
a Corresponding author: jon.azpiazu@sintef.no

Vind: a robot self-localization framework

Jon Azpiazu1a, Magnus Bjerkeng1, Johannes Tjønnås1 and Esten Ingar Grøtli1
1 Department of Applied Cybernetics, SINTEF ICT, Trondheim, Norway

Abstract. In this paper we present a framework for robot localization codenamed Vind. The framework allows to
configure a multi-sensor setup by describing the configuration and entering the sensor's parameters in a series of text-
based and human-readable configuration files. The framework provides, among others, distributed communication
capabilities and a state estimation implementation based on the Extended Kalman Filter (EKF). Vind can also be
extended to include other state estimation implementations based on clearly defined interfaces and message
structures. The aim of the framework is to foster reusability, and provide developers with tools to minimize the effort
required to deploy a solution for the self-localization problem. In case of researchers working on the implementation
of new state estimate algorithms, it also supports them by providing high level tools for the system integration
aspects.

1 Introduction
The self-localization problem is common in any

robotic application that requires the robot to navigate
through an environment. In order to correctly plan a
trajectory and execute the sequence of motions that will
take the robot from the current position to the target, the
robot must continuously be able to estimate its own
position in respect to some known external reference
frame [1].

It is very common in robotic applications that one
single sensor cannot solve in a satisfactory way the self-
localization problem. There are several reasons: the lack
of accuracy of the sensor, different coverage areas
provided by different sensors, various properties of the
sensors that make them unusable under different
circumstances or environment types, are some of them.
The techniques and theory to combine data originating
from different sensor sources is refer to as sensor fusion
[2] or multi-sensor data fusion. According to [3], the
sensors used for solving the robot self-localization
problem can be classified in four different groups:
odometry and dead-reckoning methods, active beacon
systems, landmark navigation and map-based positioning
(also known as map matching).

In this paper we present a framework for solving the
self-localization problem in mobile robots. The
framework is motivated by our own needs, in which the
reuse of code in case of a new robot application or a new
sensor configuration was a significant challenge, and in
most cases led to rewriting major portions of the code.
Thus, the framework provides the following set of
functionalities, aimed at providing a common structure
that can be exploited by various configurations:

- A communication middleware for a distributed system,
that allows to transparently distribute the sensors and
filter implementations among diverse computing devices.
- Standardized interfaces and message definitions for
seamless integration of additional sensors and filters to
the framework.
- Sensor fusion algorithms based on recursive Bayesian
estimation, including Extended Kalman Filter
implementations that supports the integration an arbitrary
number of sensors.
- A calibration procedure that minimizes the necessity of
manual work.
- Interoperability with external platforms such as Matlab
and ROS [4].
- Tools that support debugging problems and configuring
the system setup.

The remainder of this paper is organized as follows:
Section 2 introduces some alternatives to the Vind
framework presented in this paper. Section 3 contains a
general description of the Vind framework. Section 4
describes the implementation decisions made to integrate
filters based on Bayesian filtering in the framework.
Section 5 describes the autocalibration module
developed. In Section 6 we use real sensor data to
demonstrate the performance of the autocalibration
procedure and the Vind framework. Conclusions are
given in Section 7.

2 Background and motivation
The main motivation for a self-localization

framework is to manage the system's complexity by
decoupling the state estimation implementation from

MATEC Web of Conferences

other system integration related problems, such as
interfacing with sensors and communication.

There are different robotics middleware alternatives
available [5] (ROS, Orocos, Miro, Orca, YARP), and
many of them provide their own implementation for robot
self-localization. However those middlewares are generic
in the sense that they support different aspects of a
robotic application, from perception, to low level control
and even cognition. The Vind framework in contrast is
designed explicitly as a framework for sensor fusion for
robot localization. This allows to optimize the system for
such application, reducing for example the footprint and
dependencies, and setting the requirements for the
communication. It can be assumed that ROS is the most
relevant system compared to Vind, and in fact the
robot_localization package [6] pursues very similar
objectives. However the communication layer in ROS has
several limitations imposed by the original design. This
has been recognized by the ROS community, and is
reflected on the fact of the big re-design effort that is
actually taking place, and that will result with a renewed
version of ROS which is codenamed ROS 2.0 or
ROS/DDS. An experimental analysis of some of the ROS
limitations can be found in [7].

