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Abstract In many cases there is still a large gap between the performance of
current optimization technology and the requirements of real world applications.
As in the past, performance will improve through a combination of more powerful
solution methods and a general performance increase of computers. These factors
are not independent. Due to physical limits, hardware development no longer re-
sults in higher speed for sequential algorithms, but rather in increased parallelism.
Modern commodity PCs include a multi-core CPU and at least one GPU, provid-
ing a low cost, easily accessible heterogeneous environment for high performance
computing. New solution methods that combine task parallelization and stream
processing are needed to fully exploit modern computer architectures and profit
from future hardware developments. This paper is the first part of a series of two,
where the goal of this first part is to give a tutorial style introduction to modern
PC architectures and GPU programming. We start with a short historical account
of modern mainstream computer architectures, and a brief description of paral-
lel computing. This is followed by the evolution of modern GPUs, before a GPU
programming example is given. Strategies and guidelines for program development
are also discussed. Part II gives a broad survey of the existing literature on parallel
computing targeted at modern PCs in discrete optimization, with special focus on
papers on routing problems. We conclude with lessons learnt, directions for future
research, and prospects.
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1 Introduction

Applications of optimization problems abound in society. Today, there are many
examples of optimization based decision support tools that improve important
processes both in industry and the public sector. Such tools are becoming more
powerful, more widespread, and more critical to the performance of their users. A
successful tool provides substantial improvement of key factors to the user orga-
nization. Examples are savings of economical and environmental costs, enhanced
customer service, higher revenues, less use of critical resources, and improvement
of human factors. Vehicle routing software [20] is but one example.

The impact of such tools is to a large degree dependent on their optimization
performance, i.e., the quality of solutions produced within a given response time
requirement. Optimization performance is largely determined by the selected op-
timization method, the implementation of this method on the targeted hardware
platform, and the computational performance of the hardware. These three factors
are closely intertwined.

More often than not, the optimization problem to be solved is computation-
ally hard. This is particularly true for discrete optimization problems (DOPs).
Over the past few decades, there has been a tremendous increase in the ability to
solve ever more complex optimization problems. In [2], Bixby reminds us that the
performance of commercial Linear Programming solvers increased by a factor of
one million in the period 1987-2000. Roughly a factor of one thousand is due to
better methods, and a similar factor stems from the general performance increase
of computers.

For many applications, there is still a large gap between the requirements
and the performance of today’s optimization based decision support systems. The
ability to provide better solutions in shorter time will give substantial savings
through better optimization performance of existing tools. Moreover, applications
that are too complex to be effectively solved by the technology of today may be-
come within reach of the optimization technology of tomorrow. More integrated,
larger, and richer optimization problems may be solved. Again, further perfor-
mance increase will result from a combination of better optimization algorithms
that are implemented in more efficient ways on more powerful computers.

For many decades, Moore’s law materialized in the form of a doubling of clock
speed for commodity processors every 18 months or so. This was the realm of the
tongue-in-cheek “Beach law”.1 Around year 2000, the architecture of processors for
commodity computers started to change. Multi-core processors with an increasing
number of cores and higher total theoretical performance than their single core
predecessors emerged, but each core had lower clock speed. Hence, developers of
sequential software could no longer enjoy the pleasant, serendipitous effects of
the Beach law. From then on, algorithms for computationally hard tasks such as
solution of optimization problems need an efficient, task parallel implementation
to fully utilize multiple CPU cores2.

In addition, there has over the past decade been a drastic improvement of
performance and general programmability of massively parallel stream processing

1 One way of doubling the performance of your computer program is to go to the beach for
two years and then buy a new computer.

2 For a brief introduction to main concepts in parallel computing, see Section 2 below.
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(data parallel) accelerators. Data parallelism, also called stream processing, means
that each processor performs the same task on different pieces of distributed data.
The origin was the Graphics Processing Unit (GPU) that was a normal component
in common PCs. Primarily driven by requirements from the gaming industry, the
computational performance of GPUs developed rapidly. Thus it became more and
more interesting to utilize GPUs as accelerators for compute bound tasks in general
purpose computing. This trend became a natural driver for better programmability
of GPUs through industry-standard languages and high quality development tools.

GPUs of today have a large number of relatively simple processors that have
general purpose computing capabilities and their architecture supports data par-
allelism. The theoretical GPU performance has lately increased far more rapidly
than the theoretical CPU performance, as illustrated in Figure 1. The GPU is now
regarded as an accelerator to be used in tandem with a multi-core CPU. Leading
processor manufacturers have recently developed an integrated multi-core CPU
and GPU on a single die.

To fully profit from the general recent and future hardware development on
modern PC architectures, optimization methods that combine task and data par-
allelism must be developed. Ideally, such methods should be flexible and self-
adaptable to the hardware at hand. The parallel, heterogeneous architecture of
modern processors also motivates a fundamental re-thinking of solution methods.
Algorithms that are obviously inefficient in a sequential computing model may be
optimal on a massively parallel architecture.

This paper has two main goals. First, we provide a tutorial style introduction
to the modern PC architecture and how to exploit it through parallel comput-
ing. Second, we give a critical survey of the literature on discrete optimization for
such architectures with a focus on routing problems. For selected papers we dis-
cuss implementation details and insights. Our intended main audience consists of
researchers and practitioners in discrete optimization, routing problems in particu-
lar, that are not proficient in modern PC hardware and heterogeneous computing.
We hope the paper will serve as a useful basis for increased, high quality research
and development efforts in this combined research area of high importance.

The area of GPU based methods for discrete optimization is still in its in-
fancy. The bulk of the limited literature consists of reports from rather basic
implementations of existing optimization methods on GPU, with measurement of
speedup relative to a CPU implementation of unknown quality. This is not neces-
sarily uninteresting. A speedup of existing solution methods has great pragmatic
value. It enables resolution of large, complex, and time critical applications of dis-
crete optimization that are beyond reach of current technology. Also, it enables
more comprehensive and thorough empirical scientific investigations in discrete
optimization and hence a deeper understanding. However, it is our opinion that
research in this area should be performed in a more scientific fashion: with thor-
ough and fair measurement of speedup, and also with focus on efficiency of the
implementation. An important research avenue is the design of novel methods that
exploit the full heterogeneity of modern PCs in an efficient, flexible, and possibly
self-adaptable way. As far as we can see, there are no such publications in the
literature. If this paper will inspire research in this direction, a main objective has
been fulfilled. We strongly believe that the potential is huge.

The remainder of Part I of this paper is organized as follows. Section 2 gives
a brief introduction to parallel computing in general. In Section 3, we describe
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Fig. 1: Performance of CPUs versus GPUs in terms of theoretical peak performance
in single precision, and memory bandwidth. Data constructed from processor spec-
ifications as reported from Intel [10] and NVIDIA [18].

modern computer architectures with multi-core processors for task parallelism and
accelerators for data parallelism (stream processing). Alternative programming
environments for such hardware are discussed in Section 4. In Section 5 a simple
prototype of a GPU based local search procedure is presented to illustrate the
execution model of GPUs. We proceed in Section 6 with guidelines and strategies
for optimizing GPU code. For illustrative purposes we provide a profiling of our
local search example in Section 7, followed by a short summary in Section 8. In
Part II [22], we give a survey of the literature on GPU based methods in discrete
optimization, with focus on routing problems.
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2 Parallel Computing

The idea of parallel computing dates back to the Italian mathematician Luigi
Menabrea and his “Sketch of the Analytical Engine Invented by Charles Babbage”
in 1842 [14]. Menabrea’s paper has extensive notes by the now famous translator,
Lady Lovelace. In the notes she wrote what has been recognized as the world’s first
computer program. It was not until the late 1960s that computers with multiple
processors emerged and parallel computing was realized, however.

