Another interviewee stated on some tool output: “Normally, the errors are
quite readable. From technician level, the developer that develops component should
also understand the message of the tool. For instance, if the tool says, open API C#
token found, hopefully developers also know what it says. The tools check very huge
part, but they cannot check all. This is the responsibility that developer has while devel‐
oping.” It was clear that this knowledge was not something systematically evaluated or
externalized, just assumed, as the agile mindset brings the focus to people instead of
process and tools the teams are not completely sure of how much knowledge on secure
coding was in the teams.

Automated unit testing is not security-oriented at all. Risk assessment is performed
mostly by the Austrian teams (Team 1 and Team 2), and is applied to focus testing. One
interviewer said: “Yes, we are using risk assessment, it is a kind of matrix where we have

Fig. 4. Mind map: security software engineering process.

How is Security Testing Done in Agile Teams? 209

on one hand probability occurrence and on the other hand importance of that stuff or
if it can occur. We have this matrix and we are using it for small tools”.

4.2 RQ 2: How Does the Agile Teams Perform Security Testing in Each Testing
Phase?

To answer how security testing is performed in each testing phase, we analyzed the
scope, objective and accessibility of the security testing, as shown in Fig. 5. With regard
to the scope, unit tests are commonly used in agile teams, but typically not with a specific
security focus. With some approaches for example testing positive and negative cases
one team specifically mentions security focus for unit tests. Only one team highlights
that security aspects are considered when negative unit tests, which are intended to fail,
are executed.

Fig. 5. Mind map security phases.

Static source and binary code analysis is performed for security reasons on the unit
level. All teams stated that no specific security aspects are considered during integration
testing. Security testing is most prominent on the system level. On this level security
tests are typically a synonym for penetration testing, typically performed as black box
testing. Security tests on the system level are to a large extent automated and there is
almost no manual security testing on this level. White-box aspects are typically only
considered during static source or binary code analysis.

When testing non-functional requirements, the focus in the interviewed teams is
typically on performance. One interviewee said: “We usually have unit test. And those
are trying to exercise the happy path, which should already catch a many of basic the
problems. We don’t have much integration tests. We have also some performance tests.
And that may go to the non-functional category, but we do not have much. We worry
mostly on if the code works as it is supposed to work”.

4.3 RQ 3: How Are Traditional Security Testing Techniques Generally Used in
the Agile Software Development Lifecycle?

For this question, the interviewees were asked to analyze Fig. 2. It shows the security
testing techniques generally used in traditional secure software development lifecycle,
i.e., model-based security testing, code-based testing and static analysis, penetration

210 D.S. Cruzes et al.

testing and dynamic analysis as well as security regression testing. The interviewees
were asked to talk about how they perform these activities in their agile software devel‐
opment and how often security testing or security related activities are done in their agile
cycles. An overview of the results is shown in Fig. 6.

Fig. 6. Mind map security testing techniques findings.

In general, there is no classical model-based testing approach available where security
tests are generated from test models, but there are abstractions available on the design level
to discuss security issues. One interviewee said: “We don’t do any model-based testing. We
consider security aspects as part of design and we don’t try to buy a formal model around
that. During development as we said we do code-based testing and static analysis. And that
is probably on where most of our focus is. We have done some dynamic security tests in the
past. As I said, those took a lot of manual effort and it was very unstable, it broke up often
with some UI changes and it was hard to keep up”.

For code-based testing there are two main approaches referred to by the companies,
i.e., code reviews and unit testing. When it comes to code review, there is no explicit
emphasis on security, but developers are implicitly required to do security checks during
the code review process. As for unit tests the focus is more on functionality than on
security.

Static analysis tools are used to check the code but not primarily with a security
focus. The interviewed teams believe that static analysis already finds the most important
‘low-hanging fruits’ in security. SonarQube and FindBugs are widely used tools for
static analysis for the teams interviewed.