3 The framework architecture
The design of Vind is guided by four main

requirements: modularity, scalability, reconfigurability
and performance.
- Modularity, by being able to transparently divide the
different components of the framework among a
distributed system, and encapsulating this functionality
over clearly defined message definitions and interfaces.
- Scalability, as the system can be extended to include
support for new sensors as well as implementation of new
state estimate algorithms, supporting inheritance within
Bayesian filtering framework
- Reconfigurability, as the framework makes it easy to
adapt the system to different types of robots and different
kinds of environments without re-engineering an entire
solution. Adaptation to changes in the sensor
configuration is dealt with by modifying parameters in a
human-readable text configuration file.
- Performance, minimizing as much as possible the
traffic generated by the framework and the number of
dependencies where the framework is able to run.

The communication implementation is built in three
different layers. In the messaging layer the ZeroMQ (also
spelled as ØMQ or ZMQ) library is used. The ZeroMQ
library supports different architectures regarding common
patterns found in middlewares or messaging libraries
(broker, brokerless, distributed broker, ...). ZeroMQ does
not impose any of these models, and allows for
implementing any of them according to the use-case
requirements. In the case of Vind, it is required to
minimize the traffic and latency of the messages. This led
to a brokerless implementation, that is communication
between the nodes or components of the framework is
established in a peer-to-peer fashion. In order to avoid
hardcoding where each component runs, which also

worsens the manageability of complex systems, there is a
centralized directory service that is used to resolve where
each of the components is running.

The data layer is implemented through Google
protocol buffers. This is an automated mechanism for
serializing structured data, with the focus on performance
and simplicity. As evaluated by [8], it offers better
performance both in the speed for
serialization/deserialization, and also generates smaller
messages than other commonly used alternatives like
JSON or XML. The specification of each message sent
throughout the software framework is specified in simple
text “.proto” files following a specific proto language.

We then generate data access classes by running a
compiler over the message definitions. The resulting
access classes provide simple accessors for each field
(like name() and set_name()), as well as methods to
serialize/parse the whole structure to/from raw bytes.

Even if the use of protocol buffers allow for easy
creation of new data types, Vind defines a limited subset
of possible messages. This limited number of messages
favours interoperability, by making it easier to seamlessly
integrate new sensors into the framework as far as the
interfaces are respected. Currently Vind specifies six
different types of messages, three for the 2D case, and the
corresponding three messages extended for robots
operating in 3D environments:
- Pose sensors, or subsets of pose, e.g: GPS, camera-
based positioning, map matching, radio frequency or
ultrasound beacon-positioning systems.
- Twist sensors, or subsets of twist e.g: Doppler radar,
optical flow, odometry or rate gyro.
- Acceleration sensors, e.g. accelerometer or angular
acceleration sensors.

It is worth noting that each message can optionally
include a mask field in the message, which allows for
per-sensor control of which message fields are used
within the state estimate, instead of just reporting high
values on the covariance matrix so that the measurement
is ignored.

On top of these two layers, there is an additional
middleware interface layer. This way, the complexity and
specifics of the lower layers is hidden via a unified API.
This makes it also possible to create an independence
from the communication mechanisms, allowing in the
future to change the messaging or data layers with
minimum impact for the user.

The configuration of a self-localization solution is
based on text files using the YAML format. Using this
simple format, a self-localization solution is specified in
two parts: first the sensor topology is described, and then
the parameters for each sensor are detailed. Any change
in the sensor configuration can be reflected by modifying
the configuration files.

4 The filter
The implementation of the filter is built around the

recursive Bayesian solution, see for instance Chapter 6.2
in [9] and Chapter 2.4 in [10]. The filter can be illustrated
through a time update (transformation and diffusion) and

ICCMA 2016

a measurement update (estimation and fusion), see Figure
1. For every time step the a priori state belief distribution
is calculated based on the previous posteriori state belief
distribution and the control distribution, as shown in:

 (1)

In the measurement update step the posteriori state

distribution is calculated by the priori state distribution
and the measurement distribution:

 (2)

The traditional Kalman Filter (KF) and non-linear

variants such as the Extended Kalman Filter (EKF) and
the Unscented Kalman Filter (UKF), can be thought of as
special cases of the Bayesian recursive filter, each
containing a time update and a measurement update. A
bank of filters are therefore implemented inheriting the
same structure, but with specific implementations of the
time and measurement updates.

