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Abstract. In this paper we present a framework for robot localization codenamed Vind. The framework allows to 
configure a multi-sensor setup by describing the configuration and entering the sensor's parameters in a series of text-
based and human-readable configuration files. The framework provides, among others, distributed communication 
capabilities and a state estimation implementation based on the Extended Kalman Filter (EKF). Vind can also be 
extended to include other state estimation implementations based on clearly defined interfaces and message 
structures. The aim of the framework is to foster reusability, and provide developers with tools to minimize the effort 
required to deploy a solution for the self-localization problem. In case of researchers working on the implementation 
of new state estimate algorithms, it also supports them by providing high level tools for the system integration 
aspects.  

1 Introduction  
The self-localization problem is common in any 

robotic application that requires the robot to navigate 
through an environment. In order to correctly plan a 
trajectory and execute the sequence of motions that will 
take the robot from the current position to the target, the 
robot must continuously be able to estimate its own 
position in respect to some known external reference 
frame [1]. 

It is very common in robotic applications that one 
single sensor cannot solve in a satisfactory way the self-
localization problem. There are several reasons: the lack 
of accuracy of the sensor, different coverage areas 
provided by different sensors, various properties of the 
sensors that make them unusable under different 
circumstances or environment types, are some of them. 
The techniques and theory to combine data originating 
from different sensor sources is refer to as sensor fusion 
[2] or multi-sensor data fusion. According to [3], the 
sensors used for solving the robot self-localization 
problem can be classified in four different groups: 
odometry and dead-reckoning methods, active beacon 
systems, landmark navigation and map-based positioning 
(also known as map matching). 

In this paper we present a framework for solving the 
self-localization problem in mobile robots. The 
framework is motivated by our own needs, in which the 
reuse of code in case of a new robot application or a new 
sensor configuration was a significant challenge, and in 
most cases led to rewriting major portions of the code. 
Thus, the framework provides the following set of 
functionalities, aimed at providing a common structure 
that can be exploited by various configurations: 

- A communication middleware for a distributed system, 
that allows to transparently distribute the sensors and 
filter implementations among diverse computing devices. 
- Standardized interfaces and message definitions for 
seamless integration of additional sensors and filters to 
the framework. 
- Sensor fusion algorithms based on recursive Bayesian 
estimation, including Extended Kalman Filter 
implementations that supports the integration an arbitrary 
number of sensors. 
- A calibration procedure that minimizes the necessity of 
manual work. 
- Interoperability with external platforms such as Matlab 
and ROS [4]. 
- Tools that support debugging problems and configuring 
the system setup. 

The remainder of this paper is organized as follows: 
Section 2 introduces some alternatives to the Vind 
framework presented in this paper. Section 3 contains a 
general description of the Vind framework. Section 4 
describes the implementation decisions made to integrate 
filters based on Bayesian filtering in the framework. 
Section 5 describes the autocalibration module 
developed. In Section 6 we use real sensor data to 
demonstrate the performance of the autocalibration 
procedure and the Vind framework. Conclusions are 
given in Section 7. 

2 Background and motivation 
The main motivation for a self-localization 

framework is to manage the system's complexity by 
decoupling the state estimation implementation from 
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other system integration related problems, such as 
interfacing with sensors and communication.  

There are different robotics middleware alternatives 
available [5] (ROS, Orocos, Miro, Orca, YARP), and 
many of them provide their own implementation for robot 
self-localization. However those middlewares are generic 
in the sense that they support different aspects of a 
robotic application, from perception, to low level control 
and even cognition. The Vind framework in contrast is 
designed explicitly as a framework for sensor fusion for 
robot localization. This allows to optimize the system for 
such application, reducing for example the footprint and 
dependencies, and setting the requirements for the 
communication. It can be assumed that ROS is the most 
relevant system compared to Vind, and in fact the 
robot_localization package [6] pursues very similar 
objectives. However the communication layer in ROS has 
several limitations imposed by the original design. This 
has been recognized by the ROS community, and is 
reflected on the fact of the big re-design effort that is 
actually taking place, and that will result with a renewed 
version of ROS which is codenamed ROS 2.0 or 
ROS/DDS. An experimental analysis of some of the ROS 
limitations can be found in [7]. 