There are several main types of parallel computing. Apart from the low level
instruction level parallelism that is offered by modern processors, there are two main
categories: Task parallelism and data parallelism. In task parallelism, different pro-
cedures are performed on possibly different sets of data, typically using different
processes or threads. Normally, but not necessarily, the parallel threads or pro-
cesses execute on multiple processors, and there is communication between them.
In the basic form of data parallelism, the same procedure, often referred to as the

kernel, is executed on multiple data in parallel, on multiple processors. There is
also a distinction between fine-grained parallelism, where processes or threads syn-
chronize or communicate many times per second, coarse-grained parallelism if they
communicate less frequently, and embarrassingly parallel if they only rarely need to
communicate or synchronize.

Parallel computer systems can be categorized by the nature of their processors,
their processor interconnection, their memory and the communication between the
processors. The set of processors may be homogeneous or heterogeneous. They may
be integrated on the same chip and communicate via a high-bandwidth bus such
as modern multi-core PC processors, or physically distributed around the globe
and communicate over the Internet as in grid computing. Main memory may be
either shared between the processors or distributed. Computer clusters are groups of
loosely connected, fully-fledged, typically general purpose, not necessarily similar
computers that are tightly connected and communicate through a network.

In this paper, we concentrate on modern commodity processors with multiple
cores that share memory, and one or more data parallel accelerators with separate
memory such as the GPU, as the platform for parallel, heterogeneous comput-
ing. There is a substantial literature on scientific computing that exploits such
hardware [3,19].

3 Modern Computer Architectures

From the first microprocessor emerged in the 1970s, up until 2004, virtually all
mainstream computers have used a serial execution model, in which one instruction
is executed after another. The exponentially growing performance of such CPUs
has traditionally come from two main factors: an increasing number of transistors,
and an increasing frequency. Around 2004, however, we saw an abrupt halt to
the serial performance. Increasing the number of transistors yielded only marginal
performance increases, and the frequency had reached the physical limit that the
chip can withstand. Since then, we have instead seen an increase in parallelism.
Whilst one previously used the increasing number of transistors for executing
instructions more efficiently, the extra transistors today are spent on creating
multi-core designs.
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Simultaneously as we have seen a growing parallelism in CPUs, we have also
seen alternative architectures emerge. Around year 2000, researchers started ex-
ploring how GPUs could be used to solve non-graphics problems. GPUs utilize a
SIMD (single-instruction-multiple-data) type of execution model. SIMD was origi-
nally developed in the 1970s for vector supercomputers3. Although SIMD machines
that can execute up to 64 000 instructions in parallel were developed, such comput-
ers were very specialized and expensive. In comparison, parallel computers based
on several main-stream processors running independent tasks offered more flexibil-
ity at a lower cost. With the development of GPUs, a cheap, powerful SIMD based
accelerator became easily accessible. Programming the GPU for non-graphic tasks
was originally an error prone and cumbersome process, but showed that GPUs
could solve a multitude of problems faster than the CPU. Since then, GPUs have
become highly programmable using modern C-based languages, and have received
widespread adaption. In fact, three of the worlds five fastest supercomputers today
use GPU acceleration [24], and there is an increasing number of libraries, such as
MAGMA and CULA sparse, and commercial software products, such as Adobe
Photoshop and MATLAB, that incorporate GPU acceleration.

The reason for the widespread adoption of GPUs is twofold. The first reason
is that GPUs are inexpensive and readily available in everything from laptops to
supercomputers. The second reason is that they offer an enormous performance,
especially when considering performance per watt or performance per dollar. This
difference between the GPU and the CPU is due to their differing design intents.
The CPU is a highly complex processor, and modern CPUs can have over two bil-
lion transistors4. However, most of these transistors are spent on caches, complex
logic for instruction execution and latency hiding, and operating system function-
ality, leaving only a small percentage for computational units. GPUs, on the other
hand, have up-to three billion transistors, a slight increase compared to CPUs, and
spend most of these transistors on computational units. This means that GPUs
cannot replace CPUs, as they do not contain enough complex functionality, but
can at the same time offer an extreme floating point performance. A further dif-
ference between these architectures, is that CPUs are optimized for single thread
performance, meaning it is very efficient at making one task run quickly. GPUs,
on the other hand, are designed for throughput instead of single thread perfor-
mance, meaning it can perform a lot of computations fast, but the speed of each
computation might be slower.

The most recent trend in modern computer architectures is the incorporation
of GPU cores and CPU cores on the same physical chip. This combines the best of
both worlds by incorporating traditional CPU cores, which are efficient for serial
tasks, and GPU cores, which are efficient for throughput tasks. There are also
other alternatives to GPUs for accelerated computing. For example, in 2006 Sony,
Toshiba and IBM released the Cell processor [6] used in both the PlayStation 3
and the first petaflops supercomputer [1]. This processor was based on using one
traditional CPU core coupled with eight lightweight accelerator cores all on the
same chip, and it delivered unprecedented performance. However, the program-
ming model was cumbersome and has been openly criticized by many, and there
has not been an updated version yet, making it a one-off architecture. Another al-

3 Vector-computers execute the same instruction on each element of a vector.
4 For example, the Intel Core i7-3960X holds 2.27× 109 transistors
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Fig. 2: Evolution of GPU programming languages. Initially, the graphics card was
programmed using dedicated graphics languages, but since 2007 general purpose
languages such as CUDA, DirectCompute, and OpenCL have appeared.

ternative is to use FPGAs (field programmable gate arrays). FPGAs are essentially
reprogrammable integrated circuits that offer an extreme performance per watt ra-
tio, as you only use power on actual computation. However, as with application
specific integrated circuits (ASICs), programming them is both cumbersome and
error prone as one has to consider details such as timings etc. Nevertheless, over
the last five years, there has been a tremendous development in programmability
through the development of C-like languages. However, programming FPGAs is
still a challenging process.

4 Development of modern GPU technology

GPUs were originally designed for offloading demanding graphics functions from
the CPU to a dedicated coprocessor. As such, it originally accelerated a fixed set
of graphics operations such as vertex transformations and lighting calculations of a
3D game world. In the early days of GPU computing, one had to use these graphics
specific APIs such as OpenGL [23] or DirectX [12] to perform computations, see
also Figure 2. This was a cumbersome and error prone process, as one had to
rephrase the problem into operations on graphical primitives. As a trivial example,
the addition of two matrices could be performed by creating a window with one
pixel per output element, and rendering one quadrilateral that covered the whole
window. This quadrilateral would then be textured with two textures, in which the
matrix values would be represented as a color, and the GPU would add these colors
together unknowing that it was performing a matrix addition. For more complex
algorithms, such as matrix multiplication or Gaussian elimination, however, this
process becomes quite difficult.

The earliest GPUs that accelerated a fixed set of graphics functions used the so-
called fixed function graphics pipeline, and around 2003 parts of this pipeline became
programmable with the release of the NVIDIA GeForce 256 GPU and the C for
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Fig. 3: The programmable OpenGL graphics pipeline with programmable stages
marked in orange. Input to the pipeline are vertices that often represent triangles
in 3D, and the output is a 2D image on screen.

Fig. 4: Illustration of the framebuffer operations stage of the graphics pipeline.
The left figure uses blending of the primitives for each fragment, and the right
selects the fragment closest to the camera by using the depth test.