Penetration testing is performed basically by external consultants periodically or
when there is a big change on the system but not aligned with the sprint cycles. One
interviewee stated: “We do penetration testing from external testers from the company,
this was done together with the University of Innsbruck and plus our customers are
doing against software. They are completely independent and we are not informed, we
offer our aid only if there is a problem, and if we take Austrian medical network for

How is Security Testing Done in Agile Teams? 211

example, it is not allowed to go live without testing from external company and that does
not only involve our software but the whole system.”

Dynamic analysis was only mentioned by one interviewee as something they have
tried but it was too costly to maintain it. He said: “It was taking too much time to keep
it for us. And it requires a lot of manual integration and once that the scenario broke
because of an UI change or something and then we would have again manual effort to
fix that. For me, what makes code review and static analysis to work so well is that every
time you compile the code you can see the feedback on it. On the dynamic tests, you cant
do that very easily at that point you have to wait, and there is a lag between you writing
your code and you receiving some feedback on it. Even if it is part of the development
process, it doesn’t happen right away. In my experience the further away from your
commit, it less likely that you will either notice or be able to change it”.

In most cases security regression testing relies on test automation and on the system
level only tests for critical scenarios are automated, but not a specific regression testing
for security. One interviewee said: “So what is working well is, I think our development
processes are well structured and the biggest problem is, that we have frequent changes
of user stories and that is very challenging on the one hand side on the development
process and on the other side testing process. You have to adopt everything. The user
stories are not from our customers, the problem the changing part is more about our
c-level changes, on time this and one time that. So this is very big problem which also
is very big problem for agile software development because it is very big problem”.

5 Discussion

Based on the results, we discuss recommendations for practice and research as well as
limitations of this work.

5.1 Recommendations for Practice

With regard to the security engineering process, it is evident that the teams assume that
developers have some security knowledge, but the issue is that they did not state how
they conduct security engineering processes as well as what they need. For this reason,
there is a demand for better use of guidelines for secure coding and testing practices like
the OWASP guidelines [25]. Moreover, there should be a more systematic approach of
spreading knowledge in security inside the teams. In a recent survey, Oyetoyan et al.
[27] found that the developers’ confidence in their software security knowledge is low,
and therefore more efforts should be spend on getting the level of security knowledge
higher at the companies. This is stronger in agile setting context because there is a strong
dependency on people and not on process and tools. In addition code review and static
analysis are used more and more in software projects, but without specific focus on
security [27]. For this reason, processes of code reviews and static analysis should be
more focused on security.

Even though the teams rely on penetration testing performed by externals, there is a
danger of external penetration testers not having domain knowledge to catch important

212 D.S. Cruzes et al.

vulnerabilities. While independent penetration testing is possible, there is a need that
the penetration testing feedback is well integrated with the whole development process
lifecycle [7, 34]. Chóliz et al. [7] have focused their study on the security testing activ‐
ities, with the clear objective of synchronizing the tests from the independent security
team with the agile rhythm of sprints, with frequent deliveries, of the software engi‐
neering teams, showing that the rate of found security vulnerabilities increased gradu‐
ally. The results of Türpe et al. [34] suggest that penetration tests improve developers’
security awareness, but long-lasting change of development practices is hampered if
security is not properly reflected in the communicative and collaborative structures of
the organization, e.g. by a dedicated stakeholder.

POs should have more security awareness because they are the only one responsible
for maximizing the return on investment (ROI) of the development effort. In addition,
the PO is responsible for product vision and constantly re-prioritizes the Product
Backlog, thereby adjusting any long-term expectations such as release plans and making
sure the team considers the stakeholders interests. The main issue with the explicit
functional security requirements is that, most of the time stakeholders do not explicitly
state them as requirements, and neither do the product owners. On the other hand, the
non-functional security requirements are not features, which mean they never become
a user story. In other words, they are not inserted into the product backlog. From the
performed study, we see that security issues are implicitly handled on the process, but
there is need for a more systematic approach to handle security issues in the development
process. As shown by Rindel et al. [30] it is possible to have the security user stories as
part of the product backlog.