Figure 1. Illustration of Bayes recursive filter

The implementation has focused on fast and easy

integration of new sensors, rather than high performance.
The framework supports sensor messages in the
following categories pose, twist and acceleration. Sensors
creating other type of messages can be included by
additional filters estimating “measurements” in one of the
supported categories.

One of the choices made is that the readings from
sensors affecting the integrators furthest down the
integrator chain for translational and rotational motion,
respectively, are chosen as inputs to the filter, and thus
followed by the Bayesian time update step. Other
readings are chosen as the model system output and
followed by the Bayesian measurement update step. In a
navigation system incorporating an Inertial Measurement
Unit (IMU), the readings from the gyroscopes and the
accelerometers are chosen as inputs. The rationale behind
this approach is that the mean of the state estimate is
affected directly by these measurements, avoiding delay
in information since one would have to wait until the next
time update for the measurement to take effect.

Asynchronous measurements are handled by:
- storing the time-stamp given from the measure when the
prediction (time update) is required,

- calculating the prediction by previous input measure-
ments,
- and, storing the new measurements for the next predict-
tion step.

An example of a localization system implemented in
Vind is given in Figure 2. Here we have chosen to use a
Mahony observer [11] to calculate the orientation of the
vehicle based on measurements from the IMU.

Figure 2. Illustration of a localization system

5 Autocalibration
On robotic platforms with multiple sensors, a

necessary integration task is the sensor-to-sensor
calibration. For example, on a drone with an IMU and a
GPS, one has to identify the transformation between the
IMU-frame and the GPS-frame. This calibration is
necessary for successful sensor fusion. Moreover, a more
accurate calibration results in a more accurate sensor
fusion. The purpose of the autocalibration module is
twofold:
- To remove the need for time consuming and tedious
manual sensor-to-sensor calibration.
- To improve the accuracy of sensor-to-sensor calibration.

The calibration is done by analyzing sensor signals
recordings taken from experiments, and inferring the
spatial and temporal relationships between them using
optimization.

Classical intrasensor calibration methods use Kalman
filters to both estimate the state and the calibration
constants on-line. They achieve this by including
calibration constants in the state, making a linear
dynamical model into a non-linear one using either EKF
[12] or UKF [13].

The Vind autocalibration module is an extension
based on a recent method proposed by [14]. The offline
batch processing calibration method proposed by [14] has
the following desirable features:
- A maximum likelihood calibration estimate is produced
assuming white noise.

MATEC Web of Conferences

- Time-delay calibration is done in the same framework
as spatial calibration.
- The size of the optimization problem scales well with
data amount.
- The method handles biases, non-constant sampling
rates.

The method tries to fit one function to all the sensor
data simultaneously. This function is an analytic B-spline
which represents the robot pose trajectory as a function of
time, see [15]. B-spline functions can be differentiated
and time shifted analytically, which makes the objective
functions easy to construct. The Levenberg-Marquardt
algorithm [16] is used to solve the resulting optimization
problem.

The Vind autocalibration extends the implementation
in [14], which only performed camera-to-IMU
calibration, by supporting multiple sensors in a very
generic framework. Sensors providing readings in any of
the modalities defined by Vind (pose, twist and
acceleration) are supported by the autocalibration
procedure.

5.1 Contributions in autocalibration

Some contributions were made to the method
described in [14] to generalize the method. This section
contains a list of the modifications which were made, and
the reasoning behind making them.

5.1.1 Objective weighting

To make each sensor contribute equally to the
optimization objective, each sensor objective was
weighted by the inverse of the number of samples for that
sensor, i.e.

(3)

Here g is the objective function, xmi is the i'th
measurement for a sensor taken at time ti, θ is the vector
of calibration constants, N is the number of samples, and f
is the function transforming the B-spline parametrized by
xB-spline into the same frame as the measurement data. This
choice of weighting makes the contribution of each
sensor to the overall objective independent of the number
of samples for that vector. Similarly, the continuous bias
objective was weighted by (t1 –t0)-1 for each bias, which
is the inverse of the duration of the experiment in
seconds. This makes the bias objective independent of
how long the experiment took to perform.