Graphics (Cg) [7] language. Figure 3 shows this programmable graphics pipeline,
in which the input is a set of vertices in 3D space that typically represent triangles
of a 3D model. These vertices are then first transformed into the so-called clip

space, essentially the world as seen from the camera, by the vertex shader5. This is a
programmable stage, meaning that we can calculate the new position of the vertex
using a program. After vertices have been transformed into clip space, the GPU
typically creates triangles from them in the primitive assembly stage, and removes
triangles that are not seen by the camera in the primitive processing stage. Then,
the GPU converts the triangles into fragments in a process called rasterization.
Fragments are candidates for an output pixel, and each triangle that covers a
pixel position gives rise to one fragment. This means that we may have multiple
fragments per pixel, for example if two triangles cover the same pixel. All of these
fragments are then processed by the fragment shader, which determines the color
of the fragment using for example textures6 and lighting calculations. Finally, all of
these fragments enter the framebuffer operations stage, which determines the final
pixel color from all the input fragments. This stage can give rise to transparency,
by blending the fragments from two overlapping triangles, or simply to choose the
one closest to the camera, see Figure 4. The latter is done by using the depth test.

5 The vertex shader typically uses a modelview matrix and a perspective matrix to transform
the vertices from object space to clip space.

6 A texture is a 2D image that typically is shown on a 3D surface to increase realism.
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In 2007, however, NVIDIA released the first general-purpose language for pro-
gramming GPUs, called CUDA. This release met the demands of researchers who
up until then had either used the graphics APIs, or the various abstractions of
these, and subsequently we saw a whole new level of interest in GPU computing.
Since then, two alternatives to CUDA have emerged, namely OpenCL and Direct-
Compute. All of these are quite similar when it comes to the basic programming
concept, which is often referred to as data parallel execution.

5 Programming Example in CUDA

To illustrate the execution model of GPUs and how they are programmed using
CUDA, we present a simple prototype of a local search procedure running on the
GPU. This programming example is designed for clarity and used to demonstrate
how GPUs work, and thus we have neglected important performance optimiza-
tions. A more thorough discussion on algorithm design and optimization can be
found in [21].

A local search procedure starts with a given (feasible) initial solution to the
problem at hand as the current solution. In our example it is an instance of the
well known Euclidean Travelling Salesman Problem: Given a number of cities,
find a permutation with minimal total traveling cost of visiting all cities in the
order of the permutation. Traveling cost between cities is defined as the Euclidean
distance. Local search with steepest descent (or best improvement) then examines
all solutions that lie within a certain neighborhood of the current solution. The
best improving neighboring solution is accepted as the new current solution, and
the local search procedure continues in the same way. The procedure stops when
there is no improving neighbor, i.e., a local minimum for the defined neighborhood
is found.

Typically, the neighborhood is not defined explicitly as a set of solutions, but
described implicitly in terms of a type of change to the current solution defined
by a neighborhood operator. Given a current solution and the operator, the neigh-
borhood is generated by applying the operator in all possible ways to the solution.
Each individual change is called a move. In our example we use a simple swap
neighborhood, where a move simply exchanges the position of two specific cities
in the permutation. In our representation, we keep the first city fixed to avoid
rotating the solution.

The quality of a move can be expressed by the difference, or delta value, between
the cost of the neighboring solution the move leads to and the cost of the current
solution. Hereby a negative delta value means that the neighboring solution has
less cost than the current one, i.e. for minimizing problems like the TSP it is
better.

Let us start our example by showing how this can be implemented as a tradi-
tional CPU algorithm. A fixed random permutation is our initial solution. Let n

be the numbers of cities in the problem instance to be solved, leading to a swap
neighborhood size of (n − 1)(n − 2)/2 moves. We systematically generate these
moves, evaluate each of their incremental cost, and select the best move as fol-
lows. We include a feasibility check of each move to illustrate where such a test
can be performed (here on the CPU and later on the GPU), although a swap move
for the TSP will always be feasible.
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1 //Loop through a l l p o s s i b l e moves
2 f o r ( i n t k=0;k<num moves;++k ) {
3 // Generate move number k
4 Move move = generate move (k , num nodes , &s o l u t i o n [ 0 ] )
5

6 i f ( i s f e a s i b l e (move ) ) {
7 // Evaluate co s t o f the move
8 f l o a t d e l t a = cos t (move ) ;
9

10 // Save the move that improves the s o l u t i o n the most
11 i f ( d e l t a < min de l ta ) {
12 best move = move ;
13 min de l ta = de l t a ;
14 }
15 }
16 }

After having evaluated the full neighborhood, we apply the best move, or exit if
we have found a local minimum:

1 whi le ( t rue ) {
2 //Find the best move as shown above
3 . . .
4

5 // I f no moves improve the so lu t i on , we have reached l o c a l minimum
6 i f ( min de l ta > −1e−7) {
7 break ;
8 }
9

10 // Otherwise , apply the best move to cur rent s o l u t i o n
11 apply ( best move ) ;
12 }

This problem is well suited for execution on GPUs, due to its highly parallel
nature: the evaluation of each move can be performed independently of all other
moves. However, finding the move that improves the solution the most is a serial
process. Let us start showing how the evaluation can be done in parallel on the
GPU. We start by first allocating storage space for the solution on the GPU, and
copy the initial configuration to the GPU as well:

1 // A l l o ca t e data on the GPU
2 e r r = cudaMalloc(&so lut ion gpu , s o l u t i o n s i z e i n b y t e s ) ;
3 i f ( e r r != cudaSuccess ) {
4 cout << ”Could not a l l o c a t e GPU memory f o r s o l u t i o n ” << endl ;
5 e x i t (−1);
6 }
7

8 //Copy data from the CPU to the GPU
9 e r r = cudaMemcpy( so lut ion gpu , &s o l u t i o n [ 0 ] ,

10 s o l u t i o n s i z e i n b y t e s , cudaMemcpyHostToDevice ) ;
11 i f ( e r r != cudaSuccess ) {
12 cout << ”Could not copy s o l u t i o n to GPU memory” << endl ;
13 e x i t (−1);
14 }

Similarly we allocate space for the city coordinates on the GPU and copy them
from the CPU to the GPU. We can now write a kernel that evaluates the cost of
moves, and stores this on the GPU. A kernel is a function that is invoked by a
large number of threads in parallel on the GPU. Our approach is to write a kernel



GPU Computing in Discrete Optimization 11

that evaluates in each thread a subset of the total number of moves, and stores the
best move of the subset in main GPU memory (which must be allocated similarly
to gpu solution):

1 g l o b a l
2 void eva lua t e moves ke rne l ( unsigned i n t ∗ s o lu t i on ,
3 f l o a t ∗ c i t y c o o r d i n a t e s ,
4 f l o a t ∗ b e s t s u b s e t d e l t a s ,
5 unsigned i n t ∗ best subset moves ,
6 unsigned i n t num nodes ,
7 unsigned i n t num moves per thread ) {
8 //Compute the thread ID
9 unsigned i n t t i d = blockIdx . x∗blockDim . x + threadIdx . x ;

10 const unsigned i n t num moves = ( num nodes−2)∗(num nodes−1)/2;
11

12 f l o a t min de l ta = 0 . 0 ;
13 const unsigned i n t f i r s t m o v e = t i d ∗num moves per thread ;
14 unsigned i n t best move = f i r s t m o v e ;
15

16 //Loop through the subset and f i n d best move
17 f o r ( i n t i=f i r s t m o v e ; i<f i r s t m o v e+num moves per thread ; ++i ) {
18 i f ( i < num moves ) {
19 Move move = generate move ( i , num nodes , s o l u t i o n ) ;
20 i f ( i s f e a s i b l e (move ) ) {
21 f l o a t move cost = cos t (move , c i t y c o o r d i n a t e s ) ;
22 i f ( move cost < min de l ta ) {
23 min de l ta = move cost ;
24 best move = i ;
25 }
26 }
27 }
28 }
29

30 // Write bes t move co s t and index to GPU main memory
31 b e s t s u b s e t d e l t a s [ t i d ] = min de l ta ;
32 bes t subse t moves [ t i d ] = best move ;
33 }

Here, the keyword global marks the function as a kernel, and the number of
parallel invocations is determined by the grid and block configuration. The global
CUDA variable blockDim.x contains our one-dimensional block size, threadIdx.x the
index of the thread inside its block, and blockIdx.x the index of the block inside the
grid. A block is simply a collection of threads, and a grid is a collection of blocks. In
our example, we have chosen a total of 8192 threads split into blocks consisting of
128 threads, giving us a total of 64 blocks. These numbers are somewhat arbitrarily
chosen, but still follow some fundamental guidelines. The block size should be a
multiple of 32, as the GPU executes 32 threads in SIMD7 fashion, and we want
enough blocks to occupy all of the 16 multiprocessors on current GPUs.

