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RESULT (summary)

A methodology is presented that allows for detailed power system modelling and analysis in a practicable and conceptually
intelligible way, based on the development of a stock of standard submodels for modelling of power system components.
Such models are developed for most of the commonly applied power system components. For illustration a not-so-common
system component is also dealt with, namely the adjustable speed synchronous machine. The power network related modeliing
part is conducted within the synchronous d-q axis frame of reference.

The system state variables are partitioned into two subsets of state variables; the power network state variables which are the
defined network loop currents together with the voltage across the capacitors of the network, and the remaining or ‘locar’
system state variables which e.g. are angular speed and fluxes of rotating machines, eiectrical angles of synchronous machine
rotors, and variables associated with involved control systems.

To describe the power network state variables, the appropriate electrical circuit submodels and capacitor voltage submodels
are fetched from stock, -and lined up to form what may be denoted ’the primitive system’. Contributing in making up such
submodels in the chosen frame of reference, are 2x2 matrices R, X, and Xc, and 2x1 e.m.f. matrices AE. All component-
specific complexity is ’hidden’ within the confines of such submodel matrices. Depending on which type of network
component a considered submodel matrix belongs to, it may be a zero matrix, a constant element matrix, or a matrix
containing elements that are functions of one or more 'local’ system state variables. The definition and lineup of the primitive
system is typically done once at start of analysis. So also the definition of a loop matrix B that conveys information on how
the circuit submodels are tied together. In modelling of power network performance, two plain numerical processes are
involved; fill-in of content of the primitive system lineup based on current value of the state variables, and standard matrix
operations related to the primitive systemn and B.

To describe the remaining or ’local’ state variables the task becomes merely one of fetching and imple-menting the proper
submodels from the model stock.

The report deals with submodel development, system modelling, and model application to main tasks of analysis, the latter
being Initial condition-, eigenvalue- and time response analysis. Numerous illustrations of model application are included.
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Power System Dynamical Analysis

An intelligible and general methodology for
detailed time response- and eigenvalue analysis

EXECUTIVE SUMMARY

The methodology allows for detailed power system modelling and analysis in a practicable and conceptu-
ally intelligible way, based on the development of a stock of standard submodels for modelling of
power system components. Such models are produced for most of the commonly applied power system
components. For illustration a not-so-common system component is also dealt with; namely the
adjustable speed synchronous machine. The power network related modelling part is conducted within
the synchronous d-q axis frame of reference.

Power system performance is described in terms of a set of simultaneous, first order, ordinary differential
equations dz/dt =f(z,v), where z is the set of all system state variables, and v comprises exogenously
specified excitations. For convenient formulation of the equations, z is partitioned into two subsets of
state variables; the power network state variables which are the defined network loop currents together
with the voltage across the capacitors of the system, and the remaining or ‘local’ system state variables
which e.g. are angular speed and fluxes of rotating machines, electrical angles of synchronous machine
rotors, and variables associated with involved control systems.

To describe the power network state variables, the appropriate electrical circuit submodels and capaci-
tor voltage submodels are fetched from stock, -and lined up to form what may be denoted 'the primi-
tive system’. Contributing in making up such submodels in the chosen frame of reference, are 2x2
matrices R, XL and Xc, and 2x1 e.m.f. matrices AE. All component-specific complexity is ’hidden’
within the confines of such submodel matrices. Depending on which type of network component a
considered submodel matrix belongs to, it may be a zero matrix, a constant element matrix, or a matrix
containing elements that are functions of one or more 'local’ system state variables. The definition and
lineup of the primitive system is done once at start of analysis. So also the definition of a loop matrix B
that conveys information on how the circuit submodels are tied together. In computing the right hand
side of dz/dt = f(z,v), two plain numerical pro-cesses are involved; the fill-in of content of the primitive
system lineup based on current value of the state variables, and standard matrix operations related to
the primitive system and B.

To describe the remaining or ’local’ state variables the task becomes merely one of fetching and imple-
menting the proper submodels from the model stock.

With the full set of differential equations established, the platform on which to conduct specific system
analyses is ready. Three tasks are dealt with: Initial condition analysis which is a prerequisite for most
other studies within the realm of system operation, eigenvalue analysis, and time respons analysis :

Initial condition analysis implies setting d/dt = 0 in all of the simultaneous differential equations and
solving for the particular steady state solution that fulfills the initial ioad flow requirements specified
for the power system.

Eigenvalue analyses aim to reveal the power system'’s inherent dynamic characterisitics, when incre-
mentally disturbed from an initial, specified state. The task implies evaluating the eigenvalues asso-
ciated with matrix A of the linearized formulartion dAz/dt = A Az. Three example cases are included.

Time response analyses are conducted to evaluate the variation over time of the system’s state vari-
ables and their interactions, following some given disturbance to the system.Transient power system
behaviour is exemplified when caused by respectively a temporary three phase short circuit, start/
loading of an asynchronous motor, start/loading/disconnection of a synchronous generator, and is-
landing of a local power system. Also included is an example comparison of characteristic effects
of the same disturbance applied to respectively a 'weak’ and a 'strong’ power system, - the distur-
bance being start and loading up of a relatively large asynchronous motor. Finally, the dynamical
performance of the double-fed asynchronous machine in the appearance of the Adjustable Speed
Hydro (ASH'’-) unit, is exemplified.
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Power System Dynamical Analysis

An intelligible and general methodology for
detailed time response- and eigenvalue analysis

0. Summary

Summary description is given under three headings: Conceptual overview, Computational over-
view, and Methodological overview. The text pertaining to the first fwo aim at giving a snapshot
picture of merit and scope of the modelling scheme presented, without delving much into definition
of parameters and variables.This is left to the third and dominant overview part, which covers all
methodological aspects in some depth.

0.1 Conceptual overview

The methodology allows for detailed power system modelling and analysis in a practicable and
conceptually intelligible way, based on the development of a stock of standard submodels for
modelling of power system components. Such maodels are produced for most of the commonly
applied power system components. For illustration a not-so-common system component is also
dealt with; namely the adjustable speed synchronous machine. The power network related
modelling part is conducted within the synchronous d-q axis frame of reference.

Network-wise, any power system component is represented in terms of one or more electrical
circuit models, each comprising a 2x2 resistance matrix R, a 2x2 inductive reactance matrix X,
and a 2x1 e.m.f. matrix AE. All component complexity is 'hidden’ within the confines of the circuit
terms (R,X., AE). The terms are specific to each type of power system component. Depending on
which type of component the considered circuit term belongs to, it may be a zero matrix, a constant
element matrix, or a matrix containing elements that are functions of one or more 'local’ system
state variables. For definition of the latter, see next.

Given the coliection of electrical circuit models of the power system components, topological
information describing how the circuit modeis are tied together, and 2x2 capacitive reactance
matrices X¢ characterizing respective capacitors of the network, power network modelling is readily
afforded by generating an appropriate set of network equations. In the present scheme of analysis
a system loop matrix B is defined and applied to the ‘'machinery’ of generating the differential
equations that describe the performance of the power network state variables. These variables are
made up of appropriately chosen loop currents together with the voltage across the capacitors of
the system. Further insight into formulation of the equations is offered on next page.

The remaining system state variables are 'local’ component variables like angular speed and be-
fitting fluxes for each asynchronous machine, - angular speed, electrical angle and befitting fluxes
for each synchronous machine, and appropriate variables associated with respective control
systems of the power network. The differential equations describing the remaining state variables
are fetched from the stock of submodels.

With the system state variables z described in terms of a set of simultaneous, first order, ordinary
differential equations dz/dt = f(z,v) - where v comprises exogenously specified excitations - , the
platform on which to conduct specific system analyses is ready. Three main tasks are dealt with :

Initial condition analysis which is a prerequisite for most other studies within the realm of system

operation, Eigenvalue analysis, and Time respons analysis :

Initial condition analysis implies setting d/dt= 0 in all of the simultaneous differential equations stated
above, and solving for the particular steady state solution that fulfills the initial load flow requirements
specified for the power system. The initial value of all control system state variables is definitionwise
zero, as these state variables conveniantly are defined in terms of incremental quantities. An efficient
gradient technique is used iteratively to converge upon the desired initial solution.

Eigenvalue analyses are conducted to learn about the power system’s inherent dynamic
characterisitics, when incre-mentally disturbed from its specified initial state. The stated task implies
determining the eigenvalues associated with matrix A of the linearized formulation dAz/dt=A Az. Self-
and mutual elements of matrix A are developed on general algorithmic form for all main types of power
system components. Example eigenvalue analyses are included.
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Time response analyses are conducted to evaluate the variation over time of the system’s state
variables and their interactions, following some given disturbance to the system. The task implies
solving the set of equations dz/dt=f(z,v) numerically over some given time horizon. To account for
the fact that electrical circuit models themselves may be functions of local system state variables,
the task of power network modelling must be continually repeated during processes of numerical
inte-gration. Transients power system behaviour is exemplified when caused by respectively a
temporary three phase short circuit, start/loading of an asynchronous motor, start/ loading/ dis-
connection of a synchronous generator, and islanding of a local power system. Also included is a
comparison of characteristic electrical consequences of the same disturbance applied to respectively
a’'weak’ and a ‘strong’ power system, - the disturbance being start and ioading up of a relatively
large asynchronous motor. Finally, the dynamical performance of the double-fed asynchronous
machine in the appearance of the Adjustable Speed Hydro unit (ASH’), is exemplified

0.2 Computational overview

As implied in the previous overview, the system model can be considered the aggregate of two
submodels ; the system submodel comprising the differential equations of the power network
state variables, and the system submodel comprising the differential equations of the remaining,
local system state variables. This overview part focuses on the chosen approach for establishing
the first of the two system submodels.

