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Abstract 

This paper presents a linear mixed integer modeling approach for basic components in a biomass 

supply chain including supply, processing, storage and demand of different types of biomass. 

The main focus in the biomass models lies on the representation of the relationship between 

moisture and energy content in a discretized framework and on handling of long term processes 

like storage with passive drying effects in the optimization. The biomass models are formulated 

consistently with current models for gas, electricity and heat infrastructures in the optimization 

model 'eTransport', which is designed for planning of energy systems with multiple energy 

carriers. To keep track of the varying moisture content in the models and its impact on other 

biomass properties, the current node structure in eTransport has been expanded with a special set 

of biomass nodes. The Node, Supply, Dryer and Storage models are presented in detail as 

examples of the approach. A sample case study is included to illustrate the functionality 

implemented in the models. 
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NOMENCLATURE 

 

Parameters 

 

St
sp  = binary parameter to determine storage type (passive drying yes/no) for 

  biomass product p 

Dr
dc  = specific operating cost per m3 biomass fed to dryer d [USD/m3 

St
sc  = cost of biomass handling in storage s USD/timestep and m3

BSup
bptC   = cost of biomass product p from biomass supply b in timestep t [USD/m3] 

St
sabC  = biomass handling cost in storage s during the whole storage time 

 USD/m3St
sb

St
sa ToutTin 

St
sp  = moisture reduction in storage s for biomass product p 

%wt/timestep and m3

St
spab  = moisture reduction in storage s for biomass product p during the whole 

storage time , assuming a decreasing drying rate with 

increasing storage time decimal fraction mass/m3

St
sb

St
sa ToutTin 

ref
pD   = Reference density of product p kg/m3

zero
pD   = Density of product p, completely dry  kWh/m3 

Dr
dp   = volume loss coefficient for product p in dryer d 

   decimal fraction volume basis

St
sp    = volume loss coefficient for biomass product p in storage s, average at 

storage starting point [decimal fraction volume basis/timestep

deem   = emission coefficient for emission type e from dryer d kg/MWh] 

                                                                                                                                                             
* Corresponding author. Tel.: + 47 73 55 04 47; fax: + 47 73 59 72 50. 
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seem   = emission coefficient for emission type e from storage s kg/MWh]

St
spab    = volume loss for biomass product p in storage s during the whole storage 

time , increasing with increasing storage time 

decimal fraction volume basis/m3

St
sb

St
sa ToutTin 

St
sF  = Fuel use in storage s per m3 biomass input to run e.g. wheel loaders 

[liter/m3] 

ref
pHV   = Reference heating value of product p kWh/m3

Dr
dlpHVin  = heating value of biomass product p for moisture pair l to dryer d in 

timestep t kWh/m3

HVoil   = heating value of oil to dryer d or storage s MWh/literglobal parameter 

ref
pMC   = Reference moisture content of product p decimal fraction mass

BSup
bpMC   = moisture content of biomass product p from biomass supply b 

   decimal fraction mass   

Dr
dMCi   = maximum input moisture content to dryer ddecimal fraction mass

Dr
dlMCI   = input moisture in moisture pair l in dryer d (linearization) 

   decimal fraction mass 

No
npMC max  = maximum moisture content of product p in Biomass Node n 

   decimal fraction mass

No
npMC min   = minimum moisture content of product p in Biomass Node n

   decimal fraction mass

Dr
dMCo   = lowest level of output moisture content achievable in dryer d 

   decimal fraction mass 

Dr
dlMCO   = output moisture in moisture pair l in dryer d (discretization)

                                                                                                                                                             
  E-mail address: silke.vandyken@sintef.no (S. van Dyken) 
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

   decimal fraction mass

Dr
dMCstep   = moisture reduction in dryer d per discretization step  

   decimal fraction mass

TN   = total number of timesteps 

Dr
dNli   = number of discretization  points in the dryer model (moisture) 

Dr
dNpairs   = number of discretization pairs in the dryer model (moisture) 

Dr
dNsteps   = number of discretization steps in the dryer model (moisture) 

Dr
dNbv   = number of discretization points in the dryer model (biomass burned) 

Em
dePen   = Emission penalty for emission type e from dryer d [USD/kg] 

Em
sePen   = Emission penalty for emission type e from storage s [USD/kg] 

Dr
dpq   = specific energy required in dryer d to evaporate one kg water from 

biomass product p kWh/kg

Dr
dpQ max   = rated capacity of dryer d for biomass product p MW

Dr
dlp   = specific energy required to dry biomass product p in dryer d for all 

moisture pairs l MWh/kg

St
saTin   = input timestep to storage s in timestep a 

St
sbTout   = output timestep from storage s in timestep b 

BSup
bpV max   = maximum flow of biomass product p from biomass supply b [m3/timestep] 

Dr
dpV max   = maximum flow of biomass product p to dryer d [m3/timestep] 

Dr
dVb max   = maximum volume of biomass burned in dryer d [m3/timestep] 

Dr
dvVB   = amount of biomass burned in dryer d at discretization point v in Burn 

   [m3/timestep]  

St
sV max   = maximum flow of biomass to storage s [m3/timestep] 
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BSup
bpV min   = minimum flow of biomass product p from biomass supply b [m3/timestep] 

Dr
dpWevap   = amount of water evaporated in dryer d from biomass product p per 

moisture step  kg/m3 Dr
dMCstep

 

Variables 

 

Bio_load_flowijpt    = Biomass volume flow of product p from network node i to load 

    node j in timestep t [m3/timestep] 

Bio_local_flowijpt = Biomass volume flow of product p from supply node i to load node 

    j in timestep t [m3/timestep] 

Bio_net2net_flowijpt  = Biomass volume flow of product p from network node i to j in 

     timestep tm3/timestep] 

Bio_supply_flowijpt  = Biomass volume flow from supply node i to network node j in 

    timestep t [m3/timestep] 

ZC  = operating cost for different technologies, ologiesTechnZ    

0No
nptD  = density of biomass product p in node n in timestep t kg/m3 

Emitedt   0 = Amount of emission type e from dryer d in timestep t [kg/timestep] 

Emitest   0 = Amount of emission type e from storage s in timestep t [kg/timestep] 

0Dr
dptF  = Fuel (oil) used by dryer d in timestep t to dry biomass product p 

[liter/timestep] 