The next thing we now need to do, is to reduce the best moves for the 8192
different subsets into the best global move, and apply this move. We can do this in
another kernel, but this time, we only invoke one block consisting of 512 threads.
This is because threads within one block can cooperate, whilst different blocks are

7 SIMD stands for single instruction multiple data.
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independent. In the first part of the kernel, we use parallel reduction8 in shared

memory9 to find the best move and we then apply this move:

1 g l o b a l
2 void app ly bes t move kerne l ( unsigned i n t ∗ s o lu t i on ,
3 f l o a t ∗ de l ta s ,
4 unsigned i n t ∗ moves ,
5 unsigned i n t num nodes ,
6 unsigned i n t d e l t a s s i z e ) {
7 // Computation o f minimum d e l t a removed f o r b r ev i ty
8 . . .
9 // now : deltas shmem [ 0 ] conta in s minimal d e l t a

10 // ( in shared memory)
11 // moves shmem [ 0 ] conta in s cor re spond ing best move
12 // ( in shared memory)
13

14 // Let thread 0 apply the move
15 i f ( threadIdx . x == 0) {
16 Move move = generate move ( moves shmem [ 0 ] , num nodes , s o l u t i o n ) ;
17 i f ( deltas shmem [ 0 ] < 0) {
18 apply move (move ) ;
19 }
20

21 // Write the best de l t a to main GPU memory
22 d e l t a s [ 0 ] = deltas shmem [ 0 ] ;
23 }
24 }

With these two GPU kernels, we can find the best move for the current configura-
tion in parallel and then also apply it. What remains is the CPU logic for launching

these kernels, and stopping execution when no moves improve the solution:

1 whi le ( t rue ) {
2 Move best move ;
3 f l o a t min de l ta = 0 . 0 ;
4

5 // Evaluate moves in p a r a l l e l
6 eva luate moves kerne l<<<eva lua t e g r i d , eva luate b lock>>>(
7 so lut ion gpu , coord inates gpu , de l tas gpu ,
8 moves gpu , num nodes , num moves per thread ) ;
9

10 //Find the best move and apply i t
11 app ly bes t move kerne l<<<app ly gr id , apply block>>>(
12 so lut ion gpu , de l tas gpu , moves gpu ,
13 num nodes , num evaluate threads ) ;
14

15 //Copy the s m a l l e s t d e l t a from the GPU to the CPU.
16 e r r = cudaMemcpy(&min delta , &de l ta s gpu [ 0 ] ,
17 s i z e o f ( f l o a t ) , cudaMemcpyDeviceToHost ) ;
18 i f ( e r r != cudaSuccess ) {
19 cout << ”Could not copy minimum de l t a to CPU” << endl ;
20 e x i t (−1);
21 }
22

23 // I f no moves improve the so lu t i on , we have reached l o c a l minimum
24 i f ( min de l ta > −1e−7) {

8 Reduction is a standard SIMD and thus GPU operation which computes the repeated
application of a binary operator to all elements in parallel. In our example the binary operator
chooses the move with smaller delta and thus the reduction returns the best move.

9 Shared memory is a kind of programmable cache or scratch-pad memory on the GPU.
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25 break ;
26 }
27 }

Both the GPU and the CPU version of this code end up with the same solution
in the same number of iterations10, but there is a dramatic difference in execution
speed. For 1000 cities, the GPU version takes just over two seconds to find the
local minimum, whilst the CPU uses over 175 seconds to complete the same task,
a more than eighty-fold increase in speed.

Our parallel local search on the GPU was able to achieve a 80 times speed in-
crease compared to the GPU, a figure that is representative for many publications.
However, this “speedup” is nothing more than an indication that the GPU has
a potential. It is highly likely that both the GPU and the CPU are operating at
only a fraction of peak performance, and it is still a major challenge to optimize
both the CPU and the GPU version. In Section 7, we will show that our approach
in fact far from utilizes the full potential of the GPU.

6 Development Strategies

GPU programming differs from traditional multi-core CPU programming, because
the hardware architecture is dramatically different. It is rather simple to get started
with GPU programming, and it is often relatively easy to get speedups over existing
CPU codes. But these first attempts at GPU computing are often sub-optimal,
and do not utilize the hardware to a satisfactory degree. Achieving a scalable high-
performance code that uses hardware resources efficiently is still a difficult task
that can take months and years to master.

In this section, we present techniques for achieving a high resource utilization
when it comes to GPUs11. These techniques target NVIDIA GPUs using CUDA,
but as both the programming model and hardware is similar for other GPUs and
languages, many of these techniques are also applicable in a broader context.

6.1 The GPU Execution Model

The execution model of the GPU is based around the concept of launching a
kernel on a grid consisting of blocks as shown Figure 5. Each block is composed
of a set of threads. All threads in the same block can synchronize and cooperate
using fast shared memory. These blocks are executed by the GPU so that a block
runs on a single multiprocessor. However, we can have far more blocks than we
have multiprocessors, since each multiprocessor can execute multiple blocks in a
time-sliced fashion. The grid and block can be one, two, and three dimensional,
and determine the number of threads that will be used. Each thread has a unique
identifier within its block, and each block has a unique identifier within the grid.
By combining these two, we get a unique global identifier per thread.

10 The GPU version is compiled for compute capability 2.0.
11 The information in this section is gathered from many sources, including books, docu-

mentation, manuals, conference presentations, and on Internet fora. However, most of the
optimization techniques presented can be found in [17,16,15,5].
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Block (0,0)

Block (0,1)

Block (1,0)

Block (1,1)

Block (2,0)

Block (2,1)

Compute Grid

Block (1,0)

Thread (0,0) Thread (1,0) Thread (2,0) Thread (3,0)

Thread (0,1) Thread (1,1) Thread (2,1) Thread (3,1)

Thread (0,2) Thread (1,2) Thread (2,2) Thread (3,2)

Fig. 5: The CUDA concept of a grid, blocks, and threads. The domain consists of
distinct blocks, which again are made up of a set of threads that can communicate
and cooperate. Each thread in the global grid can be identified uniquely in the by
the use of its block index in combination with its thread index.

6.2 Latency Hiding and Thread Performance

The GPU uses the massively threaded execution model to hide memory laten-
cies. Even though the GPU has a vastly superior memory bandwidth compared to
CPUs, it still takes on the order of hundreds of clock cycles to transfer a sin-
gle element from main GPU memory. This latency is hidden by the GPU as
it automatically switches between threads. Once the current thread stalls on a
memory fetch, the GPU activates another waiting thread in a fashion similar to
Hyper-Threading [13] on Intel CPUs. This strategy is most efficient when there
are enough available threads to completely hide the memory latency, however,
meaning we need a lot of threads. As there is a maximum number of threads a
GPU can support concurrently, we can calculate how large a percentage of this
figure we are using. This is referred to as the occupancy of the GPU, and is a rough
measure of how well the GPU program is at hiding memory and other latencies.
As a rule of thumb it is good to keep a relatively high occupancy, but a higher
occupancy does not necessarily equate higher performance: Once all latencies are
hidden, a higher occupancy may actually degrade performance as it also affects
other performance metrics.