The algorithmic basis for describing the behaviour of the power network state variables - which are
the chosen loop currents (i) and the voltage across the capacitors of the system (e), - is out-
lined via comments under four main headings:

’Line-up’ and “fill<in’ of electrical circuit models. From the stock of component models
established, the appro-priate electrical circuit models with terms (R, X, AE) are fetched
and ’'lined up’ in accordance with the chosen fabelling (numbering) of circuit models:
The aggregate of R-terms are oganized into a diagonal resistance matrix termed Rymitive-
The aggregate of inductive reactances X, are similalarily arranged into a diagonal
reactance matrix Xipimtve- (IN (the relatively rare) cases of significant electromagnetic
coupling between system components — as e.g. in situations with parallell overhead lines
close to each other, - off diagonal terms may have to be filled into Xy grimiive at proper
locations). Finally, the aggregate of voltage source terms AE are arranged into a voltage
source vector eyimiive » Which is partitioned into three subvectors denoted ecnord, €t and
ewest. Based on stipulated/ current value of all state variables, the content of all the model
terms are computed and filled in.

Modelling of power network loop currents at the considered state of the process, is
readily afforded by utilizing the information contained in the previous component lineup,
together with the binary information stored in the system loop matrix B, describing the
incidence of network loops and electrical circuit models of the network . The loop currents
must fulfill the following set of equations:

Eloop = Rloopi iIoop + (1/(11)) xLIoopS diloop/dt (0'1)
where;
Eoop =-B emmive = driving voltage of respective network loops ]
Rioop = B Ryimitive B' = network loop resistance matrix ('t means 'transpose’) { (0-2)
Xiioop = B Xiprimitive B' = network loop inductor matrix J

Modelling of power network capacitor voltages. Circuit-wise, the lossy capacitor banks
of the network are modelled in (0-1) via their electrical circuit models with generic terms
(Re, X =0,AE¢). The aggregate of individual capacitor voltages AE¢ is denoted ey. It remains
to model the 'inner life’ of respective ideal capacitors themselves. |.e. the variation over
time of the voltages contained in e,: Each ideal capacitor is characterized by a constant
2x2 capacitive reactance term Xc. The collection of all such terms pertaining to the net-
work, is organized into a diagonal reactance matrix Xcprmitve. 10is 'lineup’ together with the
submatrix By of B, describing the incidence of network loops and capacitors, provide the
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basis for modelling of the set of capacitor voltages. 1y is a trivial/sparse transformation
matrix { with elements '0",’1',-1") of the same size as Xcprimitive :

de,/dt = ay (XCprimitivé Btct' iloop+ ;td ) (0-3)

Modelling of all the power network state variables together is afforded by formulating
(0-1) and (0-3) as one simultaneous set of equations, after first solvng (0-1) with respect
to diep/dt. The sought system submodel! then becomes as follows, when considering the
partitioning applied to B and egrimitive :

diloop/dt ’xLloop—1‘ Rloop 'xLloop-1' Btc iIoop XLloop-1 xLIoop_1' Bt-rest
j o : 5 €chord = O |[————— | €trest
detc/ dt xCprimltlvé Btc 1tc €¢c 0 0

(0-4)

Equations (0-4) describe the power network state variables in a structured and computationally
conveniant way: The definition and ’'lineup’ of circuit models (Rprimitive, XLprimitives Xcprimitives €primitive) IS
done once at start of analysis. So also definition of the loop matrix B and its submatrices B, and
Bi.rest- In recomputing the right hand side of (0-4) during initial condition analysis or integration, only
two distinct numerical processes are involved: The fill-in of network model terms based on current
value of the state variables, and matrix operations as directed by (0-2) & (0-4).

0.3 Methodological overview

From a methodological as well as computational viewpoint it appears appropriate to focus on the
following main steps of analysis: Component modelling, Power network modelling, System
modelling, Initial condition analysis, Eigenvalue Analysis, and Time response analysis :

Component modelling
A stock of five component models have been developed for modelling of the common power
network components like overhead lines, cables, the infinite bus, capacitor banks, transformers,
synchronous machines, and asynchronous machines. The five component models are 'The Lossy
Inductor’, 'The Lossy Capacitor Bank’, 'The Synchronous Motor’ in two versions, and 'The Asyn-
chronous Motor' :

"The Lossy Inductor’ models directly the three phase, inductive series impedance, the three
phase inductive impedance load, and the infinite bus. Transformers, overhead lines and cables
are modelled by suitably arranging together component models of the type 'Lossy Inductor’
and ’Lossy Capacitor Bank’ .

"The Lossy Capacitor Bank’ models directly the three phase, lossy series capacitor, and the
three phase, lossy shunt capacitor. It also contributes to the modelling of other network com-
ponents as stated above.

'The Synchronous Motor’ models the two main modes of operation of the synchronous
machine; the voltage controlled synchronous mofor, and the voltage- and power controlled
synchronous generator. For conceptual clearness, mofor mode of operation is the 'default’
modelling mode.

'The Asynchronous Motor’ models motor- as well as generator mode of operation of the
asynchonous machine. Mofor mode of operation is the 'default’ modelling mode.
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The component model is made up of one or more submodels, the configuration of which is defined
by the set of state variables that abides with the component model. Table 0.1 summarizes how
submodels add up to component models, and how the latter are configured to model the main
power system components.

Table 0.1 Overview of how submodels add up to component models and component models
add up to models of main power system components.

Main power system <— Component models < Submodel(s)
components
Inductive series impedance "The Lossy inductor’ Electrical circuit model
Inductive impedance load "The Lossy Inductor’ Electrical circuit model
Infinite bus voltage "The Lossy Inductor’ Electrical circuit model
Capacitor bank "The Lossy Capacitor Bank’ Electrical circuit model
Capacitor voltage model
"The lossy Inductor’ Electrical circuit models
Overhiead line/Cable 'The Lossy Capacitor Bank’ Capacitor voltage models
"The Lossy Inductor’ Electrical circuit models
Transformer ('The Lossy Capacitor Bank’) (Capacitor voltage models)
Electrical circuit model
Synchronous machine "The Synchronous Motor’ Rotorflux model *
(The ’ordinary’ version) (The ’5-coil’ model) Electromechanical model *!
(The adjustabie speed version) {The '6-coil model) Control system models *
Electrical circuit model
Asynchronous machine "The Asynchronous Motor’ Rotorflux model *

Electromechanical model *

*) Subsystem models that describe 'remaining’ (or ’local’) state variables, see previous page.

One of the submodels is the electrical circuit model. In terms of formal representation, the
electrical circuit model is made common to all component models. The set of electrical circuit
models that go into the network, interlink to contribute to describing integrated power network
performance, - i.e. to produce the differential equations that govern the variation of the power
network state variables.

The formal content of the electrical circuit model is shown in Figure 0.1. It comprises three main
parts:

e An oriented terminal graph showing positive direction of the circuit model variables (i.e) that
connect electrically with the external network. For a stock of 2-terminal component models
the oriented terminal graph becomes an oriented line segment. See figure 0.1a) below.
Figure b) shows the standardized d-q axis serial interconnection of circuit elements that
make up the electrical circuit model, - and is fronted by the just stated graph.

o Impedance terms R and X, describing the power network related ’passive’ electrical
properties of the component model. Index 'L’ denotes inductive character of the
reactance. (The effect of capacitive reactances appear modellingwise in terms of separate
state variables). v is the voltage across the serial interconnection of R and X, , see

figure b) below.
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* A voltage source e giving the power network related source impact of the component
model. Ill.:

If the component model is The Lossy Inductor, the voltage source e may or
may not be zero : If this component mode/ is applied to model e.g. an inductive
series impedance, or an inductive impedance load, then e =0. If the task is to
model a fixed voltage 'behind’ some specified inductive series impedance, then
e will be a fixed phasor. Chapter 1.6 .

If the component model is The Lossy Capacitor, the voltage source e = AE,,
where AE. is the voltage across the capacitor. Chapter 1.3.

If the component model is The Synchronous Motor, the voltage source e =
AEgy, where AEgy is a formal electromotive force (e.m.f) contributing to
modelling the synchronous motor. Chapter 1.4, Chapter 1.7 and Appendix 2.

If the component model is The Aynchronous Motor, the voltage source e =
AEam , wWhere AEay is a formal e.m.f contributing to modelling the aynchronous
motor. Chapter 1.5 and 1.7.

u is the voltage across the teminals of the electrical circuit model, see figure b) below.

/_—‘\ H:: T <t —

v=Ri+(1/a) X dild & v-e=u

a) b)
Oriented terminal graph Serial circuit elements fronted by graph a)

Figure 0.1 The electrical circuit model ; format structure of submodel common
to all component models.

Table 0.1 together with Figure 0.1 summarize the logic of power network component modelling. To
illustrate the concrete content of such models, the full model of an inductive impedance load ( as
well as of an inductive series impedance) , a capacitor bank, and a synchronous machine are given
in the following.

For details on model development, and overview of the full stock of practical models, see Chapter
1.2-1.6 and Chapter 1.7, respectively. For special treatment of the adjustable speed synchron-
ous machine, see Appendix 2, where an 'extended’ version of the synchronous machine model is
developed.
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The model of the inductive impedance load is shown in Figure 0.2. From Table 0.1 it is seen that the
electrical circuit model is the only submodel contributing to form the sought model.

“—ic
a 1 m e:O el
RL XL .......
Electrical
——
where; circuit model

L -Xe
RL =

X

o L XL
XL = =
ay L XL

z = (r +jx) = given per phase description of jossy inductor

Figure 0.2 Component model ‘The Lossy Inductor’.