5.2 Recommendations for Research

Research can help to increase knowledge and application of security testing in several
respects. First, knowledge can be increased by the development of suitable courses and
guidelines based on empirical evidence showing which approaches work in which
context. Good efforts have been done in the last years [3, 7, 30, 34]. Therefore more
empirical studies are needed which investigate challenges of security testing and derive
respective evidence-based guidelines to address them.

With regard to model-based security testing, lightweight approaches are needed,
which support the model creation, for instance, by learning of domain language
concepts, based on design-level abstracts that are available also in agile teams. Also, a
general understanding of the return of investment of model-based security testing
approaches, which has already been highlighted as a challenge in [17], would help to
apply such approaches efficiently. The issue of efficiently applying model-based testing
approaches becomes even more critical when agile teams develop systems where the
connection between safety and security is essential as in modern Internet-of-Things
applications.

As seen in the results, system testing is often limited to penetration testing and testing
of functional security requirements is often neglected. As automation is difficult to
achieve fully, but at the same time, important for successful application in agile teams,
suitable automation support and innovative techniques are required [29].

How is Security Testing Done in Agile Teams? 213

So far, security testing in agile teams makes little use of security risk assessments,
which typically exist in an implicit or explicit for in other organization units. Risk
assessment can be used to develop risk-based testing approaches [14], which can guide
decisions during testing, and for instance help to select and prioritize security regression
tests [13]. Baca et al. [3] shows that using a risk analysis approach, it s possible to find
more severe risks, besides, more advanced skills and a deeper awareness of the problems
become available. More research needs to be done in order to understand the best way
to apply risk management in agile projects and especially on security.

5.3 Work Limitations

Common criticisms to a case study also apply to this study, among them one may list:
uniqueness, difficulty to generalize the results, and the introduction of bias by partici‐
pants and researchers. In our study, we generalized the findings from empirical state‐
ments to theoretical statements, which involved generalizing data from interviews and
perceptions by discussing them in accordance with the literature. Interview data were
though our primary source of information.

Qualitative findings are highly context and case-dependent. Our findings apply to
software projects teams within four participating teams. However, all the participants
were professionals using typical development technologies in a typical working envi‐
ronment, e.g., the natural setting demanded by the case study approach. We described
the main characteristics of each case and company, including context and settings, data
collection, analysis, and analysis process, as well as quotations with our major findings.
This makes the results easier to generalize.

As commonly done in in-depth qualitative studies, we also had to do a trade-off
between the number of participants, the duration and the cost of this study. The number
of subjects interviewed in this context is not quantitatively significant, but gives deeper
insights on the issues investigated in this work.

6 Conclusion

In this paper, we investigated by a cross-case analysis of four teams, two from Austria
and two from Norway, how security testing is performed in agile teams. We investigated
how the security engineering process is managed/organized in agile teams, how security
testing is performed in each testing phase, and how security testing techniques are
generally used in the secure software development lifecycle.

Although the study is based only on the results of a limited amount of agile teams,
i.e., four, agile teams, we could derive recommendations for research and practice. The
findings of this research are not surprising, but at the same time are alarming. The lack
of knowledge on security by agile teams in general, the large dependency on incidental
penetration testers, and the ignorance in static testing for security are indicators that
security testing is highly under addressed and that more efforts should be addressed to
security testing in agile teams.

214 D.S. Cruzes et al.

In the future, we plan to replicate this study and to develop and evaluate suitable
security testing approaches to support the adoption of security testing in agile teams
through action research studies with industry.

Acknowledgments. This work was partially supported by the SoS-Agile (247678/070)
project funded by the Research Council of Norway, and by MOBSTECO (FWF P 26194-
N15) funded by the Austrian Science Fund. The authors are grateful to all involved in
this study, specially the interviewees for their insights and cooperation and to the soft‐
ware companies for supporting this work.