0No
nptHV  = density of biomass product p in node n in timestep t  kg/m3

ijtflowLoad _  = Energy flow from network node i to load node j in timestep t 

    MWh/timestep 

ijtflowLocal _  = Energy flow from supply node i to load node j in timestep t 

    MWh/timestep 
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Dr
dlvt  = binary variable for discretization of moisture pair l and burned volume v in 

dryer d and timestep t , the value is 1 if moisture pair l is chosen, 0 if not 

St
spab  = binary variable to determine how long ( ) a biomass product p 

has to be stored in storage s to reach a certain output moisture level, the 

value is 1 if input time is  and output time is , 0 if not 

St
sb

St
sa touttin 

toutSt
satin St

sb

0No
nptMC  = biomass moisture content of product p in biomass node n in timestep t 

decimal fraction mass 

0Dr
dptMCin  = biomass input moisture content of product p to dryer d in timestep t 

   decimal fraction mass

0St
sptMCin  = biomass input moisture content of product p to storage s in timestep t 

decimal fraction mass 

0Dr
dptMCout  = biomass output moisture content of product p from dryer d in timestep t 

decimal fraction mass 

0St
sptMCout  = biomass output moisture content of product p from storage s in timestep t 

decimal fraction mass

ijtflownetNet _2 = Energy flow from network node i to j in timestep t MWh/timestep 

NN
jitP 2  = power flow in timestep t from/to other network models at node i 

[MWh/timestep] 

Sup
sitP   = power flow in timestep t from local supply connected at node i 

[MWh/timestep]

0Dr
dptQ   = amount of energy required to dry biomass product p in dryer d and 

timestep t MWh/timestep

0Dr
dtQex  = external drying heat to dryer d in timestep t MWh/timestep  

ijtflowSupply _ = Energy flow from supply node i to network node j in timestep t 

6 



 

    MWh/timestep 

0BSup
bptV  = Amount of biomass product p supplied in timestep t from supply b 

Ld
pnltV   = Biomass flow of product p in timestep t to load l connected to node n 

[m3/timestep] 

NN
pnjtV 2  = Biomass flow of product p in timestep t from/to other network models j at 

node n [m3/timestep] 

Sup
psntV  = Biomass flow of product p in timestep t from biomass supply s connected 

at node n [m3/timestep] 

0Dr
dptVb  = amount of biomass product p burned in dryer d and timestep t to supply 

drying heat m3/timestep

0Dr
dptVin  = input volume of biomass product p to dryer d in timestep t m3/timestep

0St
sptVin  = input volume of biomass product p to storage s in timestep t m3/timestep

0Dr
dptVout  = output volume of biomass product p from dryer d in timestep t 

m3/timestep

0St
sptVout  = output volume of biomass product p from storage s in timestep t 

m3/timestep

0St
spabVtrans  = transferred volume of biomass product p in storage s between timestep a,b 

m3/timestep

t, a, b, =  Index for timesteps within operational model,  stepsTimebat _,, 
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Sets 

 

BioSupplies   = Set of biomass supplies 

BioNodes   = Set of biomass nodes 

Burn   = Set of all values for linearization of the amount of biomass burned 

    in the Dryer model 

Dryers   = Set of biomass dryers 

Emissions   = Set of (predefined) emission types; Emissions = [CO2, CO, NOx, SOx 

Index   = Index set for calculation of specific drying energy in dryer model 

Load_points   = Set of load and market nodes 

Net2load   = Set to define connections between network nodes and load nodes 

Net2net   = Set to define connections between two different networks t 

Network_nodes   = Set of network nodes 

Pairs   = Set of all discretization moisture pairs in the Dryer model 

Products   = Set of all biomass products 

Storages   = Set of biomass storages 

Supply_points   = Set of energy sources 

Supply2load   = Set to define direct connections between supply nodes and load nodes 

Supply2net   = Set to define connections between supply nodes and network nodes 

Time_steps   = Set of hours in the operational model (circular) 

 

 



 

1 INTRODUCTION 

 

Biomass can be defined as organic matter that has been directly or indirectly derived from 

contemporary photosynthesis reactions, and hence can be considered a part of the present carbon 

cycle. It is considered a renewable resource when utilized in a sustainable way (harvesting equals 

re-growth). Many countries have large biomass resources, and it is considered as one of the most 

promising renewable energy sources in the near to mid-term perspective. Forest biomass 

represents the largest energy resource, but biomass can also be produced by dedicated 

cultivation, i.e. energy farming. By-products from forestry and agriculture can also be used for 

energy purposes, referred to as biomass waste. Examples of such waste sources are maintenance 

work in parks and gardens, thinning wood from forestry and straw from wheat farming. There 

are also general waste streams from household and industry, which include biomass products 

like food, paper, demolition wood and saw dust. 

 

The generic term ’biomass’ is used on a wide and diverse range of energy resources that can be 

used in solid or gasified form for heating applications or electricity production, or in liquid or 

gasified form as transportation fuel. E.g. 5–8 assortments of forest species will diverge into 30-

60 log types and 100 – 200 raw products. In the end of a general biomass supply chain, the 

number of products may become many thousands. Thus, it is not sufficient to set up a techno-

economic optimization model where flow of generic ‘biomass’ is considered in the same way as 

flow of electricity, heat or natural gas. Large international research programs are initiated to 

develop efficient technologies for increased utilization of biomass resources both for stationary 

and mobile use ([1], [2]). Compared to more traditional energy transport technologies like 

electricity and gas, however, fewer efforts have so far been apparent in techno-economic 

modeling and optimization of biomass supply chains. Most reports and studies ([3]-[8]) show 

numerical assessments on specific biomass activities and technologies necessary to meet energy 

demand. Although many have an energy system approach, few actually use a model that 
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accounts for the many trade offs and the alternative handling options in the design of a general 

biomass supply chain.  

 

A detailed dynamic simulation program for collection and transportation of large quantities of 

biomass, the IBSAL model, is presented in [3]. The model considers time-dependent availability 

of biomass under the influence of weather-conditions and predicts the number and size of 

equipment needed to meet a certain demand. The delivered cost of biomass is calculated based 

on the utilization rate of the machines and storage spaces. The model uses nonlinear equations to 

describe the dependencies, e.g. a third-degree polynomial to represent the moisture content as a 

function of number of days since the start of harvest.  

 

A rather simple nonlinear decision support model is given in [4]. The problem considered is 

optimal exploitation of biomass resources with several harvesting sites and a few centralized 

combustion plants on a regional level. The aim is to find the optimal capacity of heat and power 

generation as well as the optimal utilization of biomass resources and transport options. The time 

horizon considered is one year so that the model is capable of giving long term decision support.  

 

Another modeling approach describes a methodology for optimization of agricultural supply 

chains by dynamic programming (DP) [5] to find the lowest cost from harvest to end use. The 

DP model works by defining a set of stages of the supply chain and stages for the biomass. The 

model explicitly deals with the product properties, which are influenced by handling, processing, 

transportation and storage actions. 

 

The work presented in [6] describes an environmental decision support system (EDDS) based on 

a geographic information system (GIS). The optimization model used can be classified as a non-

linear mixed integer programming problem. The main focus is the optimal planning of forest 
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biomass use for energy production. Different scenarios can be analyzed over a long-time period 

supported by a user interface. 