The model of the capacitor bank is shown in Figure 0.3. From Table 0.1 it is observed that fwo sub-
modeis contribute to form the sought model; the electrical circuit model and the capacitor voltage model :

«ic
. XL =0 AE —
Rc

where; _ Electrical
circuit model
e
Rc =
fe
AEcqg
AEc = = Capacitor voltage. See
AEcq model below.
(re,C) = given per phase parameters of lossy capacitor bank
dAEg/dt = o (Xc ic + 1 AEG)
with initial condition; _
AEc(o) = (1 X¢) ico) /Capacitor
where; voltage model
oy C)|
Xe =
| 1he C
_ 0 | 1
1=
-1 I 0

Figure 0.3 Component model ’‘The Lossy Capacitor Bank’ .
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The model of the synchronous motor* is shown in Figure 0.4. From Table 0.1 it is inferred that five
submodels contribute to form the sought model ; the electrical circuit model, the rotorflux model, the
electromechanical model, and 2 control system models (i.e. models for voltage- and power control).
Figure 0.4 covers nearly three pages. The figure intendeds to be ’self-contained’ in the sense that it
defines and displays on compact form all model parameters involved :

Electrical circuit
model

SM

<—ism Rsm Xsm ;'—\( AEsm = { Vem + Hemdsm ) = motor emf.
—"7- 282110 \AE—/ —

where ;

AEsm = (Vsm + Hsmésm ) = synchronous motor emf.

A —_— — A — — _
(Ra+X"r) + (1+2.AQ8m)-X"-siN2Bsm + Xy -c082PBsm I =X+ (142-AQsm)-X"-cos2Bsm — X”'r -sin2Psm
RSM = A _ — " - —
X" + (1+2-AQsm)-X"-c052Bsm — X''r-5in2Bsm I (Ra+X"r) - (142-AQgwm)-X"-sin2PBsm - X' -C0S2Bsm]
AQsm =(Qswv-1) = deviation of rotor speed from
—— — synchronous/target value. In pu.
X7 + X".cos2Bsm -X"-sin2Bsm CrErcosBsm | Ef = (Eo + AE¢) = field voltage, where Ey, is
Xsm = — — VZTT R [ —— initial value and AE; is voltage control
- X'-sin2Bsm X" - X"-cos2fBsm | -CrErsinBsm system response. See following p 0/9.
Cr = (V2/( @0 T"do))- (X" ae/X a0)
Qsm-fr-sinPsm + f2-cosPsm | Qsm-fa-sinBsm +fs-cosPsm | Qsmfs-cosPsm + fs-sinBsm
Hsm =
Qsm-fi-cosPsm - f2-8inBsm | Qsmfa-cosPsm - fa-sinPsm | -Qsm-fs-sinBsm + fo-cosPsm

X"=05X"q+X"q) X' =05X"q+ X"q) — X' = (00T do))- (X" ad/X ag)%(Xa ~ X'g) + (1o T"40))-(X'a — X"q)

X'=05X"¢-X"g) X'r=05("qg-X"q) — X'q= (U ooT ) Kq—X"q)

f1 = (Ka - X'a)- (X" ad/(Xag-X ad)) — Xad = Xdg-Xag
fo = F[(Xa = X"a) [ (100 T"a0))-(1/X"ad) = (1(@0 T do))-(Xae/X'ad?) 1 - (1/(00 T'd0)) (X" ag/X'ad) | <« Xag =Xg-Xag
fa= Xa~ X)X ag — X'ad = X’g-Xag
fs = fa[ (1/(mo~T’do))-(X”ad/X’ad2)~( Xa—X'q) - (V00T g0) ]

fs = - (Xq— X"q)/Xaq «  Xag = Xq-Xag
fo="ts- (1/(m°'T”q°)) “— X”aq = X’,q Kag

Figure 0.4 (start of..) Component model ‘The Synchronous Motor’.

* Formal basis for the synchronous machine model above is the five-coil, salient pole generalised machine as defined
and further elaborated in Chapter 1.4. Synchronous Machine parameters to be specified for this model (with example
hydro-generator data in parenthesis) :

Xas (0.12pu) X's (0.30pu) Ra (0.005pu) T7q (0.16s) Coson  (0.9pu)
Xe (1.2pu) X"4¢ (0.20pu) T4 (6.0s)) Ta (5.0s) Sy (100MVA)
Xq (0.75pu) X"q (0.30pu) T¢ (0.04s) Co (7.5pu) En (16kV)

The corresponding mode! based on the six-coil generalised machine, is developed in App.2. This model may altow for
simulating performance of the double-fed asynchronous machine as well as the adjustable speed synchronous machine.




-0/8-

dcg%v;/dt = Wo'(esmr + Fsmi -ism +Fsmg -dsm ) Rotorflux
( model T,
Here:

(1/(00-T'do))- (Kad/X'ad)- X" ad-COSPsm ~(1/(@o T o)) (Xad/X'ad)- X" ag-SiNBsm Ks -E Er= (Ero + AEy) = field voltage
Fsmi= (1 /(CDO'T"do))-X’Eq-COSBsM -(1/(0o° T do))-X ad-SinPsm eswr =0 K= (‘JZ/(mo~T'du))‘Xad 1(Xg -X'q)

(/{06 T q0))- X ag-SiNPBsm (1/{oT"q0)) X aq:COSBsm 0 | AE; = voltage control response
(/00T go))- (17X aq)-{(Xaa/X ag)- ( X'g — X"g) + X9 ] (1/(@0'T’do))'(xagﬁagz)‘( Xg=X'g)
Fsmy = (/{09 T"g0))-(1/Xad)-( Xg — X'a) - 1{(0g T g0)
: - 1{0g T o)

At any time during integration the rotor currents may be derived from the equations ¢y = Xpar-ism + Xer-ismr

Ismr = Xe)™ [ dsm - Xoar ism ]

where ;
Xad-COSPsm | -Xag'SinBsm XZag I(Xg = X'q) Xad
Xpar =|Xag-coSBsm | -Xaa-sinBsm X = Xad Xad + X'ad X"ad/(X'a = X"q)
Xag'SinBsm | Xaq-COSBsm XCaq/(Xg = X"q)
Electromechanical
model T
d(%gwdt =(Sgas/Ssm) (1/(Ta-coson))-( Tsmel — Tsmmec )
Here:
Tsmet = 0.5:'smTsmr-¢aq = electrical motor torque , - where ddq = X"sm -Tomism + fsm-dsm

Tsmmee = Tsmmecto)Q2sm™ = mechanical torque in motor mode of operation. (Motor operation implies pos. sign of mech.
torque)

If the motor is up and running at t=-0: Tsmmeco) = Tsmel(o) = electrical motor torque at t = -0. This is found from
equation (1-117) appilied to the initial power system load flow. k= (say) 1.5-3.5
If the motor is to be starfed from stillstand (as e.g. an asynchronous motor) : Tsumec(o) = coefficient to model
mechanical friction, air resistance, etc. during startup. Probable range: 0.02-0.05

Tsmmec = (Tsmel(o) *ATmec) = mechanical torque in generator mode of operation. ATmec is the response from the
power control system. See below for a sample hydro generator power control system.
Sgas, Ssm = Chosen VA system power base, and rated VA motor capacity, respectively
Ta, cosen = Dynamical system’s inertia constant, and motor’s rated power factor, respectively
sinBsm [-cosPsm cosPBsm| - sinBsm X"d| fi| fa f1=(Xq-Xg)- X" aa/ (Xag-X ad)
Tsmt 3 Tsm X'sm = fsm = fa=(X’q-X"q)/X aq
cosPsm sinBsm sinPBsm | cosPsm I X' -fs fs=-(Xq X" M Xaq

The electrical angle of the rotor is defined as
Bsm = (ot - Bsm )
giving rise to the following differential equation describing the angular movement of the Synchronous Motor:

dB(%M{dt = 0)0'(1 - QSM)

Figure 0.4 (continued..) Component mode! 'The Synchronous Motor’,
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Power control

system \

AQrer A (1+T: s) (4 T s B, Almec . For normal’ frequency
0 TP (Te T)S + (To* Tt (348,))S+8)  AB > 1+(0.5 & T))s - control : AQref =0 .
T For 'P-control’ :
> 4o AQret = 6 (Prarget - Pm)
AQ=(Q-1) \ AQ
dA&/dt = Ky (AQees - (1 - Qapm) + AW) — K, A Regulator system
dAw/dt = K3 Ad - K4 Aw Regulator system
dAg/dt = (3K,/Qgm) Ad - K; Ag Hydraulic system
{
ATmee = AQ — &5 (1 - Qam) — (2/Qspm) A Net change of mechanical torque
Control system parameters:
Ko=2/(4s T)) T; : Time constant for hydraulic system (eg 0.3s)
Ki=1/Te To : Time constant for main servo ( eg 0.08s)
K2 = (& + &)/Te “— Tt . Transient droop time constant (eg 17s)
Ks = &/Tt & : Transient droop (eg 0.15pu)
Ks = 1/Ty & : Permanent droop (eg 0.0 — 0.03. The value 0.0
Pm = absorbed motor power =0.5 ism' €sm if frequency sustained by a single unit)
Pm is negative in generator mode. do ¢ Initial pu turbine opening (ta). (If ts<0.3 then &, =0.3)
Prarget = target value of Pr,
c = per unit scaling factor (eg.: c=0.1)
Voltage control
system
furef
—» oy Kg 1
N A D wadEaT) Er = (Eqo +AE)
T AE; AE% Efminy <Ef <Efmax)
Ko Tos AUres =0, unless new
1 (1+Tos) R voltage ref. is set
1 KQTQS Agz(QSM—1)
T+ Ta9)| €

dAqu/dt = C1 (AE,— - Aqu )

dAE/dt =GC; [AUes+ Uy - U + Kg (s -1} - Ah] - C4 Aqu - Cy4 AE, + C; AEg
dAEss/dt = C5 Aqu - Cs Ess

dAh/dt = C7 (()SM -1) - CB Ah

U= (1/8) (esm® + esw2)’? Control system parameters:

Ci=1/T¢ T = field circuit time constant (eg 0.1s)

C2 = Kr/Tr Kr = resutting forward amplification (eg 70pu)
Cz=Kr Kd/Tr =Kp C; « Tr = regulator time constant (eg 0.1s)

Cs=1/Tr Kp = transient feedback amplification (eg 0.25pu)
Cs = Ko/To To = transient feedback time constant (eg 0.25s)
Cs=1/Tp Kq = power stabilizer amplification (eg 1pu)
Cr=KdTq Efmax) = ceiling field voltage (eg 3pu)

Cs=1Tq Efminy = bottom field voltage (eg —2pu)
AU = (U-U,) = pu voltage deviation Tq = power stabilizer time constant (eg 2s)

Figure 0.4 (end of) Component model 'The Synchronous Motor': Example hydro generator control system models.
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Power network modelling
The concept and content of netwotk modelling is summarized by way of a simple illustration*’
:Given the task of modelling the performance of the small power system to the left in Figure 0.5.
The system com-prises three power network components; the infinite bus, a synchronous motor,
and an impedance type inductive load. The electrical circuit submode! of respective power
system components is previously given in figures 0.2-0.4. Moving from left to right in Figure 0.5b,
the oriented terminal graph of respective circuit submodels is first given , followed by a description
of the content of the circuit models fronted by the teminal graphs. For brevity of notation the
oriented terminal graphs are identified by labels '1" to '3'.