3 The framework architecture 
The design of Vind is guided by four main 

requirements: modularity, scalability, reconfigurability 
and performance. 
- Modularity, by being able to transparently divide the 
different components of the framework among a 
distributed system, and encapsulating this functionality 
over clearly defined message definitions and interfaces. 
- Scalability, as the system can be extended to include 
support for new sensors as well as implementation of new 
state estimate algorithms, supporting inheritance within 
Bayesian filtering framework 
- Reconfigurability, as the framework makes it easy to 
adapt the system to different types of robots and different 
kinds of environments without re-engineering an entire 
solution. Adaptation to changes in the sensor 
configuration is dealt with by modifying parameters in a 
human-readable text configuration file. 
- Performance, minimizing as much as possible the 
traffic generated by the framework and the number of 
dependencies where the framework is able to run. 

The communication implementation is built in three 
different layers. In the messaging layer the ZeroMQ (also 
spelled as ØMQ or ZMQ) library is used. The ZeroMQ 
library supports different architectures regarding common 
patterns found in middlewares or messaging libraries 
(broker, brokerless, distributed broker, ...). ZeroMQ does 
not impose any of these models, and allows for 
implementing any of them according to the use-case 
requirements. In the case of Vind, it is required to 
minimize the traffic and latency of the messages. This led 
to a brokerless implementation, that is communication 
between the nodes or components of the framework is 
established in a peer-to-peer fashion. In order to avoid 
hardcoding where each component runs, which also 

worsens the manageability of complex systems, there is a 
centralized directory service that is used to resolve where 
each of the components is running. 

The data layer is implemented through Google 
protocol buffers. This is an automated mechanism for 
serializing structured data, with the focus on performance 
and simplicity. As evaluated by [8], it offers better 
performance both in the speed for 
serialization/deserialization, and also generates smaller 
messages than other commonly used alternatives like 
JSON or XML. The specification of each message sent 
throughout the software framework is specified in simple 
text “.proto” files following a specific proto language. 

We then generate data access classes by running a 
compiler over the message definitions. The resulting 
access classes provide simple accessors for each field 
(like name() and set_name()), as well as methods to 
serialize/parse the whole structure to/from raw bytes. 

Even if the use of protocol buffers allow for easy 
creation of new data types, Vind defines a limited subset 
of possible messages. This limited number of messages 
favours interoperability, by making it easier to seamlessly 
integrate new sensors into the framework as far as the 
interfaces are respected. Currently Vind specifies six 
different types of messages, three for the 2D case, and the 
corresponding three messages extended for robots 
operating in 3D environments: 
- Pose sensors, or subsets of pose, e.g: GPS, camera-
based positioning, map matching, radio frequency or 
ultrasound beacon-positioning systems.  
- Twist sensors, or subsets of twist e.g: Doppler radar, 
optical flow, odometry or rate gyro.  
- Acceleration sensors, e.g. accelerometer or angular 
acceleration sensors.  

It is worth noting that each message can optionally 
include a mask field in the message, which allows for 
per-sensor control of which message fields are used 
within the state estimate, instead of just reporting high 
values on the covariance matrix so that the measurement 
is ignored. 

On top of these two layers, there is an additional 
middleware interface layer. This way, the complexity and 
specifics of the lower layers is hidden via a unified API. 
This makes it also possible to create an independence 
from the communication mechanisms, allowing in the 
future to change the messaging or data layers with 
minimum impact for the user. 

The configuration of a self-localization solution is 
based on text files using the YAML format. Using this 
simple format, a self-localization solution is specified in 
two parts: first the sensor topology is described, and then 
the parameters for each sensor are detailed. Any change 
in the sensor configuration can be reflected by modifying 
the configuration files. 

4 The filter 
The implementation of the filter is built around the 

recursive Bayesian solution, see for instance Chapter 6.2 
in [9] and Chapter 2.4 in [10]. The filter can be illustrated 
through a time update (transformation and diffusion) and 
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a measurement update (estimation and fusion), see Figure 
1. For every time step the a priori state belief distribution 
is calculated based on the previous posteriori state belief 
distribution and the control distribution, as shown in: 

 
 
      (1) 
 

 
In the measurement update step the posteriori state 

distribution is calculated by the priori state distribution 
and the measurement distribution: 
 

 (2) 
 
 
The traditional Kalman Filter (KF) and non-linear 

variants such as the Extended Kalman Filter (EKF) and 
the Unscented Kalman Filter (UKF), can be thought of as 
special cases of the Bayesian recursive filter, each 
containing a time update and a measurement update. A 
bank of filters are therefore implemented inheriting the 
same structure, but with specific implementations of the 
time and measurement updates. 

 

 
Figure 1. Illustration of Bayes recursive filter 

 
The implementation has focused on fast and easy 

integration of new sensors, rather than high performance. 
The framework supports sensor messages in the 
following categories pose, twist and acceleration. Sensors 
creating other type of messages can be included by 
additional filters estimating “measurements” in one of the 
supported categories. 