 

The model described in [7] focuses on biomass collection and transportation systems and 

presents a multicriteria assessment model. Economic, social, environmental and technical factors 

are included in the ranking of the alternatives investigated. Another mixed-integer linear 

optimization model is demonstrated in [8]. The methodology allows for biomass management for 

energy supply on a regional level. The model is based on the dynamic evaluation of economic 

efficiency and the objective is to find the most economical and ecological supply structure.  

 

Both [9] and [10] analyze logistic issues of biomass and present the application of the concepts 

developed in case studies. The work in [9] deals with the storage problem and the advantages a 

multi-biomass supply chain might have on the logistic cost. The objective of [10] was the 

development of a forest biomass supply logistics model. 

 

In this paper, we present a linear mixed integer modeling framework that can be applied to most 

relevant components in a biomass supply chain, including sources, handling/processing, storage 

and end use. Characteristic for our generic model is its flexible structure which allows for the 

modeling of value chains with multiple biomass types and technologies. The modeling 

framework is based on an approach with a network node system applied in [16] and [17]. The 

main objective of our approach is the presentation of the new functionality. Minor focus has 

been given to an application with real case data.  

 

The amount of energy flowing (and specific operating cost) at any point in the supply chain 

depends both on the volume and the moisture content in the biomass, and can be defined as a 

function of two main properties of the biomass product [5]: 
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 Appearance; describing if the biomass is in chips, pellets, logs etc 

 Quality; primarily moisture content  

 

The following types of actions can then be distinguished [5]: 

 

 Handling; actions that intentionally alter or modify the appearance of a product, e.g. 

chipping or pelleting 

 Processing; actions which intentionally alter or modify the quality of a product, e.g. 

drying 

 Transportation and storage; actions which unintentionally alter the quality of a product, 

e.g. natural drying during long-term storage 

 

In the current framework, we do not distinguish between handling and processing. The main 

issue during optimization is to keep track of what kind of changes a specific action or module 

does to the product, both in terms of quality and appearance.  

 

Furthermore, the long-term effects of passive drying (change of quality) during storage has to be 

considered together with forced drying in a processing module. The typical hourly and seasonal 

load profiles used for optimization of heat and electricity supply thus have to be modified to 

allow the algorithm to choose between cheap/free long-term passive drying and spending fuel for 

forced and fast drying.  

 

The paper is organized as follows: Section 2 gives a brief overview of the eTransport 

optimization model and the basic network structure, section 3 describes the new biomass model 

structure with the biomass node system. The Supply, Dryer and Storage models are presented in 

detail as samples of the methodology. Section 4 contains a sample case study to demonstrate the 
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properties of the new biomass models. Section 5 contains aspects of discussion and Section 6 an 

explanation of current and further work. 

 

2 THE ETRANSPORT MODEL 

 

The optimization model eTransport is developed for expansion planning in energy systems 

where several alternative energy carriers and technologies are considered simultaneously [11]-

[14]. The model uses a detailed network representation of technologies and infrastructure to 

enable identification of single components, cables and pipelines. The current version optimizes 

investments in infrastructure over a planning horizon of 10 to 30 years for most relevant energy 

carriers and conversion between these. It is not limited to continuous transport like lines, cables 

and pipelines, but can also include discrete transport by ship, road or rail.  

 

The model is separated into an operational model (energy system model) and an investment 

model where both economical and environmental aspects are handled by a superior modeling 

structure [14]. In the operational model there are sub-models for each energy carrier and for 

conversion components. With the presented biomass module, several new sub-models have been 

added to the operational model. The operational planning horizon is relatively short (1-3 days) 

with a typical time-step of one hour. The operational model finds the cost-minimizing diurnal 

operation for a given infrastructure and for given energy loads. Annual operating costs for 

different energy system designs are calculated by solving the operational model repeatedly for 

different seasons/segments (e.g. peak load, low load, intermediate etc), investment periods (e.g. 5 

year intervals) and relevant system designs. Annual operating and environmental costs for all 

different periods and energy system designs are then used by the investment model to find the 

investment plan that minimizes the present value of all costs over the planning horizon.  
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Mathematically, the model uses a combination of linear programming (LP) and mixed integer 

programming (MIP) for the operational model, and dynamic programming (DP) for the 

investment model. The operational model is implemented in the AMPL programming language 

with CPLEX as solver [15], while the investment model is implemented in C++. A modular 

design ensures that new technology modules developed in AMPL for the operational model are 

automatically embedded in the investment model. A full-graphical Windows interface is 

developed for the model in MS Visio. All data for a given case are stored in a database.  

The sub-models for different components are connected by general energy flow variables that 

identify the flow between energy sources (Supply_points), network components for transport, 

conversion and storage (Network_nodes) and energy sinks like loads and markets (Load_points). 

The connections between supply points, network nodes and load points are case-specific, and 

they are identified by sets of pairs where each pair shows a possible path for the energy flow 

between component types:  

 

Supply2net:   Set of pairs (i, j), where i  Supply_points and j  Network_nodes 

Supply2load:   Set of pairs (i, j), where i  Supply_points and j  Load_points 

Net2net:   Set of pairs (i, j), where i, j  Network_nodes 

Net2load:   Set of pairs (i, j), where i  Network_nodes and j  Load_points 

 

General energy flow variables are defined over the energy system structure to account for the 

actual energy flow between different components (except for internal flow within each model). 

These general variables are included in and restricted by the various models and they are the link 

between the different models:  

 

Supply_flowijt:   Energy flow from i to j at t, where (i, j)  Supply2net and t  Time_steps 

Local_flowijt:  Energy flow from i to j at t, where (i, j)  Supply2load and t  Time_steps 

Net2net_flowijt:  Energy flow from i to j at t, where (i, j)  Net2net and t  Time_steps 
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Load_flowijt:   Energy flow from i to j at t, where (i, j)  Net2load and t  Time_steps 

 

In the operational model, the different technology models are added together to form a single 

linear mixed integer optimization problem. The object function is the sum of the contributions 

from the different models and the restrictions of the problem include all the restrictions defined 

in the models. Emissions are caused by a subset of components (power plants/CHP, boilers, 

road/ship transport etc) that are defined as emitting CO2, NOx, CO and SOx. Further 

environmental consequences can be defined. Emissions are calculated for each module and 

accounted for as separate results. When emission penalties Pen
Em 

are introduced by the user (e.g. 

a CO2 
tax), the resulting costs are included in the objective function and thus added to the 

operating costs.  