Infipite bus «lsm M Ksw
| 1e—c—eo . (Synchr. motor)

dL R X
2e—+<«—o . (Ind. imp. load)
R X0 de Re =§ =0
Je—< o . —- (Infinite bus)
a) Single line system diagram b) Formal description of electrical circuit models

Figure 0.5 Simple three-component power system. System components and their interconnection
identified in figure a). The components’ electrical submodels given i figure b).

The aggregate of separate electrical circuit models (that constitute the network model if inter-
connected,) may be said to form the primitive network of the system. Once the primitive network is
given and it is specified how the network components are tied together, a general basis for power
network modelling is established.

The methodology of power network modelling is next summarized. It is inherently a three-stage
process to which the following subheadings may apply: 'The primitive network’, "Network topology’
and ’'Network modelling’

The primitive network

The content of the primitive network is readily illustrated for the example system of Figure 0.5 : With
the labelling 1’ to '3’ chosen, only a suitable arrangement of the given electrical component data is
required to produce its primitive network shown in Figure 0.6.

1
. ->(—0 1 2 3 1 2 3
/2 RsmMm 1 Xsm AEsy |1
oo Rprimitive = RL 2 Xiprimitive= XL €primitive =| AE(=0 |2
3 Re=0 3 Xe=0 edq 3
NP
Oriented terminal impedance terms of primitive network Source impact of primi-
graph of primitive five network
network
a) b) €)

Figure 0.6 The primitive network of the three-component power system of Figure 0.5

*) For modelling of more complex networks where capacitors are present, reference is made to Chapter 2.
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The primitive network comprises three main parts in the same way as each of its contributing
electrical circuit models :

- An oriented terminal graph showing positive direction of the circuit model variables (iprmitive, ©primitive)
that connect with the external network to interplay in the operation of the specified network. By
convention each of the graph’s line segments fronts a standardized d-q axis circuit element as defined
in Figure 0.1b.

- Impedance terms Rprimitive and Xipnmitive describing the ’passive’ properties of the set of circuit
elements that are contained in the network. Rprimiive is diagonal. Index 'L’ denotes that Xiprimitive
always is of inductive character. See previous comment to Figure 0.1 concerning handling of capacitive
reactances. If there is electro-magnetic coupling between system components (as e.g. may be the case
for parallell overhead lines close to each other), Xiprimiive Mmay contain off-diagonal terms. Otherwise,
Xiprimitive Will be diagonal as exemplified above in Figure 0.6.

- A voltage source vector epimitve giving the source impact of the defined set of voltage sources
contained in the
network.

Network topology

Graphwise the topology of a network is established by connecting together the graph elements of
its primitive system, as directed by the single line diagram of the power network at hand. The
oriented graph of the small system in Figure 0.5a is formed by inteconnecting the primitive
network graph elements of Figure 0.6a, as advised by the single line diagram implied by Figure
0.5a. The system graph is shown in Figure 0.7 :

1: Synchronous motor
2 : Inductive impedance load
2 3 Infinite bus

b = no. of network graph elements = 3
Nnode = NO. of nodes of network graph = 2
Ntree = no. of network tree elements = (Nnoge —1) = (2-1) = 1
Nioop = no. of cotree elements (chords) = (b -Nyree) =(3 -1) =2

Figure 0.7 Oriented graph of the three-component system in Figure 0.5a.

The formal modelling of interconnection of components may be afforded by different topological
matrices comprising plus/minus '1’, or ‘0’ as matrix elements. In the present outline a system loop
matrix B is used to formally describe how the power network components are tied together.

The system loop matrix B is conveniently defined on the basis of a chosen free and cofree of
the oriented network graph:

- Thetreeis asetof Nyee graph elements that connects all nodes of the network graph without closing
any circuit. Ngee = (Nnode-1), Where Nnoge is the total number of nodes of the connected graph. For the
network graph of Figure 0.7, Nyee = (2 —1) = 1. The chosen tree of this graph is shown in thick line in
Figure 0.8a. Capacitor elements must belong to the free, and the capacitor graph elements should
conveniently be numbered first among the tree elements. Itis also suitable to have any exogenously
specified voltages located to tree elements.

- Theremaining Niop = (b —Niee) graph elements constitute the corresponding cotree of the oriented
network graph. b is the number of elements of the network graph. Each cotree element - or chord -
identifies a unique loop of the network graph. Thus the coliection of chosen cotree elements identifies a
necessary and sufficient set of independent system loops for evaluation of network flow solutions. When
deciding on the numbering of elements in the primitive network graph, the elements that are being
defined as members of the cotree should conveniently be numbered first. For the network graph of
Figure 0.7 the number of cotree elements is Niop = (3 ~1) = 2. The chords are identified by thin lines
in Figure 0.8a.
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The system loop matrix B describes the incidence of independent network loops as defined by the
set of cotree elements, and the set of all graph elements of the connected network. See Figure
0.8b for simple illustration.

Element no —
Loopno _1_2 -3
L4014 0] -1
B= = [Bchord:Btree]
3 2 2 0] 19 -1
Thin lines : cotree elements (chords)
Thick line : tree element
a) Oriented network graph b) Loop matrix B

Figure 0.8 Graph description in terms of free, cotree (chords) and B-matrix.

The labels (read numbers) attached to the cotree elements can conveniently identify also the
associated set of independent network loops. Furthermore, the chosen orientation of the cotree
elements can suitably define positive direction of the nefwork loop currents.

B can be partitioned into a submatrix Bgyorg that describes the incidence of loops and cotree
elements (or chords), and submatrix By, that gives the incidence of loops and tree elements.
Given the conventions above, Bghrq Will always be a unit matrix. Figure 0.8b illustrates the
definition of submatrices in the simple three-component case.

To facilitate definition and processing of the differential equations that describe the capacitor
voltage state variables (ey), it is desirable to partition the submatrix Byee , - when relevant. With
the stated numbering scheme for tree-elements, the following definition is made:

Btree = [Btc: Bt-rest] (0'5)

where By is a submatrix describing the incidence of loops and the subset of tree elements that
relate to capacitors. Bi.est is @ submatrix describing the incidence of loops and the ‘rest’ of the tree
elements. The loop matrix B of Figure 0.8 does not allow for definition of B, since no capacitors
are present in the simple power system of Figure 0.5. For illustration of the content of all the
defined submatrices of B, see Chapter 2.2.

Network modelling

The network model is a set of simultaneous, first order, ordinary differential equations describing
the behaviour of the power network state variables, - which are the network loop currents iigep
together with the voltages e, across the capacitors of the system.

The network model is readily generated based on 1) the lineup of the electrical circuit models of
the power network into the standardized form of a primitive system, and 2) the system loop matrix
B, describing how the electrical circuit models are tied together into a network. The network model
which is developed in Chapter 2.3, can be compactly expressed as follows:

di|oop/dt = XLloop-1' Rloop 'xLIoop-“‘ Btc iIoop XLloop-1 XLloc>p—1' Bt-rest
. — €chord = 03 | ————————1 €trest (0-6)
detc/ dt xCprimitive' Btc 1tc €tc 0 0

where;
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ioop = (Nisgpx1) loop current vector, comprising the current in respective cotree elements (chords)
of the network graph. Each loop current comprises a d- and a g-component, so that
numerically, ii0p is Of dimension (2NeepX1). Nigep is the number of independent loops of
the graph. it is also the number of cotree elements - or chords - of the graph.

e = (Ngx1) capacitor voltage vector, comprising the voltage across respective ideal capacitors
of the network. Each voltage comprises a d-and a g-component, so that numerically ey is
of dimension (2Ngx1). Ng is the number of capacitors of the single line diagram of the
power network.

€hora = (NigopX 1) voltage source vector associated with respective cotree elements (or chords) of
the graph. Each voltage comprises a d-and a g-component, so that numerically echorg iS
of dimension (2N,qpx1). Synchronous and asynchronous machines are conveniently
defined as cotree elements of the graph, with defined source impacts as follows :
The synchronous motor : AEgy =(VsurtHsy dsm) see Figure 0.4 and Chapter 1.7
The asynchronous motor : AEay =Ham ¢am see Chapter 1.7

errest = ((Ngeo - Nc )x1) voltage source vector associated with the 'rest of the tree elements’, i.e. the
tree elements that are not representing capacitors. Each voltage comprises a d- and a g-
component, so that eyrst Numerically is of dimension 2(Nyee- N¢ )x1. Ngee = Nnumber of
tree elements of the graph. An exogenously specified voltage should suitably be associated
with such a tree element. The infinite bus voltage which is dealt with in Chapter 1.6, can be
conveniently expressed as

edq = [€a, €q]' = & Eyery [-SiNYrer ,COSYref]’

where Eyeq) is per unit root mean square (r.m.s.) value of the given three phase voltage,
and vy, accounts for an arbitrary phase shift of the given voltage relative to zero time.