One of the choices made is that the readings from 
sensors affecting the integrators furthest down the 
integrator chain for translational and rotational motion, 
respectively, are chosen as inputs to the filter, and thus 
followed by the Bayesian time update step. Other 
readings are chosen as the model system output and 
followed by the Bayesian measurement update step. In a 
navigation system incorporating an Inertial Measurement 
Unit (IMU), the readings from the gyroscopes and the 
accelerometers are chosen as inputs. The rationale behind 
this approach is that the mean of the state estimate is 
affected directly by these measurements, avoiding delay 
in information since one would have to wait until the next 
time update for the measurement to take effect. 

Asynchronous measurements are handled by: 
- storing the time-stamp given from the measure when the 
prediction (time update) is required, 

- calculating the prediction by previous input measure-
ments, 
- and, storing the new measurements for the next predict-
tion step. 

An example of a localization system implemented in 
Vind is given in Figure 2. Here we have chosen to use a 
Mahony observer [11] to calculate the orientation of the 
vehicle based on measurements from the IMU. 

 

 
Figure 2. Illustration of a localization system 

5 Autocalibration 
On robotic platforms with multiple sensors, a 

necessary integration task is the sensor-to-sensor 
calibration. For example, on a drone with an IMU and a 
GPS, one has to identify the transformation between the 
IMU-frame and the GPS-frame. This calibration is 
necessary for successful sensor fusion. Moreover, a more 
accurate calibration results in a more accurate sensor 
fusion. The purpose of the autocalibration module is 
twofold: 
- To remove the need for time consuming and tedious 
manual sensor-to-sensor calibration.  
- To improve the accuracy of sensor-to-sensor calibration. 

The calibration is done by analyzing sensor signals 
recordings taken from experiments, and inferring the 
spatial and temporal relationships between them using 
optimization.  

Classical intrasensor calibration methods  use Kalman 
filters to both estimate the state and the calibration 
constants on-line. They achieve this by including 
calibration constants in the state, making a linear 
dynamical model into a non-linear one using either EKF 
[12] or UKF [13]. 

The Vind autocalibration module is an extension 
based on a recent method proposed by [14]. The offline 
batch processing calibration method proposed by [14] has 
the following desirable features: 
- A maximum likelihood calibration estimate is produced 
assuming white noise. 
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- Time-delay calibration is done in the same framework 
as spatial calibration. 
- The size of the optimization problem scales well with 
data amount. 
- The method handles biases, non-constant sampling 
rates. 

The method tries to fit one function to all the sensor 
data simultaneously. This function is an analytic B-spline 
which represents the robot pose trajectory as a function of 
time, see [15]. B-spline functions can be differentiated 
and time shifted analytically, which makes the objective 
functions easy to construct. The Levenberg-Marquardt 
algorithm [16] is used to solve the resulting optimization 
problem. 

The Vind autocalibration extends the implementation 
in [14], which only performed camera-to-IMU 
calibration, by supporting multiple sensors in a very 
generic framework. Sensors providing readings in any of 
the modalities defined by Vind (pose, twist and 
acceleration) are supported by the autocalibration 
procedure. 

5.1 Contributions in autocalibration 

Some contributions were made to the method 
described in [14] to generalize the method. This section 
contains a list of the modifications which were made, and 
the reasoning behind making them. 

5.1.1 Objective weighting 

To make each sensor contribute equally to the 
optimization objective, each sensor objective was 
weighted by the inverse of the number of samples for that 
sensor, i.e. 

 
(3) 

 

Here g is the objective function, xmi is the i'th 
measurement for a sensor taken at time ti, θ is the vector 
of calibration constants, N is the number of samples, and f 
is the function transforming the B-spline parametrized by 
xB-spline into the same frame as the measurement data. This 
choice of weighting makes the contribution of each 
sensor to the overall objective independent of the number 
of samples for that vector. Similarly, the continuous bias 
objective was weighted by (t1 –t0)-1 for each bias, which 
is the inverse of the duration of the experiment in 
seconds. This makes the bias objective independent of 
how long the experiment took to perform. 