 

The task for the investment model is to find the optimal set of investments during the period of 

analysis, based on investment costs for different projects and the pre-calculated annual operating 

costs for different periods and states. The optimal investment plan is defined as the plan that 

minimizes the discounted present value of all costs in the planning period, i.e. operating costs 

plus investment costs minus the rest value of investments. The optimal plan will therefore 

identify the optimal design of the energy system (i.e. the optimal state) in different periods.  

 

More details of the investment algorithm and the emission handling in eTransport are previously 

published in [14] and will not be presented here.  

 

3 BIOMASS IN ETRANSPORT 

 

When analyzing a biomass supply chain, it is of great importance to consider the effects 

associated with the variation of moisture content for a vast variety of materials. Ensuring that the 

moisture content of the biomass entering or leaving a process is within a certain range is 
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essential for the proper operation and efficiency of conversion technologies, as for instance 

combustion or fast pyrolysis plants. The original version of eTransport only takes the flow of 

energy from one node to another into account (node types: Supply_points, Network_nodes and 

Load_points). However, with biomass, the amount of energy flowing from one node to another 

depends both on the volume flow and the moisture content. The biomass density and the heating 

value are additional key parameters. Thus, in contrast to the original LP structure of eTransport, 

more than one variable has to be handled during the optimization. This leads to a non-linear 

problem which has to be discretized to be able to carry out the LP-optimization. To keep track of 

the variables of volume and moisture throughout the system a new set BioNodes has been 

defined in addition to the common network nodes. This set assures consistency between 

connected components of the biomass module. The same modeling approach is applied in [16] 

and [17] to describe the technological characteristics of natural gas flows in pipelines in 

combination with optimization of gas markets. The approach is based on a network node system 

which allows for the control of both the gas flow and the pressure. This network structure has 

already been applied in the gas models in eTransport. However, since the control of both the gas 

flow and the system pressure is similar to the interdependent variables which have to be handled 

in a biomass chain, the gas network modeling approach has been transferred to the biomass 

module.    

 

Aside from the interdependent variables, the modeling of biomass processes differs from the 

original design in eTransport by the occurrence of long term effects. Compared to the analysis of 

electricity networks, long term processes and seasonal variation (harvest period, amount of 

biomass available, weather conditions, etc.) play a major role in a study of a biomass supply 

chains. Biomass properties will change in a long term perspective, mainly due to passive drying 

effects and degradation processes. The typical time resolution in the operational model in 

eTransport is one hour [14], suitable for a detailed analysis of e.g. electricity networks, but it is 

not appropriate when analyzing biomass processes. Furthermore, the current investment module 
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does not allow for the optimization of long term processes since the information given/obtained 

about operating conditions and material properties in one year or segment can not be transferred 

to another year or segment.   

 

However, an approach to modeling the long-term effects can be made by using the functionality 

existing in the short term structure. The default time resolution in the operational model is on an 

hourly basis with 24 timesteps, but this can be changed freely. Thus, time dependent variables 

are defined per timestep in the nomenclature. By choosing 52 timesteps and one single segment 

the model will optimize the operation of the system for a whole year on a weekly basis (input 

values = weekly average values). With such a weekly time resolution, the long term functions 

implemented in the biomass chains can be handled by the operational optimization.  

 

With the BioNodes as a connecting basic structure, seven new technology models are 

implemented in in eTransport: 

 

1) Supply: Different kinds of biomass supplied to the system with moisture levels defined by the 

user, varying cost profile and restricted volume. 

2) Chipping: Grinding/chipping of solid biomass to user-defined quality/appearance. 

3) Pellets Plant: Production of pellets with user-defined properties. 

4) Storage: Storage of biomass with passive drying function (optional). Might cause emissions 

due to internal units (oil-fired) for biomass handling. 

5) Dryer: Active drying of biomass. Causes emissions when oil-fired. 

6) Combustion: Heat production in a large scale biomass boiler, co-fired with oil (optional), 

causes emissions. 

7) Demand: Biomass load point, demand of biomass volume at a certain moisture and quality 

level. 
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The symbolic technology models and the symbolic biomass node are shown in Fig. 1. Some of 

the models originate from [18], but have been further developed and adjusted to the new node 

structure. In the following sections, the basic structure of the biomass module and the LP 

formulations for the BioNodes, the Supply, the Dryer and the Storage model are presented in 

detail. The model description is followed by a case study to illustrate the new functionality and 

possible model applications. 

 

3.1 Basic biomass module structure and Biomass Nodes 
 

To be able to handle both the basic characteristics of different kinds of biomass and the effects 

the variation in moisture content might have on these properties, a set of different Products is 

created. For each , a reference point is specified defining the following reference 

parameters:  

ductsProp

 

 the moisture content ref
pMC ,   

 the bulk density ref
pD   

 and the heating value ref
pHV  

 

The common flow variables used to model the flow in the eTransport network are (as presented 

in chapter 2):  Supply_flowijt, Local_flowijt, Net2net_flowijt and Load_flowijt. These variables only 

take into account the flow of energy MWh/hbetween two points i and j in the network in 

different timesteps t. That is not sufficient in a biomass model, since information about the 

moisture content at various steps in the chain is crucial for the optimization. For that reason, each 

of the four common flow variables in eTransport has been extended with a forth index 

 to be able to represent the product properties. Thus, information about moisture 

content is given and transferred between the models and the BioNodes in the network. In contrast 

to the common flow variables, the flow between the biomass models in the network is a volume 

oductsp Pr
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flow m3/h and not a flow of energy. The extended flow variables are only valid in the biomass 

module.  

 

Bio_supply_flowijpt  Biomass volume flow of product p from i to j at t, where (i, j)  

Supply2net, p Products and t  Time_steps 

Bio_local_flowijpt Biomass volume flow of product p from i to j at t, where (i, j)  

Supply2load, p Products and t  Time_steps 

Bio_net2net_flowijpt  Biomass volume flow of product p from i to j at t, where (i, j)  Net2net, 

p Products and t  Time_steps 

Bio_load_flowijpt  Biomass volume flow of product p from i to j at t, where (i, j)  Net2load, 

p Products and t  Time_steps 

 

By means of the biomass node structure, the quality variable moisture content  is 

controlled in addition to the biomass volume flow. This requires the connection of each biomass 

model to a biomass node. In this way, it can be accounted for that changes in one part of the 

system might influence the performance of the rest of the system. Extended passive storage 

keeping could for example shorten the residence time in a dryer which in turn influences the 

operating cost of the whole system.  

No
nptMC

 

The moisture content is modeled as a free variable which can be restricted by different sets of 

parameters in the biomass nodes and in the technology models. The biomass density and the 

heating value are not separately restricted since these values are directly linked to the moisture 

content assuming linear dependencies. The biomass density in a node is linked to the moisture 

content by assuming a linear dependency: 

 

19 



 

ref
p

No
nptref

p
No
npt MC

MC
DD






1

1
 

Error! 