B = (Niopxb) system loop matrix in the d-g axis frame of reference. Entries are +/-1 or 0. '1’
means numerically a 2x2 unit matrix. '0’ means a 2x2 emty matrix. b is the number of
elements of the oriented graph. B is partitioned as follows:

B = [Bchord,Bireel see Figure 0.8 forill.
Biree = [Bic,Brest] see equation (0-5) and associated text

Ricop = B Ryrimitive B' = (NigopXNioep) Network loop resistance matrix in the d-q axis frame of
reference. Each element Ryo,0[i,j] of this matrix 'hides’ a 2x2 'local’ d-q
description. Numerically Rioop then is of dimension (2Niaopx2Nigep)

Rprimitive 1S - in the d-q frame of reference — a bxb matrix displaying the R-
term of each and every element of the system graph. Rprimitive iS diagonal.
Each element Rpimivell,j] Of this matrix ’hides’ a 2x2 ’local’ d-q description.
Numerically Ryrimiive then is of dimension (2bx2b). For simple illustration
of Rprimitive » 5€€ Figure 0.6.

Xiioop= B Xiprimitive B'= (NioopXNiaop) Network loop inductor matrix in the d-q frame of reference.
Each element Xy q0pi.j] ‘hides’ a 2x2 'local’ d-q description. Numerically
Xiioop then is of dimension (2NgopX2Niggp).

Xiprimitive IS - in the d-q frame of reference — a bxb matrix displaying the X, -
term of each and every element of the system graph. if there are no mutual
couplings between circuits, X primitive 1S diagonal. For the small example
system included, Xigprimitive iS diagonal. See Figure 0.6b for ill.. Each
element Xipimiiveli,j] 'hides’ a 2x2 'local’ d-q description. Numerically
Xiprimitive then is of dimension (2bx2b).
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System modelling
The set of simultaneous, first order, ordinary differential equations that fully describes the
performance of the power system at hand, is here denoted ’'the system model'. In compact
notation the system model can be written as;
dz/dt = f(z,v) (0-7)
where z is the set of all system state variables, and v comprises exogenously specified excitations
such as e.g. infinite bus voltage(s) and initial value of synchronous machine field voltages. As
outlined In the 'Conceptual overview’, z can be partitioned into two subsets of state variable ; the
power network state variables which are the loop currents together with the voltage across the
capacitors of the system, and the remaining system state variables which could also be termed
'local’ component variables.

The part of the system model comprising the differential equations of the power network state
variables (ipop .1 ), is given by (0-6) :

diloop/ dt =- ay XLIoop-1' (Rlooﬁ itloop + By €tc + €chord * Bterest €trest) (0-8)
dew/dt = oy (XCprimitivé By iloop + e € )

The residual part of the system model comprising the differential equations of the remaining system
state variables, is summarized next qua main types of ’local’ component variables. Such variables
relate first of all to rotating machines, and to the control systems governing bus voltages and power
generation :

The ‘local’ state variables pertaining to the synchronous motor are the motor fluxes ¢y =
[0 , 0, © kq]t, the motor's pu angular speed Qgy , and its electrical rotor angle Bsy. Figure
0.4 presents the model of the synchronous motor. From the subsystem modeis that make
up this model, the differential equations of the local variables (¢sm, Qsm, Bsm) are as follows:

dosm/dt = oy (Vsmr + Fsmr fsm +Fsmg om)
dQsu/dt = (Sgas/Ssm) (1/(Ts coson)) ( Tsmes — Tsmmec ) (0-9)
dBsw/dt = - (1-Qsm )

The ‘local’ state variables pertaining to the asynchronous motor are the motor fluxes ¢am =
[q),(d),q),(q)]t, and the motor's pu angular speed Q.n. From Chapter 1.7 titled Component
model summary, is fetched:

déam/dt = oy (Fami iav *+ Fame dam ) (0-10)
dQam/dt = (Sgas/Sam) (1/(Ts c080)) ( Tamel = TaMmec)

The ’local’ state variables pertaining to the synchronous motor’s voltage control system, are
the incremental quantities (AEq,AE,AE,Ah). See Chapter 1.7 for further definitions. From
that Chapter :
dAE/dt = Cq (AE -AEg)
dAE/dt = C; [AUertUp -U+Kq (Q -1) -Ah] -C3 AE4 -C4 AEA+C, AE (0-11)
dAESS/dt = Cs Aqu - Ce =
dAh/dt = C; AQ-Cg Ah

The ‘local’ state variables pertaining to the power control system of the synchronous motor in
generator mode of operation, are the incremental quantities (A&, Aw, Ag). See Chapter 1.7 for
definitions and eqgns:

dAa/dt = Kt (AQef - (1 - Q) + AW) — K2 Aa
dAw/dt = Kz Ad—K; Aw (0-12)
dAg/dt = (BKo/Q) A4 — Ky Ag
l
ATsmmec = AQ—3g (1- Q) —(2/Q) A4 (Net change of mechanical torque, see (0-9) )

The system model is the aggregate of differential equations (0-8) describing the power network state
variables, and differential equations (0-9) — (0-12) describing the remaining (local’) state variables.
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Initial condition analysis
Whether eigenvalue- or time dynamical analysis is to be conducted next, an appropriate initial state
has to be defined for the system. In the following the process of arriving at the proper initial value of
all state variables is summarized.

The initial state variables of machines should be set/computed in accordance with the situation at

hand:

If a synchronous motor is to be started, its pu speed Qswo) = 0, and so also all initial machine current and
flux variables. The electrical angle Bswp) can arbitrarely be set to zero. The synchronous motor’s field
voltage Ejo) may also be zero, if the field winding is kept short circuited during the initial part of the start-up
sequence.

If a synchronous motor is initially in a synchronous mode of operation, Qsm() = 1. In this case it is custom-
ary to specify initial conditions in terms of absorbed power Pswmy and voltage Uswmp) at the machine
terminals. Thus Bsme) and Eqoy should be specified so as to contribute to fullfilling these requirements.
Computationally, this is afforded either by determining Bsm) and Ee) from an initial phasor diagram
(which may be feasible only for a very small system), or by an iterative solution process in which Bsmio)
and Eqp) are simultaneously corrected (together with all other such 'control variables’) until stated initial
conditions are reached to required accuracy. Absorbed (or produced) reactive motor power is in principle
a byproduct from the stated solution process. The process is further described below, and exemplified in
Chapter 3.11.2. :

If an asynchronous motor i s to be started, its pu speed Qawm() = 0, and so also all initial machine current
and flux variables.

If an asynchronous motor is initially in a steady state mode of operation, it may be appropriate to specify
initial conditions in terms of absorbed motor power Pam) . Thus Qamy should be specified so as to fulfill
this power requirement. Computationally, this is afforded by including Qaw) as one of the simultaneously
corrected "control variables’ of the above mentioned iterative solution process. Absorbed reactive motor
power flows as a byproduct from the solution process. — Assume for the sake of generality of the ensuing
algorithmic presentation, that an asynchronous motor in steady state mode of operation, is also present at
the bus of the simple system of Figure 0.5. (This will alter the primitive system of Figure 0.6, as well as the

loop matrix B, but these aspects are not the issues right now.)

With (finally or tentatively) specified values of variables like (Bsmoy » Eso) » Qemoy » Qamo)), the

premises are given for computing initial values of the rest of the pertinent power system variables.
l.e: The network loop currents e, the capacitor voltages (o) , the asynchronous motor fluxes
dam(o) , and the synchronous motor fluxes ¢sm() -

The sought solution vector z() = [iiop(o): €1c(0)’s dam(e)> dsmoy 1’ is found by simultaneously solving the
network model (0-6), the synchronous motor rotorflux model given on top of Figure 0.4, and the

corresponding asyn-chronous motor rotorflux model (1-126) for steady state conditions, - i.e. after
setting the derivative terms =0. At the outset we then have:

di]oop/dt - XLloop-1‘ Rloop 'XLIoop.1‘ Blc ik:bop(co) XLIoop- XLloopJ‘ Bt-rest

=0= ay t - (| * €chord(o) = O < €erest (0-13)
dey/dt Xeprimitive Brc | Tie €tc(o) 0 0
doam/dt =0 = & ( Faw iamo) + Famgo) damo) ) (0-14)
dgem/dt =0 = @ (Vsmr(o) + Fsmi(o) ismio) + Fsme Gemio)) (0-15)

We notice that Xuoop'1 is common factor to all terms of the upper system of equations of (0-13),
and hence can be omitted in the present context. As a common factor to all equations «, can also
be omitted. The set of equations above may then take on the following form:

or compadtly;

Rloop Btc iloop(o -€chord(o) 'Bt-rest' Ct-rest
— = + (0-186)
xCprimitive Btct 1 €ic(o) 0 0
( Fami iamo) + Famyo) damo)) = 0 (0-17)
(Fsmigoy ismo) + Fams ¢emio) ) = -Vsmr) (0-18)
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Hsyst(O) Zo) = Esyst(O) (0-19)

The content of Hgysio) and Eeyeyo) flows directly from (0-16) - (0-19). The content is dealt with in
Chapter 2.4. The ‘remaining’ inital state variables z(,, are found from solving (0-19). The set of
equations provides the desired initial load flow, when such specified variables Bsm), Esto) » Qsmo),
Qamo) are applied, that all imposed component- as well as systems related operational constraints
are met. In case of infeasibility, proper adjustment of the 'specified variables’ must be made until
the desired initial system status is established.

An efficient gradient technique for establishing the desired initial conditions is outlined next, by way
of applying it to a small system that among its components comprises a synchronous motor and
an asynchronous motor. Both machines are presumed up and running at t= -0, implying that Qsm,
=1 and Qam) is to be determined. Example initial operational constraints :

Power supplied to the synchronous motor : Psutarget(o
Synchronous motor voltage . Esmtarget(o
Power supplied to the asynchronous motor : Pamtarget(o)

(say) -0.8pu (generator mode of operation)

(say) 1.0pu.
(say) 0.5 pu.