References

1. Arkin, B., Stender, S., McGraw, G.: Software penetration testing. IEEE Secur. Priv. 3(1), 84–87
(2005)

2. Austin, A., Williams, L.: One technique is not enough: a comparison of vulnerability discovery
techniques. In: ESEM 2011, pp. 97–106 (2011)

3. Baca, D., Boldt, M., Carlsson B., Jacobsson, A.: A novel security-enhanced agile software
development process applied in an industrial setting. In: ARES 2015, pp. 11–19 (2015)

4. Beznosov, K., Kruchten, P.: Towards agile security assurance. In: NSPW 2004, pp. 47–54
(2004)

5. Camacho, C.R., Marczak, S., Cruzes, D.S.: Agile team members perceptions on non-
functional testing: influencing factors from an empirical study. In: ARES 2016, pp. 582–589
(2016)

6. Chess, B., McGraw, G.: Static analysis for security. IEEE Secur. Priv. 2(6), 76–79 (2004)
7. Choliz, J., Vilas, J., Moreira, J.: Independent security testing on agile software development:

a case study in a software company. In: ARES 2015, pp. 522–531 (2015)
8. Common Weakness Enumeration (CWE), 5 March, 2017. https://cwe.mitre.org/index.html
9. Crispin, L., Gregory, J.: Agile Testing: A Practical Guide for Testers and Agile Teams.

Addison-Wesley Professional, Boston (2009)
10. Cruzes, D., Dybå, T.: Recommended steps for thematic synthesis in software engineering. In:

ESEM 2011, pp. 275–284 (2011)
11. CWE/SANS TOP 25 Most Dangerous Software Errors, 5 March 2017. https://www.sans.org/

top25-software-errors/
12. Erdogan, G., Meland, P.H., Mathieson, D.: Security testing in agile web application

development - a case study using the EAST methodology. In: Sillitti, A., Martin, A., Wang,
X., Whitworth, E. (eds.) XP 2010. LNBIP, vol. 48, pp. 14–27. Springer, Heidelberg (2010).
doi:10.1007/978-3-642-13054-0_2

13. Felderer, M., Fourneret, E.: A systematic classification of security regression testing
approaches. Int. J. Soft Tools Technol. Transf. 17(3), 305–319 (2015)

14. Felderer, M., Schieferdecker, I.: A taxonomy of risk-based testing. Int. J. Softw. Tools
Technol. Transf. 16(5), 559–568 (2014)

15. Felderer, M., Agreiter, B., Breu, R., Armenteros, A.: Security Testing by Telling Test Stories.
Modellierung 161, 195–202 (2011)

16. Felderer, M., Büchler, M., Johns, M., Brucker, A.D., Breu, R., Pretschner, A.: Chapter one-
security testing: a survey. Adv. Comput. 101, 1–51 (2016)

17. Felderer, M., Zech, P., Breu, R., Büchler, M., Pretschner, A.: Model-based security testing: a
taxonomy and systematic classification. Softw. Test. Verification Reliab. 26(2), 119–148
(2016)

How is Security Testing Done in Agile Teams? 215

https://cwe.mitre.org/index.html
https://www.sans.org/top25-software-errors/
https://www.sans.org/top25-software-errors/
http://dx.doi.org/10.1007/978-3-642-13054-0_2

18. Fitzgerald, B., Stol, K.-J.: Continuous software engineering: a roadmap and agenda. JSS
123, 176–189 (2017)

19. Keramati, H., Mirian-Hosseinabadi, S.: Integrating software development security activities
with agile methodologies. In: AICCSA 2008 (2008)

20. Marback, A., Do, H., He, K., Kondamarri, S., Xu, D.: A threat model-based approach to
security testing. Softw. Pract. Experience 43(2), 241–258 (2013)

21. McGraw, G., Potter, B.: Software security testing. IEEE Secur. Priv. 2(5), 81–85 (2004)
22. Microsoft, Agile Development Using Microsoft Security Development Lifecycle 5 March