Book

mark 

not 

define

d.(1)

stepsTimetductsPropBioNodesn _,,    

 

The density of completely dry biomass ( ) is defined as . 0No
nptMC zero

pD

ref
p

ref
pzero

p MC

D
D




1
 (2)
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Applying the formulation of  to Eq. (1), the linear dependency of biomass moisture content 

and density can be expressed by 

zero
pD

 

)1( No
npt

zero
p

No
npt MCDD   (3)
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The dependency of the biomass heating value on the moisture content is modeled by 

linearization of the relation shown in Fig. 2. It is assumed that the correlation applies to all kinds 

of biomass. The curve shown for spruce is taken as a reference curve. It is divided into three 

linear parts using four linearization points (more points possible for increased accuracy). The 

linearized curve for spruce is scaled up and down to represent other biomass types  

using the corresponding reference values and . 

ductsProp

ref
pMC ref

pHV
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Three different definitions are common for the heating value of biomass:  

 

 HHV (higher heating value) which is the gross heating value 

 LHV (lower heating value) which is the net heating value. In contrast to the HHV, the 

LHV does not include the heat which originates from the water vapor formed during 

the combustion  

 EHV (effective heating value) is the LHV subtracting the energy of evaporating the 

moisture content of the biomass   

 

The relation shown in Fig. 2 is based on the EHV, but the reference heating values defined in the 

model do not necessarily have to be the EHV. Since the dependency found based on Fig. 2 is an 

approximation, it is also possible to use the LHV or HHV as long as this choice is consistent in 

the whole model. Furthermore, it has to be considered that the heating values available for 

different kinds of biomass often represent average values. This is caused by the wide variation of 

biomass quality.  

 

There are no operating costs associated with the biomass node model 

 

0NoC . (4)

 

The biomass node model does not represent a physical technology model. It is implemented to 

enable the transfer of biomass property information between the network models and to keep 

track of the biomass flow and the variation in moisture content. Thus, neither the biomass 

volume flow nor the three quality variables are modified in the biomass node model. The amount 

of biomass that goes into a biomass node equals the amount of biomass that leaves it. The mass 

balance equation for a biomass node BioNodesn  is given by 

 

21 



 

 



netNetjnj

NN
njpt

loadNetlnl

Ld
nlpt

netNetnjj

NN
jnpt

netSupplynii

Sup
inpt VVVV

2),(:

2

2),(:2),(:

2

2),(:

 (5)

 stepsTimetuctsProdpBioNodesn _,,  . 

 

3.2 Supply model 
 

The biomass supply model is a generic source that accounts for cost and moisture content of any 

biomass product p. The output volume  can not exceed the maximum output capacity. At 

the same time, the minimum output conditions have to be kept. 

BSup
bptV

 

BSup
bp

BSup
bpt

BSup
bp VVV maxmin   (6)
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The cost of using biomass is given by 

 

  
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The biomass taken from a given supply point has to be fed to a biomass node. The special 

properties of the biomass node system only take effect when each model belonging to the 

biomass chain is connected to a biomass node. Thus, the biomass balance for the biomass supply 

point is 
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Eq. (8) restricts the biomass volume flow from the biomass supply to the network. In addition, 

information about the moisture content has to be transferred to the network. The moisture 
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content in the biomass supply is set equal to the moisture content in the biomass node connected 

to the supply point. This is done applying the general node structure and the set “Supply2net”.  
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3.3 Dryer model 
 

The dryer model reduces the moisture content of a biomass product p. The heat required to run 

the drying process can either be supplied by an external heat source, by direct burning of 

biomass or oil, or a combination of these. The amount of biomass dried in the model is restricted 

by the maximum biomass feed rate  to the dryer m3/h. In addition, it is restricted by its 

rated capacity  MW and the drying rate kWh/kg water evaporated. The drying 

rate, which is defined by the user, is treated as an average rate. It is assumed that the energy 

required to evaporate the biomass moisture slightly increases when the drying is carried out on a 

low moisture level. Hence, reducing the moisture content from 60 %wt to 50 %wt requires less 

energy than reducing it from 20 %wt to 10 %wt. Volume losses during the drying process are 

accounted for applying the volume loss coefficient (percentage of input volume). In addition 

to the energy costs calculated in the energy supply models, a specific operating cost  per m3 

biomass fed to the dryer can be specified.  

Dr
dpV max

Dr
dpQ max Dr

dpq

Dr
dp

Dr
dc

 

The optimization of the amount of biomass fed to the dryer and both the variable input and 

output moisture level leads to a non-linear problem which has to be discretized. This is done 

using a set of predefined pairs of possible input and output moisture content combinations, 

and . The user defines the number of discretization points between the maximum Dr
dlMCI Dr

dlMCO
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input moisture level and the lowest output moisture level achievable in the dryer . 

The moisture pairs are generated automatically in the model. A numerical example with the 

definition of  is shown in 

Dr
dMCi

Dr
d

Dr
dp

D

D





Dr
dMCo

Dr
dptVb

MCstep

Dr
dlvt

Wevap

Table 1. The optimal moisture pair is found by means of the 

binary variable . 

 

The heat required in the drying process can be obtained by burning a fraction of the biomass. 

The biomass volume required to cover the drying heat depends on the heating value of the 

biomass. Again, the heating value is linked to the moisture content which is not known before 

the optimization is carried out. Thus, the amount of biomass burned for heating purposes  

has to be discretized, too. This is implemented by defining a certain number of discretization 

points . Applying this number and the upper bound , biomass volume values 

are calculated in the model.  

Dr
dNbv Dr

dVb max

Dr
dvVB

 

Due to the linear dependency of biomass density on moisture content, the amount of water 

evaporated (equals the density change) does not decrease at low moisture levels. Thus, a 

moisture reduction corresponding to always corresponds to the same amount of water 

.  

Dr
dMCstep

Dr
dpWevap

 

Dr
d

zero
p

Dr
d

Dr
d

zero
p

Dr
d

zero
p

MCstep

MCstepMCiDMCi  )1()1(
 (10)

ductsPropDryersd  ,   

 

To be able to consider a decreasing drying rate nevertheless, a modifying factor has been 

implemented in the calculation of the specific drying energy  given in Eq. (11). By means of Dr
dlp
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this factor, the specific evaporation energy  linearly increases at low drying moisture levels.
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Table 2 gives a numerical example of the modification of  implemented in the calculation of 

the specific drying energy . 

Dr
dpq

Dr
dlp

 

To maintain a linear mixed integer problem, both the input and output moisture content has to be 

further restricted. This is done by applying the predefined discretization moisture pairs. The 

binary variable  is implemented to select the most suitable moisture pair. The values of  

are set by the solver. The constraint given by 
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assures that only one  is set to equal one. Thus, only one moisture pair (the most appropriate 

one) is chosen. This choice is taken by the solver considering the other constraints and the cost 

functions. 