=

=

To contribute to fulfilling the fwo synchronous motor target values (Psutargst(o), Esmtargst(c) ), (WO
synchronous motor ’specified variables’ ( Bsmw). Efc) ) are avalable for that purpose. To contribute
to fulfilling the one asynchronous motor target value (Pamtargerc)), One asynchronous motor
'specified variable’ ( Qamy) is avalable for that purpose.The iterative solution process comprises in
general the following three main steps :

1) Stipulate initial value of Bsme), Exo), and Qam) . Set final value Qgpmey =1.0.

2) Solve for the rest of the initial state variables z,. Solution found from (0-19). Register
as byproduct from the solution, the quantities (Pswmyo) » Esmo) » Pamo)) for which there
are specified target values. Compute the deviations (AD) from target values:

APsmioy|  |Psmio) — PsMiarget(o)
AD = |AEsmo) |= |Esmio) — EsMtarget(o) (0-20)
APamioy | {Pamio) — Pamiarget(o)

If the absolute value of each deviation is below some individually set treshold, the
sought initial solution is found, and exit is made from the iterative process.

If the sought solution is (still) not found, a set of more appropriate values (Bsm), Ex)
Qame) ) have to be applied. To derive such a set; goto label 3) below.

3) Incrementally and simultaneously adjust Bsw(), Efc), and Qam( SO that an improved
initial power flow balance can be attained. The updated and improved value of
respectively Bsme), Efo)» @and Qame) to apply to this end, can conveniently be defined
as currently available value plus a proper incremental correction to be determined at
this stage of analysis :

To evaluate the proper corrections (ABsme), AEfo), AQampe) ) ON a simultaneous basis,
a sensitivity analysis is conducted to find the elements of the sensitivity matrix S of the
defined relationship (0-21):

APgy ABsm
AESM = S . AEf (0-21)
APam AQum

In the present case where S is a (3x3) maitrix, this intermediate sensitivity analysis
comprises 3 separate sensitivity computations:
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increase of Psy is investigated. This is afforded by setting Bsw = Bsm) + ABsm, and
solving (0-19) while Eg,) and Qam) are kept unchanged (i.e. AE; and AQay of (0-21)
are both zero). ABgw= (say) 0.01rad. From the solution of (0-19), the new values
(Psm , Esm » Pan) are evaluated, and so also the associated incremental increases
APgpm =Pgpm - PSM(O): AEgy =Esy - ESM(O) and APy = Pam - PAM(O) . The first column of S
can now be computed, as we definitionwise have - since both AE; and AQay =0 in
(0-21) -that S44 = APSM/AE”SM: 821 = AESM/ABSM ) 831 = APAM/ABSM . BSM is reset to BSM(O)

Secondly, the sensitivity of Psy ,Esy and Payy w.r.t. an incremental increase of Eis
investigated. This is afforded by setting E; = Eye) + AE; , and solving (0-19) while sy
and Qav() are kept unchanged (i.e. ABsy and AQay of (0-21) are both zero). AE; =
(say) 0.01pu. Fromthe new solution (0-19), values (Pgw, Esm, Pau) and associated
marginal increases APgy = PSM - PSM(O) , AEgy = ESM - Esm(o) and APam = Paum - PAM(o)
are evaluated. The second column of 8 can now be found, as we definitionwise have
that 812 =APSM/AEf , 822 = AESM/AEf y 832 = APAM/AEf . E; isreset to Ef(o) .

Thirdly, the sensitivity of Psy , Esyy and Pay w.r.t. an incremental increase of 2y is
investigated. This is afforded by setting Qam = QamEytAQam, and solving (0-19) while
Bsmwy and Ego) are kept unchanged (i.e. ABsw and AE; of (0-21) are both zero ).
AQny = (say) 0.01pu. From the new solution (0-19) we evaluate the values (Pgy,Esm,
Paw) and the associated marginal increases APgy = Pgy - Psmo): AEsm = Esm = Esmo)
and APay = Pam - Pamo) - The third and last column of S can now be found, as we defi-
nitionwise have that 813 =APS|\/|/A§2AM, 823 = AESM/AS)AM y 833 = APAM/AglAM . Oy is
reset 10 Qam).

With given sensitivity matrix $ and prevailing deviations AD relative to target values
(Psmtarget(o), Esmtarget(o) Pamtargetio)), €quations (0-21) are applied to estimate the set of
increments (ABsm , AEr, AQam) that will eliminate prevailing deviations- if processes
were linear: Using (- AD) as 'excitation’ on the left side in (0-21), and solving w.r.t. the
desired simultaneous increments, we get :

ABsm
AE; |=-8"-AD (0-22)
AQuam

The computed incremental values from (0-22) are then used to produce an updated

and improved set of initial values (Bswm) . Exoy » Qamo)) , in accordance with e.g. the
dynamic update logic illustrated by (0-23), and observing boundary constraints on
(in this case) Ex.

Bsmio) < Bsmio) + k ABsm
Eioy «Efo) +k AE; (0-23)
Qame) < Camioy+ k AQam

k is a scalar factor of default value 1.0 . An alternative value in the prospective range
( 0.0<k«.0) implies in principle safer but slower convergence. Following update of

initial conditions as specified by (0-23), return is made to step 2) of the above iterative
process.

Eigenvalue analysis
For the power system at hand a system model is presumed available for analyzing the system’s
dynamical response to any operations related disturbance. In compact notation the system model
is expressed in this way:
dz/dt = f(z,v) (0-7)
where z is the set of all system state variables, and v comprises exogenously specified excitations.
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Given the initial state of operation of the power system. We now seek the system'’s eigenvalues
which describe the inherent dynamic characteristics of the system, when incrementally disturbed
from the specified initial state. The task implies determining the eigenvalues associated with matrix
A of the linearized formulation

dAz/dt = Af(z,v) = A Az (0-24)

where Az comprises the incremental state variables, and A is a square matfrix produced from the
indicated 'deltaoperation’ performed on the right hand side f(z,v) of the system model. The
system’s eigenvalues are next computed using the QR-algorithm on A, after first reducing it to
Hessenberg form.

The elaboration of Af(z,v) is covered in Chapter 3, where self- and mutual elements of matrix A
are developed on general algorithmic form for all main types of power system component models.
To present the main features of the stated 'deltaoperation’, the relatively simple such operation
related to a system submodel that describes 'local’ state variables, is pursued next :

We focus arbitrarely on the roforflux submodel of a synchronous motor connected to the system.
This submodel describes the motor’s flux variables which are ’local’ state variables. From Figure
0.4 we copy the rotorflux submodel of the synchronous motor:

dgsm/dt = @y (esmr + Fsmi ism +Fsmg Gsm) = @ Gdem (0-25)
where;
Gdsm = (eswr + Fsvi fov *Fsmg Gom) (0-26)
Osm = [¢r,Pca, O kq]t = state variables in terms of synchronous motor flux components
ism = state variables in terms of synchronous motor current components
Kt Er Ef = (Ef + AE;) = field voltage
esmr = [0 Ki = (\2/(@s Tao)) Xea/(Xa — X'a) )
0 AE: = voltage control response, see equations (0-11)
(1T do)) Kad/X'ag) X'ad COSBsm - (10T 90))- Kag/X'ad) X'ag SiNPsm
Fsmi = (1/(@T"d0)) X'ag COSBsm - (1/(T"g0))- Xag SinBsm
(1T q0)) Xaq SiNBsm (1/(exT"40)) Xaq COSPsm
/(@ T'a0)) (1/X'ag) [(Xag/X'ag) (X'a=X"a) + X’aa] | (1(@T'a0)) Kao/X'ad”) (X'a = X"a)
Fsmy = (1T q0)) (1 Xad) (Xd —X'a) VNS
- W(ayT"q0)

From the foregoing we see that Gdgy is a function of a subset of the state variables:

Gosm = f(ism, dsm, Pom, AER) (0-27)
Equation (0-27) says that Gosy will depend on i = (2+3+1+1)=7 individual state variables.
Accordingly, the ’'deltaoperation’ on the right hand side of (0-25) can compactly be expressed in
this way:

Nj=7 Nj=7
Al Gosy) = ay AGhsy = Obj=12(aG¢SM/aZj) Az = j=214A¢SMj AZ; = Adsm AZdsm (0-28)
where;
Adsy = [Adsmism , Adsmbsm » AdsmBsm, Adsmace ]

= the coefficient elements of A associated with the considered rotor-
flux model. A¢sy is here on packed form, since only the 7 elements
of Az that are influencing on Ay Gdsy), are included in Azggy.

Azosy = [ Aitsm, Ad'sm , ABsm, A(AEQ]'

submatrix of Az, see comment above.

It remains to elaborate the algorithmic content of the coefficient terms of matrix Adsy. Based on
(0-28) and the rotorflux submodel data above, the following results are readily observed :
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The elements Adguisy Of coefficient matrix A :

Adsmism = @ (0G Psm/digm)

A?SMISM = ay Fsmio) = The elements of coefficient matrix A defining the (0-29)
influence on dAd¢swm/dt of the synchronous motor’s

own incremental stator currents Aism. Fsmig iS ini-

tial value of Fswi Qiven on previous page.

The elements Ad¢syodsy of coefficient matrix A :
Adsmbsm = @y (0G dsm/Idsm)

Aq)SM?sM = oy Fsmy = The elements of coefficient matrix A defining the (0-30)
(83 influence on dA¢sw/dt of the synchronous motor's

own incremental flux components A¢sm. Fsm, is

given on previous page.

The elements AdsmBsm Of coefficient matrix A :
AdsmBsm = @ (0G dsm/oPsm)

A
P

0y (OFsmi/dBsm) ismo) =The elements of coefficient matrix A defining (0-31)
the influence on dA¢sm/dt of the synchronous

motor's own incremental rotor angle ABsm.