2017. http://www.microsoft.com/en-us/sdl/discover/sdlagile.aspx
23. Moe, N.B., Cruzes, D., Dybå, T., Mikkelsen, E.M.: Continuous software testing in a globally

distributed project. In: ICGSE 2015, pp. 130–134 (2015)
24. Oueslati, H., Rahman, M.M., Othmane, L., Ghani, I., Arbain, A.F.: Evaluation of the

challenges of developing secure software using the agile approach. Int. J. Secure Softw. Eng.
7, 17 (2016)

25. OWASP Foundation: OWASP Testing Guide v4. 5 March, 2017. https://www.owasp.org/
index.php/OWASP_Testing_Project

26. OWASP Top 10. 5 March 2017. https://www.owasp.org/index.php/Top_10_2013-Top_10
27. Oyetoyan, T.D., Cruzes, D.S., Jaatun, M.G.: An empirical study on the relationship between

software security skills, usage and training needs in agile settings. In: ARES 2016, pp. 548–555
(2016)

28. Paul, M.: Official (ISC)2 Guide to the CSSLP CBK, 2nd edn. (ISC)2 Press (2014)
29. Peischl, B., Felderer, M., Beer, A.: Testing security requirements with non-experts:

approaches and empirical investigations. In: QRS 2016, pp. 254–261 (2016)
30. Rindell, K., Hyrynsalmi, S., Leppänen, V.: Case study of security development in an agile

environment: building identity management for a government agency. In: ARES 2016, pp.
556–563 (2016)

31. Sindre, G., Opdahl, A.L.: Eliciting security requirements with misuse cases. Requirements
Eng. 10(1), 34–44 (2005)

32. Tappenden, A., et al.: Agile security testing of web-based systems via HTTP unit. In:
Proceedings of Agile Conference. IEEE (2005)

33. Tian-yang, G., Yin-sheng, S., You-yuan, F.: Research on software security testing. World
Acad. Sci. Eng. Technol. 70, 647–651 (2010)

34. Türpe, S., Kocksch, L., Poller, A.: Penetration tests a turning point in security practices? In:
Organizational Challenges and Implications in a Software Development Team,
WSIW@SOUPS 2016 (2016)

Open Access This chapter is licensed under the terms of the Creative Commons Attribution 4.0
International License (http://creativecommons.org/licenses/by/4.0/), which permits use, sharing,
adaptation, distribution and reproduction in any medium or format, as long as you give appropriate
credit to the original author(s) and the source, provide a link to the Creative Commons license
and indicate if changes were made.

The images or other third party material in this chapter are included in the chapter’s Creative
Commons license, unless indicated otherwise in a credit line to the material. If material is not
included in the chapter’s Creative Commons license and your intended use is not permitted by
statutory regulation or exceeds the permitted use, you will need to obtain permission directly from
the copyright holder.

216 D.S. Cruzes et al.

http://www.microsoft.com/en-us/sdl/discover/sdlagile.aspx
https://www.owasp.org/index.php/OWASP_Testing_Project
https://www.owasp.org/index.php/OWASP_Testing_Project
https://www.owasp.org/index.php/Top_10_2013-Top_10
http://creativecommons.org/licenses/by/4.0/

	How is Security Testing Done in Agile Teams? A Cross-Case Analysis of Four Software Teams
	Abstract
	1 Introduction
	2 Background on Software and Security Testing
	2.1 Four Quadrants of Agile Testing

	3 Research Methodology
	4 Results
	4.1 RQ 1: How Is the Traditional Security Engineering Process Managed/Organized in the Agile Teams?
	4.2 RQ 2: How Does the Agile Teams Perform Security Testing in Each Testing Phase?
	4.3 RQ 3: How Are Traditional Security Testing Techniques Generally Used in the Agile Software Devel ...

	5 Discussion
	5.1 Recommendations for Practice
	5.2 Recommendations for Research
	5.3 Work Limitations

	6 Conclusion
	References