Dr
dlvt

 

Eq. (13) and (14) restrict the difference between input and output moisture (the level of moisture 

reduction in the dryer), applying the combinations given by the moisture discretization pairs. 
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In the same way as the moisture level, the amount of biomass burned has to be restricted by 

applying the discretized values and the binary variable . Dr
dvVB Dr

dlvt
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The energy required to reduce the biomass moisture in the dryer is calculated by means of the 

specific drying energy  and given by Dr
dlp
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The heat required to dry the biomass volume can either be supplied by an external heat source or 

by burning biomass or oil. The heating value  of the biomass input volume is calculated 

applying the dependency described in chapter 3.2, subject to the moisture pairs given for 

discretization. The amount of drying heat can not exceed the drying heat capacity of the dryer: 
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It is assumed that some of the biomass gets lost or becomes unusable during the drying process. 

This is modeled by defining a certain percentage of the input volume as loss volume (Eq. 19). 

Furthermore, the input volume can not exceed the maximum input capacity (Eq. 20): 
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The operating costs of the dryer model are energy costs which are calculated in the supply 

models. Fuel costs due to oil use , external heat use  or the cost for the biomass 

burned in the dryer are accounted for in the oil supply, the external heat supply and the biomass 

supply model object function, respectively. An oil-fired dryer causes emission, and the emission 

costs are calculated as given in Eq. (21), provided that an emission penalty  is defined. 
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where HVoilFemEmit Dr
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The amount of biomass flowing to the dryer is the sum of the biomass volume dried and the 

(optional) biomass volume burned to supply drying heat. The biomass is fed to the dryer from 

the biomass node n connected to the dryer input point i. The input and output volume is linked 

by Eq. (19). The dried biomass is sent to the biomass node n connected to the dryer output  

point j: 
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The biomass moisture content at the dryer inlet (outlet) is set equal to the moisture content in the 

biomass node connected to the dryer inlet (outlet). This is done applying the general node 

structure and the set “Net2net”.  

 

No
npt

Dr
dpt MCthenBioNodesnifMCin   (25)

stepsTimetuctsProdpnetNetdnDryersd _,,2),(,    

 

No
npt

Dr
dpt MCthenBioNodesnifMCout   (26)

stepsTimetductsPropnetNetndDryersd _,,2),(,    

 

In addition to the heat obtained by burning biomass in the dryer, it is possible to reuse external 

waste heat or to produce drying heat from burning oil. The energy balance for the dryer heat 

input point h and the dryer fuel input point f is 
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Here, the common energy flow variables are used, since no information on biomass quality is 

required. The biomass chain thus interacts directly with the other energy carriers in the system. 

 

3.4 Storage model 
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Any biomass product can be sent to the storage model. In addition to the energy storage function, 

the model provides the opportunity to indicate passive drying effects as a function of the storage 

time. The passive drying function is not appropriate for an hourly time resolution, but it becomes 

applicable when the analysis is carried out on a weekly basis as described in Section 3. However, 

the passive drying functionality is defined per timestep and is not limited to a certain time 

resolution. To indicate internal fuel use due to biomass handling in the storage, a fuel input point 

is also defined.  

 

The drying rate  is user-defined and describes the reduction of biomass moisture (percentage) 

which can be achieved per timestep. In addition to the moisture reduction coefficient, the volume 

loss coefficient  and the storage cost coefficient  are also defined per timestep.  

St
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Similarly to the drying model, the moisture reduction coefficient is treated as an average input 

value. However, in contrast to the dryer model, the decreasing drying rate at lower moisture 

levels is not implemented. It is assumed that the moisture reduction rate decreases with 

increasing storage time , expressed in parameter  . The volume loss 

coefficient is dealt with in the same way: The volume losses are increasing with increasing 

storage time, expressed in the calculated parameter . In this way, volume and quality losses 

due to long term storage can be indicated. The storage cost is defined per timestep, too, but the 

cost is assumed as constant and summed up over the total storage time in the parameter . 

That means that no cost increase due to increasing storage time is implemented.  
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The binary variable  keeps track of how long (how many timesteps) the biomass at least has 

to be stored to reach the moisture level required at the storage output. It is not possible to take 

out biomass with a moisture level higher than that one required at the storage output point.   
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It is assumed that increasing storage time has an impact on both the moisture reduction 

coefficient and the volume loss coefficient . The storage costs are assumed to be stable, 

thus they do not change with increasing storage time and are constant in each timestep. The total 

storage costs are calculated by multiplying the cost coefficient by the number of timesteps spent 

between input and output of biomass to/from storage ( ) given by 

St
sp St

sp

St
sb

St
sb TinTout 

 

 St
sb

St
sb

St
s

St
sb

St
sa

St
sab

TinToutcelse

thenToutTinifC



 0
 (29)

. stepsTimeabStoragess _,    

 

Another assumption is that the longer the biomass is stored, the more volume gets lost (due to 

biomass handling). In addition to handling losses, other negative effects may appear (quality loss 

due to e.g. fungal decay). These effects are modeled by defining a volume loss parameter 

dependent on storage time:  
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An increasing time difference between biomass input and output of the same volume leads to 

growing volume losses. The equation implemented to express a decreasing drying rate is 

comparable to the volume loss calculation in Eq. (30). The mode of calculation of both factors is 

based on assumptions. It is assumed that less moisture is evaporated when the biomass already 

has been stored for a long time. This offers the possibility to display the decelerated drying effect 

at lower moisture levels in the model. Contrary to the volume loss calculation, the decreasing 

drying rate is still defined per timestep, given by  
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Table 3 gives a numerical example of the calculation of both the time-dependent parameters 

 and  and the constant cost parameter  in the storage model. St
spab St

spab St
sabC

 

The user defines whether passive drying effects occur during storage or not. This is done by 

implementing the binary parameter . If  is set to zero (no passive drying in storage), the 

storage time is not restricted. That means that the optimization algorithm chooses freely (only 

restricted by the storage cost in the objective function) for how many timesteps the biomass is 

stored and when it is sent to the next biomass model in the supply chain. However, if is set to 

one (passive drying effects in storage), time dependent restrictions have to be met. In this case, 

the storage time is restricted applying the binary variable . Considering the maximum and 

minimum values of moisture content given in the biomass node at the storage output or the 

demand moisture level in the end of the supply chain, a certain moisture range for the storage 

output moisture level is defined. Applying the binary variable  and the drying rate , it 

is calculated how many timesteps the biomass has to be stored to reach the output moisture level 

required: 
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 is set to one if the output moisture level can be reached during the time period 