(dF smi/dPsm) is produced from Fgu by taking

the stated derivative of each matrix element.

The elements A sy agqr OF coefficient matrix A :

Adsmaer = @y (0G dsm/0AE)

o oy Ks
A¢?M 4ef = oy (Vsm/0AE;) = | 0 | = The elements of coefficient matrix A (0-32)
3 0 defining the influence on dAgsw/dt of

the synchronous motor's own incre-
mental field voltage A(AEj;). K is
given on previous page.

Time response analysis
Given the system model of the power system, and the initial value of all its state variables. We
seek the variation over time of the system'’s state variables and their interactions, following some
specified disturbance to the system.

The task implies solving the set of equations dz/dt = f(z,v) numericlly over some desired time
horizon. The solution process must observe the fact that some of the electrical circuit elements
(R X,AE) pertaining to e.g. rotating machines, are themselves functions of one or more of the
system’s ’local’ state variables. If saturation phenémena are to be accounted for, circuit elements
may become functions of currents and voltages as well.

Thus it is evident that the system loop resistance matrix Ry, and the system loop inductor matrix
Xuoop bOth become functions of a subset of the system state variables. To account for this function-
ality, Ripop and Xueop (and naturally also XLloop ) have to be continually updated during processes
of numerical integration. In the studies accounted for in this report, a Runge-Kutta fourth order
integration algorithm has been applied for solving the differential equations. 'Continous update’ of
the network model implies i |n this case the choice of generating new and updated versions of Ry
and X0, (and also XUOOD ) multiple times in the course of advancing the solution one integration
time step.



1. Component Models

1.1 The Component Modelling Concept

1.2 The Lossy Inductor
Electrical Circuit Model

1.3 The Lossy Capacitor Bank
Electrical Circuit Model
Capacitor Voltage Model

1.4 The Synchronous Motor
Basic synchronous motor equations
Rotorflux model
Electrical circuit model
Electromechanical model
Addendum

1.5 The Asynchronous Motor
Electrical circuit model
Rotorflux model
Electromechanical model

1.6 Modelling of special voltages
in the d-q frame of reference
Specified voltage phasor
Synchronous motor field voltage

1.7 Component model summary (Green pages)
The Lossy Inductor
The Lossy Capacitor Bank
The Synchronous Motor ('5-coil basis’)
The 'Extenden’ Synchronous Motor ('6-coil basis’)
The Asynchronous Motor

page
11

173
1/4

1/4
1/5
1/5

1/7
177
1/10
1711
114
1/16

1/16
M7
119
1720

1721

1/21
1722

1/22
1/23
1/25
1127
1/31
1/34



-11-
1. Component Models
1.1 The component modelling concept
Chapter 1 develops a stock of four component models to apply in modelling of the common power
network components like overhead lines, cables, the infinite bus, capacitor banks, transformers,
synchronous machines, and asynchronous machines. The four component models are 'The Lossy
Inductor’, 'The Lossy Capacitor Bank’, 'The Synchronous Motor’, and 'The Asynchronous Motor’:

"The Lossy Inductor’ models directly the three phase, inductive series impedance, the three phase
inductive impedance load, and the infinite bus. Transformers, overhead lines and cables are modelled by
suitably arranging together component models of the type Lossy Inductor’ and Lossy Capacitor Bank’, -
see next.

"The Lossy Capacitor Bank’ models directly the three phase, lossy series capacitor, and the 3- phase,
lossy shunt capacitor. It also contributes to the modelling of other network components as stated above.

"The Synchronous Motor’ models the two main modes of operation of the synchronous machine; the
voltage controlled synchronous motor, and the voltage- and power controlled synchronous generator. For
conceptual clearness, motor mode of operation is the "default’ modelling mode. The component model of
Chapter 1 is based on a ’5-coil generalised model machine’, and aims at describing the ordinary synchro-
nous machine. For study of the performance of the adjustable speed synchronous machine, Appendix 2
develops an ’'extended’ component model based on a 6-coil generalised machine.

"The Asynchronous Motor’ models motor- as well as generator mode of operation of the asynchonous
machine. Motor mode of operation is the 'default’ modelling mode.

The component model is made up of one or more submodel/s, the configuration of which is defined
by the set of stafe variables that abides with the component model. Table 1.1 summarizes how
submodels add up to component models, and how the latter are configured to model the main
power system components.

Table 1.1 Overview of how submodels add up to component models and component models
add up to modets of main power system components.

Main power system <—— Component models <—— Submodel(s)
components
Inductive series impedance "The Lossy Inductor’ Electrical circuit model
Inductive impedance load "The Lossy Inductor’ Electrical circuit model
Infinite bus voltage "The Lossy Inductor’ Electrical circuit model
Capacitor bank 'The Lossy Capacitor Bank’ Electrical circuit model

Capacitor voltage model

"The lossy Inductor’ Electrical circuit models
Overhead line/Cable "The Lossy Capacitor Bank’ Capacitor voltage models
"The Lossy Inductor’ Electrical circuit models
Transformer ('The Lossy Capacitor Bank’) (Capacitor voltage models)
Electrical circuit model
Synchronous machine "The Synchronous Motor’ Rotorflux model *
(Ordinary synchronous machines)| (Based on 5-coil generalised machine) Electromechanical model *
(Adjustable speed version) (Based on 6-coil generalised machine) Control system models *

Electrical circuit model
Asynchronous machine "The Asynchronous Motor’ Rotorflux model *
Electromechanical model *
(Control system modet) *

*) Subsystem models that describe ‘remaining’ (or'local’) state variables, see previous page.

The submodels that go into respective component models, are developed in Chapter 1.2 - 1.6, and
summarized in Chapter 1.7. The extended machine model from Appendix 2, is also added into
Chapter 1.7. One of the submodels is the electrical circuit model. |n terms of formal representation,
the electrical circuit model is made common to all four component models.
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A structural description of the electrical circuit model is given in Figure 1.1.

The electrical circuit model of respective component models of the network, interlink to
describe integrated power network performance.

From a structural point of view the electrical circuit model is common to all four component
models. Parameter interpretation however, will depend on which component model the
electrical circuit model is a part of. The electrical circuit model comprises three main parts :

An oriented terminal graph displaying positive direction associated with the circuit model
variables (i,e) that connect electrically with the external network. For the stock of 2-
terminal component models developed in Chapter 1.2-1.6, the oriented terminal graph
becomes an oriented line segment. See figure a) below. Figure b) shows the standard-
ized d-q axis serial circuit elements that make up the electrical circuit model, - and is
fronted by the just stated graph.

Impedance terms R and X. describing the power network related 'passive’ electrical
properties of the component model. Index 'L’ denotes inductive character of the reac-
tance. The impedance terms for the lossy capacitor are R¢ and X =0. The capacitor
voltage is treated as a state variable, see next on the voltage sources e. v is the voltage
across the serial interconnection of R and X, see figure b) below.

A voltage source e giving the power network related source impact of the component
model. lllustrations:

If the component model is The Lossy Inductor, the voltage source e may or may
not be zero : If this component model is applied to model e.g. an inductive series
impedance, or an inductive impedance load, e = 0. [f the task is to model a fixed
voltage 'behind’ some specified inductive series impedance, e = ey, . See
Chapter 1.6 for description of eqq .

If the component model is The Lossy Capacitor, the voltage source e = AE,
where AE. is the voltage across the capacitor. See Chapter 1.3 for details.

If the component model is The Synchronous Motor, the voltage source e = AEgy ,
where AEgy is a formal electro-motive force (e.m.f) contributing to modelling the
synchronous motor. See Chapter 1.4 and 1.7 for details.

If the component model is The Aynchronous Motor, the voltage source e = AEay ,
where AE,y is a formal e.m.f contributing to modelling the aynchronous motor.
See Chapter 1.5 and 1.7 for details.

u is the voltage across the teminals of the electrical circuit model, see figure b) below.

PRI i"’i’@

............................................. »V >u

v=Ri+(1/@) X di/dt & v-e=u

a) b)
Oriented terminal graph Serial circuit elements fronted by graph a)

Figure 1.1 The electrical circuit model ; formal structure of submodel common to all component models
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1.2 The Lossy Inductor
The Lossy Inductor models directly the three phase, inductive series impedance, the three phase
inductive impedance load, and the infinite bus voltage. Transformers, overhead lines and cables are
modelied by suitably arranging together component models of the type Lossy Inductor and Lossy
Capacitor Bank.

A brief development is given of the network terms ( R, X, AE=0) that describe the lossy inductor in
the d-q axis frame of reference. For summary d-q axis model description, see Chapter 1.7.