Hardware support for multiple threads is available on Intel CPUs as Hyper-
Threading, but a GPU thread operates quite differently from these CPU threads.
One of the differences from traditional CPU programming is that the GPU ex-
ecutes instructions in a 32-way SIMD fashion, in which the same instruction is
simultaneously executed in 32 neighboring threads, called a warp. This is illus-
trated in Figure 6a, in which different code paths are taken by different threads
within one warp. This means that all threads within a warp must execute both
parts of the branch, which in the worst case slows down the program by a factor
32. Conversely, the cost of such an if-statement is minimal when all threads in a
warp take the same branch.
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1 8 16 24 32
/ / Coheren t code
i f ( a > b ) {

a ++;
someFunc t ion ( a ) ;

} e l s e {
b ++;
someFunc t ion ( b ) ;
someFunc t ion ( a ) ;

}
/ / Coheren t code
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Fig. 6: Thread divergence on 32-wide SIMD GPU architectures. All threads per-
form the same computations, but the result is masked out for the dashed boxes.

Sorting is one technique that can be used to avoid expensive branching within a
kernel: By sorting the different elements according to the branch we make sure the
threads within each warp all execute their code without diverging. Another way of
preventing branching is to perform the branch once on the CPU instead of once for
each warp on the GPU. This can be done for example using templates: by replacing
the branch variable with a template variable, we can generate two kernels: one for
condition true, and one for condition false, and let the CPU select the correct
kernel. The use of templates in this example is not particularly powerful, as the
overhead of running a simple if-statement in the kernel would be small. When
there are a lot of parameters, however, there can be a large performance gain from
using template kernels [9,4]. Another example of the benefit of kernel template
arguments is the ability to specify different shared memory sizes at compile time,
thus allowing the compiler to issue warnings for out-of-bounds access. The use of
templates can also be used to perform compile-time loop unrolling, which has a
great performance impact. By having separate kernels for different for-loop sizes,
performance can be greatly improved.

6.3 Memory Guidelines

The memory wall, in which transferring data to the processor is far more expen-
sive than computing on that data, has halted the performance increase of CPU
programs for a long time. It can also be a major problem on GPUs, which makes
memory optimizations important. The first rule in optimizing memory is to reuse
data and keep it as close as possible to the processor. The memory hierarchy on
GPUs consists of three main memories, listed in decreasing order by speed: reg-
isters, shared memory, and global memory. The use or misuse of these can often
determine the efficiency of GPU programs.

Registers are the fastest memory units on a GPU, and each multiprocessor on
the GPU has a large, but limited, register file. This register file is divided amongst
threads residing on that multiprocessor, and are private for each thread. If the
threads in one block use more registers than are physically available, registers will
also spill to the L1 cache12 and global memory, which means that when you have

12 Global memory is cached by several caches on the GPU. The L1 cache is the fastest (and
smallest) cache in the cache hierarchy, followed by the L2 cache which is larger but slower.



16 André R. Brodtkorb et al.

a high number of threads, the number of registers available to each thread is very
restricted. This is one of the reasons why a high occupancy may actually hurt
performance. Thus, thread-level parallelism is not the only way of increasing per-
formance: It is also possible to increase performance by decreasing the occupancy
to allow more registers per thread.

The second fastest memory on the GPU is the shared memory. Shared memory
is a very powerful tool in GPU computing because it allows all threads in a block
to share data. Shared memory can be thought of as a kind of programmable
cache, or scratchpad, in which the programmer is responsible for placing data there
explicitly. However, as with caches its size is limited (up-to 48 KB), which can be
a limitation on the number of threads per block. Shared memory is physically
organized into 32 banks that serve one warp with data simultaneously. For full
speed, each thread must access a distinct bank, which can be achieved for example
if the threads access consecutive 32-bit elements.

The third type of memory on the GPU is the global memory. This is the main
memory of the GPU, and even though it has an impressive bandwidth, it has a
high latency as discussed earlier. The latencies are preferably hidden by a large
number of threads, but there are other pitfalls. First of all, just as with CPUs, the
GPU transfers full cache lines13 across the memory bus (called coalesced reads).
Transferring a single element therefore consumes the same bandwidth as trans-
ferring a full cache line as a rule of thumb. To achieve full memory bandwidth,
we should therefore program the kernel such that warps access continuous regions
of memory. Furthermore we want to transfer full cache lines, which is done by
starting at a quad word boundary (the start address of a cache line), and transfer
full quadwords (128 bytes) as the smallest unit. The address alignment is typically
achieved by padding arrays. Alternatively, for non-cached loads, it is sufficient
to align to word boundaries and transfer words (32 bytes). To fully occupy the
memory bus the GPU also uses memory parallelism, in which a large number of
outstanding memory requests are used to occupy the bandwidth. This is both a
reason for a high memory latency, and a reason for high bandwidth utilization.

In addition to the above mentioned memory areas, the NVIDIA GPUs of the
recent Fermi architecture have hardware L1 and L2 caches. The L2 cache size is
fixed and shared between all multiprocessors on the GPU, whilst the L1 cache is
per multiprocessor. The L1 cache can be configured to be either 16 KB or 48 KB,
at the expense of shared memory. The L2 cache, on the other hand, can be turned
on or off at compile-time, or by using inline PTX assembly instructions in the
kernel. The benefit of turning off the L2 cache is that the GPU is allowed to
transfer smaller amounts of data than a full cache line, which will often improve
performance for sparse and other random access algorithms.

In addition to the L1 and L2 caches, the GPU also has caches related to
traditional graphics functions. The constant memory cache is one example, which
is typically used for arguments sent to a CUDA kernel. It is a cache tailored for
broadcast, in which all threads in a block access the same data. The GPU also has
a texture cache that can be used to accelerate reading global memory. However,

13 Caches transfer continuous regions of memory from RAM called cache lines (128 bytes
on Fermi class GPUs). These cache lines increase the read performance when the processor
requests neighboring elements.
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the L1 cache has a higher bandwidth, so the texture cache is mostly useful if
combined with texture functions such as linear interpolation between elements.

6.4 Further Guidelines

The CPU and the GPU operate asynchronously because they are different pro-
cessors. This enables simultaneous execution on both processors, which is a key
ingredient of heterogeneous computing: the efficient use of multiple different com-
putational resources by letting each resource perform the tasks for which it is best
suited. In the CUDA API, this is exposed as streams. Each stream is an in-order
queue of operations that will be performed by the GPU, including memory trans-
fers and kernel launches. A typical use-case is that the CPU schedules a memory
copy from the CPU to the GPU, a kernel launch, and a copy of results from the
GPU to the CPU. The CPU then continues processing simultaneously as the GPU
executes its operations, and synchronization is only performed when the GPU re-
sults are needed. There is also support for multiple streams, which can execute
simultaneously as long as they obey the order of operations within their respective
streams. Current GPUs support up-to 16 concurrent kernel launches [17], which
means that we can both have data parallelism, in terms of a computational grid
of blocks, and task parallelism, in terms of different concurrent kernels. GPUs fur-
thermore support overlapping memory copies between the CPU and the GPU and
kernel execution. This means that we can simultaneously copy data from the CPU
to the GPU, execute 16 different kernels, and copy data from the GPU back to the
CPU if all these operations are scheduled properly to different streams. In practice,
however, it can be a challenge to achieve such high levels of task parallelism.

When transferring data between the CPU and the GPU, it can be beneficial
to use so-called page-locked memory. Page locked memory is guaranteed to be
continuous and in physical RAM (not swapped out to disk, for example), and
is thus not pageable by the operating system. However, page-locked memory is
scarce and rapidly exhausted if used carelessly. A further optimization for page-
locked memory is to use write-combining allocation. This disables CPU caching of
a memory area that the CPU will only write to, and can increases the bandwidth
utilization by up-to 40% [17]. It should also be noted that enabling ECC (error-
correcting code) memory will negatively affect both the bandwidth utilization and
available memory, as ECC requires extra bits for error control.