, otherwise it is set to zero. It is assumed that some of the biomass gets lost or 

becomes unusable during the storage process. This is modeled by defining a certain percentage 

of the input volume as loss volume. The biomass volume flow to and from storage is restricted 

by  
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 where the volume loss factor  is defined in Eq. (30).  St
spab

 

The user-defined cost factor is multiplied by the biomass volume  handled in storage to 

determine the storage cost:   
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Storage keeping causes emissions only when an external fuel demand is defined, applying the 

parameter . In this case, the emission costs are added to the operating costs, provided that an 

emission penalty  is defined. Fuel costs are accounted for in the oil supply model 

objective.  
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The biomass is fed to the storage from the biomass node n connected to the storage input point i 

and sent from the storage to the biomass node n connected to the storage output point j 
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applying the biomass flow variable (Bio_net2net_flowijpt). The input and output volume is 

linked by Eq. (34) and (35). Similarly to the dryer model with Eq. (25) and (26), the biomass 

moisture content at the storage inlet (outlet) is set equal to the moisture content in the biomass 

node connected to the storage inlet (outlet):  
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The fuel needed by the storage to handle the biomass is fed from the network to the storage fuel 

input point f. 
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According to Eq. (28) in the dryer model, the common energy flow variables are used, since no 

information on biomass quality parameters is required. 

 

 

4 CASE STUDY 

 
To demonstrate the use of the new biomass models, especially the functionality of the active and 

passive drying processes in the Dryer and Storage model, a simple case study is carried out. The 

main intention is to point out the properties and functionality of the new models rather than to 

represent a detailed analysis of a real biomass supply chain with several alternatives. Therefore, 

no investment analysis is carried out and the emissions caused by the different processes applied 

in the case are not investigated. Only limited focus has been given to obtain realistic input data. 

 
4.1 Case overview 
 

The analysis is run over a time period of twelve weeks (twelve timesteps t). This period is 

appropriate to describe the active drying processes in the dryer and to allow for moisture 

decrease from one week to another in the storage model.  

 

It is assumed that the amount of biomass products available within a time period of twelve weeks 

varies. Thus, the biomass supply profile is not constant, but the biomass demand profile is 

assumed to be constant. Hence, storage keeping is required to be able to cover the demand in all 

weeks. The combination of moisture content demanded at different points in the case is set in 

such a way that both passive and active drying processes are possible.  

 

The case setup is shown in Fig. 3. Three different biomass products are handled in the case: 

spruce, chips and pellets with the reference values given in Table 4. On the demand site, there is 

a biomass load point demanding chips at a constant level of 100 m3/week (average 0.6 m3/h) and 

a heat load point with a demand of 20 MWh/week (average 119 kWh/h). To cover the demand, 
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two different biomass supplies with restricted capacities are available: a chip supply 

(45 USD/m3) and a spruce supply (35 USD/m3). As can be seen from Fig. 4, the chip supply 

volume is not sufficient to cover the chip demand. Thus, chips have to be processed from spruce 

in the chipper before they are sent to storage. This increases the price (spruce) due to the 

additional energy costs generated in the chipper.  

 

The moisture content required in the different supply, conversion and load points is indicated in 

the case setup in Fig. 3. Both the chips and the spruce are supplied with a moisture content of 

50 %wt. The moisture content demanded by the biomass load (chips) is 11 %wt while the 

moisture content of the biomass burned in the boiler can not exceed 10 %wt. Thus, drying is 

required. This can be carried out either active in the dryer or passive in the storages. In both 

storage models, the drying option is enabled and it is assumed that the moisture content of the 

biomass stored is reduced with 1 %wt during one week. The specific energy required in the dryer 

to evaporate one kg of water from biomass is set to 2 kWh/kg (average heat requirement for 

dryers [19]). 

 

After having passed the dryer, the main fraction of chips is sent to the biomass demand point. 

The remaining chips are sent to a second storage which is followed by a combination of a pellets 

production plant and a boiler to cover the heat demand. The drying heat required in the dryer is 

supplied both by an external heat source (restricted capacity) and by burning fuel. The option of 

burning biomass is not used. The heat required in the pellet production plant is covered by an 

external heat source, too. Both the pellet plant and the boiler demand electricity to run internal 

control systems and other supplementary devices. The amount of energy required to handle the 

biomass inside storage is neglected. Similarly, no additional operating costs are defined.  

 

Apart from the combustion model, the maximum capacity (volume and heat) in the conversion 

models is not restricted. In the combustion model, the maximum volume capacity is limited so 
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that the integrated additional oil firing option has to be applied. The volume losses are set to 1 % 

of the input volume in the storage and the dryer model, while losses of 5 % are assumed in the 

chipper and the pellet plant. There is no cost associated with the use of external heat. The fuel 

cost is set to 0.65 USD/liter, the electricity cost to 84 USD/MWh.  

 

4.2 System operation and results 
 
 
 The model chooses from the two supply sources available as shown in Fig. 5. The volume 

capacity of the spruce supply is utilized fully while the chips supply only is used to cover lacking 

chips production. With the cost combination defined in the model, it is more profitable to process 

chips from spruce and to pay for the fuel required in the process than to purchase chips directly 

from supply.  

 

Fig. 6 illustrates both the drying effect and the storage keeping in storage I. The moisture content 

is reduced from 50 %wt at the storage input to values in the range between 46.4 %wt and 

42.3 %wt. The lowest output moisture content is reached in week four. One has to keep in mind 

that the set Time_steps is defined as circular. Thus, week twelve is followed by week one in the 

model. A certain amount of biomass sent to storage in week seven for instance might be sent out 

in week four. This leads to a storage time of nine weeks associated with a fairly high moisture 

reduction. As can be seen from Fig. 6 (a) and (c) the storage is filled to a high level to take 

advantage of the increasing moisture reduction with longer storage time. 

 

In storage II, the moisture content of the chips is reduced from 11 %wt (dryer output) to 10 %wt 

(boiler input required). With the moisture reduction factor of 1 %wt assumed in storage II, the 

requested moisture level can be reached during one week. Thus, chips sent to storage in one 

week are sent out with a moisture level of 10 %wt in the following week. Therefore, in contrast 

to storage I, no remarkable storage effects are to be observed in storage II. 
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The objective value represents the operating cost for the whole system. Over a time horizon of 

twelve weeks the operating cost adds up to 68,733.51 USD. This value represents the fuel cost, 

the biomass cost and the electricity cost. 

 

5 DISCUSSION 
 
 
The objective of the present work is to develop a linear modeling framework as a part of the 

eTransport optimization tool that can be applied to most relevant components in a biomass 

supply chain, including sources, handling/processing, storage and end use. The moisture content 

has large influence on the efficiency of various biomass conversion processes like combustion 

and pyrolysis [20]. Thus, the main focus of this work has been to represent the relationship 

between moisture and energy content of different kinds of biomass and to handle long-term 

processes in the optimization like passive drying effects.  