5.1.2 Validation

In [14] the entire dataset was used in the optimization
problem. The Vind autocalibration splits the dataset into
an identification and a validation dataset as is typical in
system identification, [17]. One is used during
optimization, the other is used to check the result after the
optimization has terminated. This method is used to avoid

over-parametrization, e.g. by increasing the order of the
B-spline too much. Note that this split cannot be done by
e.g. splitting the dataset in half at the middle, since the B-
spline trajectory output from the optimization only exists
for the time interval covered by the identification dataset.
Instead, cross-validation is used to overcome this issue,
[18]. Figure 3 shows calibration results with and without
cross-validation for simulated data. The worse results for
the non-validation optimization can be attributed to
overestimation. The plot shows a divergence between no
validation and cross-validation optimization at 350 model
parameters. The (blue) optimization result is decreasing,
whereas the quality of the calibration is getting worse.
This behaviour indicates that splines with more
parameters than 350 variables in this particular dataset
are used to fit noise.

Figure 3. The value of the objective function and the actual
calibration error on simulated data, using both cross-validation
and no validation.

6 Experiments
We conducted an experiment that allows for different

sensor configurations. For the experiment a Pioneer P3-
DX robot was used. The robot was equipped with two
IMU sensors, a XSens MTi-30 and an ArduIMU v3. In
order to provide position data, two sensors were used.
First an Hexamite Hx19r was used, which relies on
ultrasound for calculating a position (with no orientation).
The emitter is fixed to the mobile robot, and four
receivers are mounted in the lab's ceiling. The emitter
calculates the time-of-flight for the signal from the
receivers, and then the position is calculated by
trilateration. The other sensor providing position is an
OptiTrack motion capture system. This is a high
precision optical system that uses infrared markers fixed
to the mobile robot, and a series of cameras that
triangulate the markers' positions to calculate a full pose.

6.1 Calibration

ICCMA 2016

Several experiments were conducted to test the
autocalibration module. The sensors mentioned in the
previous section were mounted on the Pioneer mobile
robot. This was done to show that Vind handles rapid
deployment and redeployment of sensors. In Figure 4, the
raw Hexamite and OptiTrack data is shown, alongside the
calibrated data. The IMU-calibration is not shown. The
experiment duration was approximately 30 seconds, and
the optimization routine terminated in approximately 2
minutes.

Figure 4. Calibration of the Hexamite data.

6.2 Filtering

In order to illustrate the framework ease of
reconfiguration, a comparison of filter solution with
different sensor combinations is considered. The
measurements from the OptiTrack motion capture system
is treated as the ground truth and compared with the other
filter solutions through a Mean Squared Error score, as
shown in Figure 5. In the different estimation solution the
OptiTrackNoise sensor data is constructed by the OptiTrack
position measurements with the added noise σ = 0.5m.
The system model and the sensor expected noises used in
the filter are given in Table 1.

Table 1. Filter tuning parameters

Sensor variance Measure type

ROptiTrackNoise = diag([1,1,1]) x and y position,
heading angle

RHexamite = diag([1,1]) * 10-2 x and y position

QXsens =
diag([1,1,1,1,1,1,1,1]) * 10-2

process model: [ẋ, ẏ, ẍ,
ÿ, ψ̇, ḃaccx, ḃaccy, ḃr]

QArduIMU = diag([[1, 1]*10-2,
[1, 1], 1, [1, 1], 1]) * 10-2

process model: [ẋ, ẏ, ẍ,
ÿ, ψ̇, ḃaccx, ḃaccy, ḃr]

Any sensor combination which results in an
observable estimation system may be considered. Sensor

fallouts are handled directly in the framework, but as long
duration without pose information will render the system
locally in time unobservable, the solution will drift and
the system will have poor but known estimation
performance.

Figure 5. Position estimates given different sensor-sensor
combination in the filtering framework.

7 Conclusions and future work
In this paper we have presented the Vind framework

for robot localization. The framework provides
distributed communication capabilities, a state estimation
implementation based on EKF, an autocalibration module
and the ability for easy reconfiguring a localization
solution based on plain text configuration files. The
framework can also be easily extended to include
additional sensors and additional sensor fusion algorithm
implementations. We have demonstrated the use of the
framework in a typical scenario for a mobile robot.

Future plans for Vind include implementing and
integrating further sensor fusion algorithms. Moreover
we are considering tighter integration algorithms, where
lower level sensor data is fused and coupled together with
incomplete data originated by other sensors. The
objective would be then to use sensor data that could not
be used in a standard framework, for instance, when a
triangulation-based sensor is not able to triangulate
because it is not receiving the signal for a sufficient
number of beacons, but the data from those beacons
could be combined with other sensors to improve the
results.