CUDA supports a unified address space, in which the physical location of a
pointer is automatically determined. That is, data can be copied from the GPU
to the CPU (or the other way round) without specifying the direction of the copy.
While this might not seem like a great benefit at first, it greatly simplifies code
needed to copy data between CPU and GPU memories, and enables advanced
memory accesses. The unified memory space is particularly powerful when com-
bined with mapped memory. A mapped memory area is a continuous block of
memory that is available directly from both the CPU and the GPU at the same
time. When using mapped memory, data transfers between the CPU and the GPU
are automatically executed asynchronously with kernel execution when possible.

The most recent version of the CUDA API has become thread safe [17], so that
one CPU thread can control multiple CUDA contexts (e.g., one for each physical
GPU), and conversely multiple CPU threads can share a single CUDA context.
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The unified memory model together with the new thread safe context handling
enables much faster transfers between different GPUs. The CPU thread can simply
issue a direct GPU-GPU copy, bypassing a superfluous copy in CPU memory.

6.5 Profile Driven Development.

A quote often attributed to Donald Knuth is that “premature optimization is the
root of all evil” [11]. The lesson in this statement is to make sure that the code
produces the correct results before trying to optimize it, and optimize only where
it will matter. Optimization always starts with identifying the major bottlenecks
of the application, as performance will increase the most when removing these.
However, locating the bottleneck is hard enough on a CPU, and can be even
more difficult on a GPU. Optimization should also be considered a cyclic process,
because that after having found and removed one bottleneck, we need to repeat
the process to find the next bottleneck in the application. This cyclic optimization
can be repeated until the kernel operates close to the theoretical hardware limits
or all optimization techniques have been exhausted.

To identify the performance bottleneck in a GPU application, it is important
to choose an appropriate performance metric, and compare attained performance
to the theoretical peak performance. When programming GPUs, there are sev-
eral bottlenecks one can encounter. For a GPU kernel there are essentially three
main bottlenecks: the kernel may be limited by instruction throughput, memory
throughput, or latencies. It may however also be that CPU-GPU communication
and synchronization is a bottleneck, or that other overheads dominate the run-
time.

When profiling a CUDA kernel, there are two main approaches to locating the
performance bottleneck. The first and most obvious is to use the CUDA visual
profiler. The profiler is a program that that samples different hardware counters,
and the correct interpretation of these numbers is required to identify bottlenecks.
The second option is to strategically modify the source code in an attempt to
single out what takes most time in the kernel.

The visual profiler can be used to identify whether a kernel is limited by band-
width or arithmetic operations. This is done by simply looking at the instruction-
to-byte ratio, or in other words finding out how many arithmetic operations your
kernel performs per byte it reads. The ratio can be found by comparing the instruc-
tions issued counter (multiplied with the warp size, 32) to the sum of global store
transactions and L1 global load miss counters (both multiplied with the cache line
size, 128 bytes), or directly through the instruction/byte counter. Then we compare
this ratio to the theoretical ratio for the specific hardware the kernel is running
on, which is available in the profiler as the Ideal Instruction/Byte ratio counter.14

Unfortunately, the profiler does not always report accurate figures as the num-
ber of load and store instructions may be lower than the actual number of memory
transactions (e.g., it depends on address patterns and individual transfer sizes).
To get the most accurate figures, we can compare the run-time of different versions
of the kernel: the original kernel, one Math version in which all memory loads and
stores are removed, and one Memory version in which all arithmetic operations are

14 The Visual Profiler 4.0 computes the instruction/byte ratio.
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Fig. 7: Run-time of modified kernels which are used to identify bottlenecks: (top
left) a well balanced kernel, (top right) a latency bound kernel, (bottom left) a
memory bound kernel, and (bottom right) an arithmetic bound kernel. “Total”
refers to the total kernel time, whilst “Memory” refers to a kernel stripped of
arithmetic operations, and “Math” refers to a kernel stripped of memory opera-
tions. It is important to note that latencies are part of the measured run-times for
all kernel versions.

removed, see Figure 7. If the Math version is significantly faster than the original
and Memory kernels, we know that the kernel is memory bound, and conversely
for arithmetics. This method has the added benefit of showing how well memory
operations and arithmetic operations overlap.

To create the Math kernel, we simply comment out all load operations, and
move every store operation inside conditionals that will always evaluate to false.
We do this to fool the compiler so that it does not optimize away the parts we want
to profile, since the compiler will strip away all code not contributing to the final
output to global memory. However, to make sure that the compiler does not move
the computations inside the conditional as well, the result of the computations
must also be used in the condition as shown in Listing 1. Creating the Memory

kernel, on the other hand, is much simpler. Here, we can simply comment out all
arithmetic operations, and instead add all data used by the kernel, and write out
the sum as the result.

If control flow or addressing is dependent on data in memory, as is often the case
in discrete optimization, the method becomes less straightforward and requires spe-
cial care. A further complication with modifying the source code is that the register
count can change, which again can alter the occupancy and thereby invalidate the
measured run-time. This can be solved by increasing the shared memory parameter
in the launch configuration of the kernel, someKernel<<<grid size, block size, shared mem size, ...>>>(...),
until the occupancy of the unmodified version is matched. The occupancy can eas-
ily be examined using the profiler or the CUDA Occupancy Calculator.

When a kernel appears to be well balanced (i.e., neither memory nor arith-
metics appear to be the bottleneck), it does not necessarily mean that it operates
close to the theoretical performance numbers. The kernel can be limited by laten-
cies, which typically are caused by problematic data dependencies or the inherent
latencies of arithmetic operations. Thus, if your kernel is well balanced, but oper-
ates at only a fraction of the theoretical peak, it is probably bound by latencies.
In this case, a reorganization of memory requests and arithmetic operations can
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1 g l o b a l void main ( . . . , i n t f l a g ) {
2 f l o a t r e s u l t = . . . ;
3 i f ( 1 . 0 f == r e s u l t ∗ f l a g )
4 output [ i ] = value ;
5 }

Listing 1: Compiler trick for arithmetic only kernel. By adding the kernel argument
flag (which we always set to 0), we disable the compiler from optimizing away the
if-statement, and simultaneously disable the global store operation.

be beneficial: the goal should be to have many outstanding memory requests that
can overlap with arithmetic operations.

6.6 Debugging

Debugging GPU programs has become almost as easy as debugging traditional
CPU programs as more advanced debugging tools have emerged. Many CUDA
programmers have encountered the “unspecified launch failure”, which used to
be notoriously hard to debug. Such errors were typically only found by either
modification and experimenting, or by careful examination of the source code.
Today, however, there are powerful CUDA debugging tools for commonly used
operating systems.

CUDA-GDB is available for Linux and Mac, can step through a kernel line by
line at the granularity of a warp, e.g., identifying where an out-of-bounds memory
access occurs, in a similar fashion to debugging a CPU program with GDB. In
addition to stepping, CUDA-GDB also supports breakpoints, variable watches,
and switching between blocks and threads. Other useful features include reports
on the currently active CUDA threads on the GPU, reports on current hardware
and memory utilization, and in-place substitution of changed code in running
CUDA application. The tool enables debugging on hardware in real-time, and the
only requirement for using CUDA-GDB is that the kernel is compiled with the
-g -G flags. These flags make the compiler add debugging information into the
executable, and the executable to spill all variables to memory.

Parallel NSight is a plug-in for Microsoft Visual Studio and Eclipse which offers
conditional breakpoints, assembly level debugging, and memory checking directly
in the IDE. It furthermore offers an excellent profiling tool, and is freely available
to developers. Debugging used to require two distinct GPUs (one for display, and
one for running the actual code to be debugged), but this requirement has been
lifted as of version 2.2. Support for Linux and the Eclipse development IDE was
also released with version 2.2, making Parallel NSight an excellent tool on all
platforms.