5.1.2 Validation 

In [14] the entire dataset was used in the optimization 
problem. The Vind autocalibration splits the dataset into 
an identification and a validation dataset as is typical in 
system identification, [17]. One is used during 
optimization, the other is used to check the result after the 
optimization has terminated. This method is used to avoid 

over-parametrization, e.g. by increasing the order of the 
B-spline too much.  Note that this split cannot be done by 
e.g. splitting the dataset in half at the middle, since the B-
spline trajectory output from the optimization only exists 
for the time interval covered by the identification dataset. 
Instead, cross-validation is used to overcome this issue, 
[18]. Figure 3 shows calibration results with and without 
cross-validation for simulated data. The worse results for 
the non-validation optimization can be attributed to 
overestimation. The plot shows a divergence between no 
validation and cross-validation optimization at 350 model 
parameters. The (blue) optimization result is decreasing, 
whereas the quality of the calibration is getting worse. 
This behaviour indicates that splines with more 
parameters than 350 variables in this particular dataset 
are used to fit noise. 

 
Figure 3. The value of the objective function and the actual 
calibration error on simulated data, using both cross-validation 
and no validation. 

6 Experiments 
We conducted an experiment that allows for different 

sensor configurations. For the experiment a Pioneer P3-
DX robot was used. The robot was equipped with two 
IMU sensors, a XSens MTi-30 and an ArduIMU v3. In 
order to provide position data, two sensors were used. 
First an Hexamite Hx19r was used, which relies on 
ultrasound for calculating a position (with no orientation). 
The emitter is fixed to the mobile robot, and four 
receivers are mounted in the lab's ceiling. The emitter 
calculates the time-of-flight for the signal from the 
receivers, and then the position is calculated by 
trilateration. The other sensor providing position is an 
OptiTrack motion capture system. This is a high 
precision optical system that uses infrared markers fixed 
to the mobile robot, and a series of cameras that 
triangulate the markers' positions to calculate a full pose. 

6.1 Calibration 
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Several experiments were conducted to test the 
autocalibration module. The sensors mentioned in the 
previous section were mounted on the Pioneer mobile 
robot. This was done to show that Vind handles rapid 
deployment and redeployment of sensors. In Figure 4, the 
raw Hexamite and OptiTrack data is shown, alongside the 
calibrated data. The IMU-calibration is not shown. The 
experiment duration was approximately 30 seconds, and 
the optimization routine terminated in approximately 2 
minutes. 

 
Figure 4. Calibration of the Hexamite data. 

6.2 Filtering 

In order to illustrate the framework ease of 
reconfiguration, a comparison of filter solution with 
different sensor combinations is considered. The 
measurements from the OptiTrack motion capture system 
is treated as the ground truth and compared with the other 
filter solutions through a Mean Squared Error score, as 
shown in Figure 5. In the different estimation solution the 
OptiTrackNoise sensor data is constructed by the OptiTrack 
position measurements with the added noise σ = 0.5m. 
The system model and the sensor expected noises used in 
the filter are given in Table 1.  

Table 1. Filter tuning parameters 

Sensor variance Measure type 

ROptiTrackNoise = diag([1,1,1]) x and y position, 
heading angle 

RHexamite = diag([1,1]) * 10-2 x and y position 

QXsens = 
diag([1,1,1,1,1,1,1,1]) * 10-2 

process model: [ẋ, ẏ, ẍ, 
ÿ, ψ̇, ḃaccx, ḃaccy, ḃr]  

QArduIMU = diag([[1, 1]*10-2, 
[1, 1], 1, [1, 1], 1]) * 10-2 

process model: [ẋ, ẏ, ẍ, 
ÿ, ψ̇, ḃaccx, ḃaccy, ḃr] 

 

Any sensor combination which results in an 
observable estimation system may be considered. Sensor 

fallouts are handled directly in the framework, but as long 
duration without pose information will render the system 
locally in time unobservable, the solution will drift and 
the system will have poor but known estimation 
performance.    

 
Figure 5. Position estimates given different sensor-sensor 
combination in the filtering framework. 

7 Conclusions and future work 
In this paper we have presented the Vind framework 

for robot localization. The framework provides 
distributed communication capabilities, a state estimation 
implementation based on EKF, an autocalibration module 
and the ability for easy reconfiguring a localization 
solution based on plain text configuration files. The 
framework can also be easily extended to include 
additional sensors and additional sensor fusion algorithm 
implementations. We have demonstrated the use of the 
framework in a typical scenario for a mobile robot. 

Future plans for Vind include implementing and 
integrating further sensor fusion algorithms. Moreover 
we are considering tighter integration algorithms, where 
lower level sensor data is fused and coupled together with 
incomplete data originated by other sensors. The 
objective would be then to use sensor data that could not 
be used in a standard framework, for instance, when a 
triangulation-based sensor is not able to triangulate 
because it is not receiving the signal for a sufficient 
number of beacons, but the data from those beacons 
could be combined with other sensors to improve the 
results. 
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