Acknowledgments
This work was partially supported by European

Research Programme ARTEMIS (Advanced Research
and Technology for Embedded Intelligence and
Systems), project R5-COP (Reconfigurable ROS-based
Resilient Reasoning Robotic Co-operating Systems) and
NextGenIMR (Next Generation subsea inspection,
maintenance and repair operations.

MATEC Web of Conferences

The authors would like to thank Sigurd A. Fjerdingen
for his participation in the design and development of the
framework.

References
1. J. Leonard, H. Durrant-Whyte, IEEE Transactions on

Robotics and Automation 7, 376 (1991)
2. J. Gu, M. Meng, A. Cook, P. Liu, Sensor fusion in

mobile robot: some perspectives, in Proc. of the 4th
World Congress on Intelligent Control and
Automation 2, (2002), pp. 1194–1199, ISBN 0-7803-
7268-9

3. J. Borenstein, H. Everett, L. Feng, Tech. rep.,
University of Michigan (1996)

4. M. Quigley, K. Conley, B. Gerkey, J. Faust, T.
Foote, J. Leibs, R. Wheeler, A.Y. Ng, ROS: an open-
source Robot Operating System, in ICRA Workshop
on Open Source Software (2009)

5. A. Elkady, T. Sobh, Journal of Robotics (2012)
6. T. Moore, D. Stouch, A Generalized Extended

Kalman Filter Implementation for the Robot
Operating System, in Proc. of the 13th Int. Conf. on
Intelligent Autonomous Systems (Springer, 2014)

7. A. Shakhimardanov, N. Hochgeschwender, M.
Reckhaus, G.K. Kraetzschmar, Analysis of software
connectors in robotics, in 2011 IEEE/RSJ
International Conference on Intelligent Robots and
Systems (IEEE, 2011), pp. 1030–1035

8. A. Sumaray, S. Makki, A comparison of data
serialization formats for optimal efficiency on a

mobile platform, in Proc. of the 6th Int. conf. on
Ubiquitous Information Management and
Communication (2012)

9. F. Gustafsson, Statistical Sensor Fusion
(Studentlitteratur, 2012)

10. S. Thrun, W. Burgard, D. Fox, Probabilistic
Robotics (The MIT Press, 2006)

11. R. Mahony, T. Hamel, J.M. Pflimlin, IEEE
Transactions on Automatic Control 53, 1203 (2008)

12. F.M. Mirzaei, S. Roumeliotis et al., IEEE
Transactions on Robotics 24, 1143 (2008)

13. T. Beravs, J. Podobnik, M. Munih, Instrumentation
and Measurement, IEEE Transactions on 61, 2501
(2012)

14. P. Furgale, J. Rehder, R. Siegwart, Unified temporal
and spatial calibration for multi-sensor systems, in
2013 IEEE/RSJ International Conference on
Intelligent Robots and Systems (IEEE, 2013), pp.
1280–1286, ISBN 978-1-4673-6358-7, ISSN 2153-
0858

15. J.C. Beatty, B.A. Barsky, An introduction to splines
for use in computer graphics and geometric
modelling (Morgan Kaufmann, 1995)

16. J. Nocedal, S. Wright, Numerical optimization
(Springer Science & Business Media, 2006)

17. L. Ljung, Englewood Cliffs (1987)
18. R.R. Picard, D. Cook, Journal of the American

Statistical Association 79, 575 (1984)

ICCMA 2016

Authors’ background

Your Name Title* Research Field Personal website

Jon Azpiazu Researcher Robotics, Computer
Vision

https://www.sintef.no/en/information-
and-communication-technology-
ict/departments/applied-cybernetics/

Magnus
Bjerkeng

Researcher Robotics, control and
estimation

https://www.sintef.no/en/information-
and-communication-technology-
ict/departments/applied-cybernetics/

Johannes
Tjønnås

Researcher Robotics, control and
estimation

https://www.sintef.no/en/information-
and-communication-technology-
ict/departments/applied-cybernetics/

Esten Ingar
Grøtli

Researcher Robotics, control and
estimation

https://www.sintef.no/en/information-
and-communication-technology-
ict/departments/applied-cybernetics/

*This form helps us to understand your paper better, the form itself will not be published.

*Title can be chosen from: master student, Phd candidate, assistant professor, lecture, senior lecture, associate
professor, full professor