7 Profiling the Local Search Example

For illustrative purposes we will profile the local search example from Section 5
and show how we determine its performance using Parallel NSight and the Visual
Profiler tool. It is often good to get an overview of the application by generating
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Fig. 8: NSight generated timeline, which shows how long the different parts of the
code take.

a timeline of the different GPU operations and measure a set of metrics for the
kernels, as shown in Figure 8. The Visual Profiler also offers the option of displaying
averaged measurements for each kernel, as shown in Figure 9. It is often possible to
identify application bottlenecks by examining these different measurements, and
a few selected measurements are presented in Table 1. The table shows that the
neighborhood evaluation kernel takes the most time, and if we double the problem
size it completely dominates the run-time. This means that we should focus our
optimization efforts on this kernel first.

The first thing we can look at for this kernel is the achieved FLOPS counter,
which indicates a performance of 142 gigaflops. The hardware maximum is over
one teraflop, meaning we are way off. However, if our kernel is memory bound,
this might still be ok, as measuring gigaflops for a memory bound kernel makes
little sense.

We have to acknowledge that our problem is quite small in terms of memory
usage. For each node in our problem we need 12 bytes of storage (4 bytes for
its place in the solution, 2×4 byte for the 2D-coordinates), yielding a total of 12
kilobyte. The GTX480 has an L1 cache which holds 16 kilobyte by default, more
than enough to hold our whole problem. This is clearly visible in the profiling by
a 100% L1 Global Hit Rate counter as shown in Table 1. Each value is only read
once from the global memory (DRAM), which explains the very low DRAM read
throughput and efficiency. Unfortunately, this does not mean that our memory
access pattern is well designed in general. In fact, reading the coordinates of a node
in the cost computation means reading data at a random location, as the node
is specified by a permutation (the solution). The effects of this can be observed
when studying the instruction replay overhead. If threads within a warp cause
non-coalesced reads, several instructions are necessary to read all needed data
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Fig. 9: Result of profiling the local search example from Section 5 on a GeForce
GTX 480 with the NVIDIA Visual Profiler.

nbh. evaluation apply move

Avg. Duration (µs) 459.7 274.8
Achieved FLOPS: Single GFLOPS 141.84 0
Registers/Thread 23 18
Achieved Occupancy 0.3 0.3
Static Shared Memory 0 4 096
Avg. Dynamic Shared Memory 0 0

Instructions issued 6 452 288 49 327
Instruction Replay Overhead (%) 52.1 16
Branch Efficiency (%) 99.8 94.7
Warp Execution Efficiency (%) 97 96.5

DRAM Read Throughput (bytes/sec) 896 458
Global Memory Load Efficiency (%) 6.9 0.9
DRAM Write Throughput (MBytes/sec) 135.6 0.3
Global Memory Store Efficiency (%) 100 12.5
Global Store Transactions 570 11
L1 Global Hit Rate (%) 100 96.3
L1 Global load miss 1 395 1 131
L2 Hit Rate Reads (%) 100 100

Table 1: Selected profiling results for the local search example from Section 5 on
a GeForce GTX 480.
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from memory, or as in our case, the L1 cache. For a coalesced read only one
instruction would be necessary.

Each thread writes only the best move of the ones it has evaluated to global
memory. As neighboring threads write to neighboring memory locations, we get
coalesced writes and an excellent global memory store efficiency of 100%. Good
news come also from the problem of warp divergence. The branch efficiency counter
is at 99.8%, which means that of all branches taken, virtually none were divergent.

Summing up, we know now that our example has several shortcomings that
limit its performance, and is operating far from the peak performance of the hard-
ware. Some of these issues are simpler to address than others, but all require some
redesign of the original local search algorithm. Therefore, we should revisit the
algorithm with our new insight to achieve higher performance. In Appendix A we
apply some simple adjustments to the kernels to achieve a considerable improve-
ment.

8 Summary and Conclusion

Over the last decade, we have seen that GPUs have gone from curious hardware
being exploited by a few researchers, to a mainstream processor that powers the
worlds fastest supercomputers. The field of discrete optimization has also joined
the trend with an increasing level of research on mapping solution methods for
these problems to the GPU. In the foreseeable future, it is clear that GPUs and
parallel computers will play an important role in all of computational science,
including discrete optimization, and it is important for researchers to consider
how to utilize these kinds of architectures.

This paper is Part I in a series of two papers. Here, we introduce graphics
processing units in the context of discrete optimization. We give a short historical
introduction to parallel computing, and the GPU in particular. We also show how
local search can be written as a parallel algorithm and mapped to the GPU with
an impressive speed-up, yet there is still room for major improvements, as the
implementation far from utilizes the full potential of the GPU. We also discuss
general development and optimization strategies for writing algorithms that may
approach peak performance. In Part II [22], we give a literature survey focusing
on the use of GPUs for routing problems.
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A Profiling and Improving the Local Search Example

In this appendix we will show, how some simple adjustments in the kernels improve
the GPU implementation considerably. The final kernels will not be rigorously
profiled and optimized as the focus here is on illustrating some of the different
aspects of GPU programming discussed in the paper.

Before we continue, we would like to briefly mention compute capability (CC).
If GPU kernels are compiled for CC 1.x, the floating point arithmetic will not
conform to the IEEE standard. This causes slightly different results in the distance
computations, leading to a different solution on the GPU than on the CPU. With
CC 2.0 and higher, however, floating point arithmetic on the GPU became IEEE
compliant. For this reason we will in the following discussion use results from
compilation for CC 2.0. The arguments hold for compilation for CC 1.x and the
profiling results are very similar. All profiling is done on a Geforce GTX 480, which
is a Fermi class GPU.

From the profiling in Section 7 we know that our achieved occupancy is very
low, only around 33%. At the same time the move evaluation kernel takes more
time than the application kernel which chooses and applies the best move. The
times spent on evaluation, application and other tasks are illustrated in Figure
10 for a problem with 1000 nodes and 2000 nodes, respectively. Using NSight we
profile the evaluation kernel with an occupancy experiment that tells us that in
our chosen configuration we can have up to 8 blocks per SM yielding a total of
8 × 128 × 15 = 15360 threads. So the reason for our low occupancy is actually too
few threads, as we only have 8192 and thus the GPU does not have enough active
warps to hide latency. The kernel needs 23 registers per thread, so an occupancy
of 100% is not possible on our GPU. With some small experimentation we find
that using 20160 threads spread over 105 blocks (7 per SM) with 192 threads each
gives the best achieved occupancy of 78.38% (compared to a theoretical limit of
87.5% for this setup). Figure 10 shows that this GPU version two yields a faster
move evaluation kernel, but a slower move application kernel. The reason for the
latter is that choosing the best move now includes reducing 20160 rather than 8192
moves to the best one. For a problem of 1000 nodes this increase in the application
kernel actually dominates the whole runtime, such that the second GPU version is
actually slower than the first version. However for larger problems (e.g. 2000 nodes)
the decrease in evaluation time leads to an improvement in overall runtime. As
the GPU is intended for solving large problems, we will continue to focus on the
evaluation kernel which still dominates the run time for bigger problems (see right
part of Figure 10).

In the profiling of the evaluation kernel in Section 7 we observed that although
our memory access pattern is not ideal, access to global memory is actually efficient
as the whole problem of 1000 nodes fits into the L1 cache. Clearly, for a problem
of size 2000 nodes this will no longer be the case with a 16 kilobyte L1 cache, as
illustrated in Figure 11. However, on the Fermi architecture we can configure the
L1 cache to be either 16 or 48 kilobyte. Setting it to 48 kilobyte enables us to
have problems of size up to about 4000 nodes in the L1 cache. The positive effect
can clearly be seen in GPU version three in Figure 10 for the problem with 2000
nodes.