 

With the modeling approach presented in this paper, a solid basis for the linear modeling of 

general biomass supply chains has been developed. Due to assumptions and simplifications made 

in the models as well as the fact that the biomass module is embedded in the already existing 

eTransport framework, there are some model limitations.  

 

The modeling of long-term effects in the biomass module is a new approach which is partly 

limited by the time structure in eTransport. Long-term effects in the biomass models can be a 

challenge when combined with shorter time resolution e.g. in heat and electricity loads. In the 

case study presented this has been solved by using weekly average values. 

 

Another time aspect in the model is the solving time. It varies with the complexity of the 

problem depending on system size, the range of products to be handled and the number of time 

steps chosen. One possibility to avoid prohibitive solving times is to lower the precision of the 

solver. This can be justified by the fact that uncertainty in the input dataset contributes 
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significantly more to the total uncertainty of the objective value than the gap between the best 

feasible solution and its lower bound. To illustrate this, the case presented has been solved with a 

range of allowed gaps in the CPLEX branch and bound algorithm. The resulting solving time 

and objective values are given in Table 5. As seen from the table the solution time is reduced by 

a factor of 100 by increasing the allowed gap from 5 % to 10 % of lower bound on the objective 

value. 

 

The economic part of the biomass model application and the emission handling are not discussed 

in detail since the calculation follows the main eTransport algorithms documented in [14]. 

Emissions can be accounted for both in biomass sources (due to harvesting, handling, etc. ), 

energy use in biomass processing models and from combustion. These emissions are then 

considered by the investment algorithm in the same way as for other combustion models. 

 

In the case study, only limited focus has been given to obtain realistic input data. The main 

objective with the case study is to demonstrate the functionality of the new methodology 

presented. The assembly of models shown in the case study represents one possibility out of an 

unlimited number of combinations. With the data chosen, the functionality available in the 

biomass models is demonstrated. A next step in the model development and improvement would 

be to validate the results with working conditions of a real system.     

 
6 SUMMARY 
 

Both the eTransport model and the biomass module discussed in this paper are still under 

development. The biomass models are partly an expansion of models from a master thesis [18]. 

The work presented in this paper has been carried out with financial support from the Research 

Council of Norway and StatoilHydro. Requirements from StatoilHydro have influenced the 

technologies to be modeled. In addition to the seven biomass models presented in Section 3, two 

more models have been developed: 
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Transport:  Truck transport. Discrete model, emissions due to fuel use. 

Pyrolysis:  Bio oil production in a fast pyrolysis process. Link to bio fuel applications. 

 

These two models are not discussed in detail, but they illustrate the many possibilities for further 

development of the biomass module. The transport model is a discrete model. The pyrolysis 

model can be seen as a link to bio fuel applications. This link shows the wide variety of biomass 

utilization. Other processing technologies as for instance bundling and grinding could be 

implemented in future. Moisture dependent efficiency of biomass combustion models can also be 

implemented within the new framework. The whole biomass sector itself is under development 

and new and more improved technologies frequently appear. With its flexible structure, the 

biomass module presented here is a solid basis for further development and improvement. 
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FIGURE CAPTIONS 
 
 
Fig. 1 Biomass models in eTransport – symbolic pictures 

Fig. 2 Relation between moisture content and EHV kWh/m3 

Fig. 3  Biomass case in eTransport 

Fig. 4 Maximum volume capacity spruce and chips supply 

Fig. 5 Total output volume spruce and chips supply 

Fig. 6 Storage I, (a) Input and output volume, (b) Moisture content, (c) Volume stored 
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Generated moisture pairs 

(0.60/0.60) (0.60/0.55) (0.60/0.50) (0.60/0.45) (0.60/0.40) 
 (0.55/0.55) (0.55/0.50) (0.55/0.45) (0.55/0.40) 
  (0.50/0.50) (0.50/0.45) (0.50/0.40) 
   (0.45/0.45) (0.45/0.40) 

    (0.40/0.40) 

Table 1 Example: Generation of moisture pairs for discretization in dryer model 
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Dr
dMCi  Dr

dMCo  
Dr
dpq , const

0.6 0.2 2.0 
Dr
dlMCI  Dr

dlMCO  Dr
dpq , mod 

0.6 0.5 2.0 

0.6 0.4 2.1 

0.6 0.3 2.2 

0.6 0.2 2.3 

0.5 0.4 2.2 

0.5 0.3 2.3 

0.5 0.2 2.4 

0.4 0.3 2.4 

0.4 0.2 2.5 

0.3 0.2 2.6 

Table 2 Example: calculation of specific drying energy in dryer model 
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 St
sp  St

sp  St
sc  

 0.05 0.01 200 

St
sa

St
sb TinTout  St

spab  St
spab  St

sabC  

1 0.0500 0.9900 200 

2 0.0488 0.9801 400 

3 0.0475 0.9703 600 

4 0.0464 0.9606 800 

5 0.0452 0.9510 1000 

Table 3 Example: calculation of constants in storage model  
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Parameter Unit Spruce Chips Pellets 

ref
pMC  %wt 0 18 8 

ref
pD  kg/m3 405 340 700 

ref
pHV  kWh/m3 2155 1000 3200 

Table 4 Reference values of case products



 

MIPGAP  
% of lower bound 
on objective value 

Solving time
seconds

Objective value 
USD

 

10 7.07 69,123.7003 

9 7.83 69,123.7003 

8 14.12 69,028.6076 

7 37.86 68,910.7083 

6 159.06 68,733.5117 

5 747.70 68,733.5117 

4 > 1 hour  

Table 5: Solving time and objective value for a range of gap tolerances in the solver 

48 



 

49 

 
 

Biomass Node Demand

Storage Dryer

Supply

Combustion Pellets Plant

Chipper

Electricity

Biomass

Fuel

Heat

Bio Oil

Biomass NodeBiomass Node DemandDemand

StorageStorage DryerDryer

SupplySupply

CombustionCombustion Pellets PlantPellets Plant

ChipperChipper

Electricity

Biomass

Fuel

Heat

Bio Oil

Electricity

Biomass

Fuel

Heat

Bio Oil

Biomass

Fuel

Heat

Bio Oil

 

Fig. 1 Biomass models in eTransport – symbolic pictures 



 

 

 

Fig. 2 Relation between moisture content and EHV kWh/m3  
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Fig. 3  Biomass case in eTransport 
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Fig. 4 Maximum volume capacity spruce and chips supply 
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Fig. 5 Total output volume spruce and chips supply 
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Fig. 6 Storage I, (a) Input and output volume, (b) Moisture content, (c) Volume stored 
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