The memory experiment in Figure 11 also points out our bad memory access
pattern (for loading). In average we have 14.75 transactions per request. Ideal
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Fig. 10: Time spent on move evaluation, move choice and application and other
tasks during local search for different versions of the GPU kernels on a problem
with (left) 1000 nodes over 2500 iterations and (right) 2000 nodes over 5000 iter-
ations.

Fig. 11: Memory experiment statistics for global memory access for the evaluation
kernel of GPU Version two for a problem with 2000 nodes.

would be one (coalesced reads only), worst would be 32 (completely random mem-
ory access). As those are transactions between cache and registers, this number
does not change with the increased L1 cache. So we need to improve our reading
pattern from memory. The computation of the cost of one move includes two types
of reads: Find the node at a given position in the solution and get the coordinates
of this node. Actually this has do be done not just for one but several nodes. Nev-
ertheless, as the solution can be any permutation of the nodes, it is impossible to
predict which node will be at which position in the solution. Hence it is difficult
to improve reading the coordinates of the nodes. However, we have control over
the positions in the solution, or more exactly, we know which positions in the so-
lution a move needs to access. So far we split the lexicographically ordered moves
into consecutive parts of a certain length, and one thread in the evaluation kernel
evaluates the moves in its part.
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1 //Loop through the subset and f i n d best move
2 f o r ( i n t i=f i r s t m o v e ; i<f i r s t m o v e+num moves per thread ; ++i )
3 { . . . }

In this way we ensure that the moves are evaluated and compared to each other
in exactly the same order as on the CPU. However, if two moves are equally good,
it does not matter which of them is taken. So we can split the neighborhood into
different parts, which enables a more efficient memory access pattern. In most
cases the first node to swap in the moves i and i + 1 will be the same and the
second node in move i + 1 will be the neighboring node in the solution to the
second node of move i. Hence it makes sense to let neighboring threads k and
k + 1 evaluate the moves i and i + 1 so we get coalesced memory access with
respect to finding the node in the solution. Moreover, since one of the nodes is the
same, this will also benefit the coordinate access for this node. We thus change
the neighborhood part a thread has to evaluate from the moves i, i + 1, . . . , i + N

to the moves j, j + M, j + 2M, . . . , j + NM where M is the grid size.

1 //Loop through the subset and f i n d best move
2 f o r ( i n t i=t i d ; i<number moves ; i += g r i d s i z e )
3 { . . . }

The benefit is clear, as our transactions per request now reduce to 10.23 for the
problem of size 2000. The effects in running time both for the evaluation kernel
and in total are again shown in Figure 10 for this GPU version four.

Profiling the GPU version four indicates that the memory access pattern is still
the limiting factor for the evaluation kernel. Unfortunately it is hard to optimize
this pattern further, since the access to the node coordinates goes through a,
from a GPU point of view, random permutation. For this reason we will stop
here focusing on the evaluation kernel and instead concentrate on move reduction
and application. For small problems the move application kernel dominates the
runtime. Similarly to the evaluation kernel we have a very bad achieved occupancy
of 2.2%, which stems from the fact that we in total only have 1 block running on
the GPU. This was done in order to keep the reduction code easy and readable and
we will therefore not change this. The profiling tells us in addition, that again the
memory access pattern is bad with around 17 transactions per global memory load
request. When deciding on the best move, each thread in the application kernel
first reads through a set of delta values.

1 //Reduce num nodes e lements in each thread
2 f o r ( unsigned i n t i=t i d ∗ threads ; i<( t i d +1)∗ threads ; ++i )
3 { . . . }

This is the same type of bad memory access pattern used before in the evaluation
kernel, hence we can apply the same remedy by changing which delta values are
accessed by which thread.

1 //Reduce e lements in each thread
2 f o r ( unsigned i n t i=t i d ; i<d e l t a s s i z e ; i += threads )
3 { . . . }

Figure 10 shows that this drastically improves the runtime of the application kernel
(GPU version five).

Reduction is a standard technique in GPU literature that has been studied with
respect to good implementations [9]. With the improved memory access pattern
we now implement most of the ideas suggested in [9] except loop unrolling. In GPU
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1,5 1,4 1,3 1,2
2,5 2,4 2,3 4,5
3,5 3,4 3,4 3,5
4,5 2,3 2,4 2,5
1,2 1,3 1,4 1,5

1,6 1,5 1,4 1,3 1,2
2,6 2,5 2,4 2,3 5,6
3,6 3,5 3,4 4,5 4,6
4,6 4,5 3,4 3,5 3,6
5,6 2,3 2,4 2,5 2,6
1,2 1,3 1,4 1,5 1,6

Fig. 12: Improved mapping between linear index and node indices for (left) even
and (right) odd number of nodes. The gray marked cells are the ones used.

version six we therefore include loop unrolling in the reduction, but the effect on
the runtime is only marginal in our case (see Figure 10).

In the above paragraphs we have shown that profiling and applying only minor
changes to the original code resulted in a considerable speedup of the runtime for
both larger and smaller problems. But how big problems can we actually solve?
So far we only considered up to 2000 nodes. How long does it take to evaluate the
swap neighborhood for 10 000 nodes on the GPU? Running the program for a TSP
of this size leads to a problem: Both the CPU and the GPU version terminate with
an error. The cause is a problem in our mapping from the linear move index to the
indices of the nodes to be swapped. It includes floating point arithmetic, which
on a computer never is exact. For such a big problem the error in floating point
computations causes the resulting indices to be invalid in a few cases, causing the
termination of the programs. On the CPU the solution is simple. In fact, if one
would implement local search for this neighborhood on the CPU without thinking
about the GPU, most people would not use a mapping but instead two loops,
where the first runs through the valid indices for the first node and the second
loop through the valid ones for the second node.

1 f o r ( unsigned i n t x=1; x+2 <= num nodes ; ++x ) {
2 f o r ( unsigned i n t y=x+1; y+1 <= num nodes ; ++y ) {
3 . . .
4 }
5 }

This eliminates the need for the demanding floating point arithmetic and thus
not only enables very large problem sizes but in addition improves the runtime
on the CPU. The latter fact illustrates also the limited usefulness of our GPU
vs. CPU speedup statement in Section 5. For a more detailed discussion about
usefulness and limits of such GPU vs. CPU speedup measurements see Section 4
in the second part of this paper [22].

For the GPU the floating point arithmetic problem is not so easy to solve. The
square root in the mapping comes from solving a quadratic problem. Goldberg [8]
suggests to rearrange the quadratic formula to avoid catastrophic cancellation
errors. This is done in GPU version seven, but in our case it does unfortunately
not eliminate all possible sources of catastrophic cancellation. Hence, this GPU
version still terminates with an error for a TSP of size 10 000. In [21] a different
mapping between the linear move index and the node indices is suggested. The idea
of this mapping is to consider the lexicographically ordered indices as a triangle
and then cut the triangle top and rotate it to create a rectangular indexing scheme.
The same idea can alternatively be described as considering the lexicographical
triangle as half of a rectangle and filling the other half with the same indexing
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scheme in reverse order as done in Figure 12. Then a simple rectangular mapping
can be used to compute for a move its cell in the table. From this it is easy to
deduce the node indices. This mapping consists only of integer arithmetic, hence
eliminating any floating point errors. Our GPU version eight using this mapping is
able to evaluate 500 iterations for a TSP with size 10 000 in roughly 22.5 seconds.

In this appendix we showed how repeated profiling and modifying can lead to a
significant improvement in the efficiency of a GPU implementation. This just em-
phases the importance of considering the architecture of the GPU when program-
ming it. At the same time we illustrated that comparing the CPU vs. the GPU can
be unfair. Finally, the mapping between move number and thread number showed
the importance of rethinking and adjusting an algorithm when implementing it on
the GPU.