Currents (igq0), voltages (Vyqo) and fluxes (Wyq) Within the d-g-o axis frame of reference, are definition-
wise related to their corresponding phase (RST) variables in the following way:

iggo = P irst Vigo = P Vrst L R TS (1-1)

P is the Park transformation, where 6 is the angular displacement of the axes of the (RST) reference
frame relative to the axes of the (dq) reference frame:

R S T .
cosO | cos(6-2n/3)f cos(6-4n/3) |d

P =2/3|-sinf{ -sin(8-2/3}| -sin(6-47/3) |q (1-2)
Ve Vo A o

See Appendix 3 for detailed development of P. For back transformation we invert (1-1):

irst =P e~ Vrst= P Vigo kst =P g0 (1-3)
where;
coso -sind 1
P' = [cos(0-21/3) | -sin(8-2m/3)| 1 (1-4)
cos(6-47/3) | -sin(6-4m3)| 1

In the physical three phase (RST) reference frame, we can for (say) phase 'R’, express the voltage
Vg across the considered impedance (r+jx) as:

VR = ir 1+ d¥R/dt (1-5)

where ig and ¥k is - respectively - current and flux linkages of phase 'R’. The per phase variables vg ,
ir and g are related to their respective d - q - 0 axis components in the following way, see (1-4) :

VR V4 COSO - v4 sind + e,
iR ig COSO -iq- SN® + i, (1-6)
Y = ¥ cosb -¥y sing+ 'Y,

Inserting expressions from (1-6) into (1-5), and observing that
d¥r/dt = cos6 d'¥y/dt - sin6 d'¥y/dt + d\¥o/dt - © ¥y sind - @ ¥ cose (1-7)
we get the following 'd-g-o version’ of (1-5 ):
0= [-vg+rig+d¥/dt- o %] cosd
+[Vq-Fig-d¥/dt- o ¥ ]sind (1-8)
+[-votrip+d¥,/dt]
For general validity of (1-8), the following d-q conditions must be observed to equivalence (1-5) :
Vg =F ig + dW¥y/dt - O)‘Pq

Vg =F g+ d¥/dt + o ¥y (1-9)
Vo = F iy + d\P,/dt
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We assume in the present outline that zero sequence currents are absent. Hence the last equation
of (1-9) can be disregarded. Since component symmetry is presumed at the outset, we further-
more have that Wy=Lq iy =L iy and ¥y =Lg4iq=L ij. Setting x= s L, (1-9) can be expressed in
the following form, when referred to nominal frequency :

Vd ig X dig/dt -X
—| = Fl—|+ (V) + E (1-10)

Vg Iq X | {dig/dt X

In summary, the d-q axis reference frame model (1-10) of the symmetrical three phase impedance, is
conveniently expressed as follows:

V4 ro|-x X dig/dt

— = + (1a)
Vq X |r X | |dig/dt

(1-11)

This implies the following electrical circuit model of the lossy inductor, hereby indexed 'L’ :

—ic .
ST AE=0 —e
RL XL e
» Vi » up
d
vL = Ry i+ (1 o) X diy/dt & wvi=u
where;
M -xo Vid
RL = \
Xy n Vig
W Ll XL iLd
XL = = iL=
I oy L XL i

z = (r_+jx.) = given per phase description of lossy inductor

Figure 1.2 Electrical circuit model of lossy inductor 'L’. d-q axis frame of reference

Summary model description followed by a simple/qualitative illustration of model application, is given
in Chapter 1.7.

1.3 The Lossy Capacitor Bank

The Lossy Capacitor Bank models directly the three phase, lossy series capacitor and the three-
phase, lossy shunt capacitor. It also contributes to the modelling of other network components as
pointed to above.

A brief two-step development is given of the network terms ( R, X.=0, AE.) describing the lossy
capacitor bank in the d-q axis frame of reference. Step 1 elaborates the electrical circuit model com-
prising the previous three network terms. Step 2 develops the capacitor voitage model, i.e. the
differential equation governing the variation of the above formal network ferm AE.. For summary
d-q axis component description, see Chapter 1.7.
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Electrical Circuit Model
Observing the adopted conventions of Figure 1.1, we can for the physical three phase (RST)
reference frame for (say) phase 'R’, express the voltage ug across the considered lossy
capacitor with parameters (r,C), as:

Ur = iR r- AER (1-12)
where
AER = (1/C) [ igdlt (1-13)

ir and AEg is - respectively - current of phase 'R’ and voltage across the 'pure’ capacitor
element C of phase 'R’. The per phase variables ug, ig and AEg are related to their respective
d-g-o axis components in the following way, see (1-4) :

UR = Ug COSO - U4 SiNO + ug
ik = Ig 0SB -ig-siNG + i, (1-14)
AER = AE4 cosb - AEq sin+ AE,

Inserting expressions from (1-14) into (1-12), we get the following 'd-g-o version’ of (1-12):
0= [-ug+Fis-AE4] coso
+{ Ug-rig+ AEg] sin® (1-15)

+['uo+Fio"AEo]

For general validity of (1-15), the following d-q conditions must be observed to equivalence
(1-12) :

Ug=F id-AEd
Ug =F iq- AEq (1-16)
Ug =F ip - AE,

We assume for our present purpose that zero sequence currents and voltages are inconsequential.
Hence, we can disregard the last equation of (1-16).

The two remaining equations of (1-16) implies the following electrical circuit model of the lossy
capacitor bank, hereby indexed 'C':

—ie¢ —
L e——— X[_=O AEC -8
R v
C > c e
4
Ve=Rele & Ve-AEc=ug
where;
Te Ved
Rc = Ve I
e Veq
AEcd icd
AE: = = Capacitor voltage. See ic=
AEq| capacitor voltage model. icq
(re,C) = given per phase parameters for lossy capacitor bank

Figure 1.3 Electrical circuit model of lossy capacitor bank 'C’. d-q axis frame
of reference
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Capacitor Voltage Model
Returning to (1-13) and taking the derivative, we find that dAEg/dt = ir/C. Inserting into this
equation the expression for ir from (1-14), and the derivative

dAEg/dt = cos® dAE4/dt - sinB dAE/dt + dAE./dt - ® AE4 sind - ® AE4 cosé (1-17)

developed from that same set of equations, we get the following 'd-q-o version’ of the derivative
dAEg/dt of the three phase frame of reference:

0= [ifC- dAE4/dt + ® AE,] cosd
+ [ -ig/C+ dAE/dt + & AEq ] sind (1-18)
+[io/C - dAE/dt ]

For general validity of (1-18), the following conditions must be fulfilled:
dAEy/dt =ig/C+ ® AEq
dAE/dt =iy/C - ® AE4 (1-19)
dAEy/dt =ig/C

We assume again that zero sequence currents and voltages are inconsequential. Hence, the last
equation of (1-19) can be disregarded. '

The two remaining equations of (1-19) implies the following capacitor voltage model of the lossy
capacitor bank, - here indexed 'C’, - when referred to nominal frequency :

dAE/dt = @ (Xs ip + 1 AE,) (1-20)
with initial condition (see outline of (1-21) below):

AEq0) = (1 Xo) lgge)

where;
‘s e C)l AE.- AEcq
| 1/(wy- C) AE¢q
_ o} 1 _ icd
' 411 0 e icq

Figure 1.4 Capacitor voltage model of lossy capacitor bank 'C’.
d-q axis frame of reference.

Initial value of AE; flows from (1-20): For t= -0 we have that dAE/dt = 0. Solving with respect to
AE; = AE.), we find :

AEy = (1)t Xe iy = (+ Xo) e (1-21)

Summary model description followed by a simple/qualitative illustration of model application, is given
in Chapter 1.7.
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1.4 The Synchronous Motor

Formal basis for the ensuing model development is the d-q diagram of a generalised machine as pre-
sented by B.Adkins [1]. In view of actual synchronous machine design as well as availability of practi-
cal data, it is deemed appropriate to specify a five-coil, salient pole generalised machine as main basis
for analysis. See Figure 1.5. For special or more detailed analyses, modelling based on the six-coil
generalised machine may be appropriate; see Appendix 2. The three phase stator winding is assumed
to be the rotating part, while the d-q axes with associated windings are considered fixed. See App.3.

The 'pseudo-stationary’ d- and g coils equivalence in a suitable way the electromagnetic effects of the stator windings of
the physical three phase machine. The currents, voltages and fluxes associated with these coils, are definitionwise related
to their corresponding physical phase variables via the Park transformation, see App. 3. The fixed coil 'f  of the diagram
represents the field circuit of the synchronous machine. The fixed coils denoted 'kd' and ’kq', aim at equivalencing the
effects of all damper circuits in the machine.

The five-coil representation implies 5 state variables to describe the electrical performance of the syn-
chronous machine. As such variables we choose to apply the stator current - represented by the two
components (ig,ig), - and the flux linkages associated with respectively the f-, kd- and kg- coil.

g oV I o 4
Vv S e
f kd

Figure 1.5 Diagram of five-coil salient pole generalised machine.

The elaboration of a practical synchronous motor model that — in the context of power network
modelling — takes the form of a standardized d-q axis circuit element, is presented in four steps:
Step 1 develops the basic motor equations that form the platform for the ensuing algorithmic
development. Step 2 generates the rotorflux model, step 3 the electrical circuit model, and step
4 the electro-mechanical model.

Summary synchronous motor model description followed by a simple/qualitative illustration of model
application, is given in Chapter 1.7. For extended model description and application, see Appendix.2.

Basic synchronous motor equations
The main premises for the volfage- and flux equations to be developed, are as follows:

With reference to the generalised machine of Figure 1.5 : Positive direction of rotation: clockwise.
The electrical torque is defined positive in motor mode of operation. External applied voltage is
positive voltage, giving rise to positive coil currents. Positive flux is directed away from rotor centre.
Positive current produce positive flux.

The machine is presumed linear. Definition-wise the following basic outline then holds true :

ey= dWdt = dWdi di/dt = (¥i) di/dt =L. di/dt, where perdef.: L= Wi (1-22)
The machine is characterized in terms of per unit (pu) quantities : For the main (d and g-)circuits, base
values of current and voltage are the nominal values. For a circuit magnetically coupled to a main
circuit, base current is the current that produces the same magneto-motive force (m.m.f.) as the main
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circuit's nominal current. By defining pu variables in this way, inductivity description of mutually coupled
circuits becomes conveniant. lll.: For two such circuits we may write: s = (lig+ m) and 1, = (lag + m),
where I is seffinductivity of coil 'x', ks is its leakage inductivity, and m is the mutual inductivity. In
consistency with the above premises, the following inductivities are defined for the model machine:
Forthe d-axis: L4 = LagtLag Forthe g-axis: lLq = Lagtlag
Lt = LigtLlad Lkq = Lkgotlag (1-23)
Lk = LkdotLad

Total power supplied to the motor is the sum of power supplied to the d- and g coil. We wish to have pu
supplied power =1 (or close to this value) when current and voltage of the main circuits are 1pu. Thus, in
the 3-phase frame of reference we wish to define pu power as prst = (1/3) (er irtes isterir), andin the
d-q axis frame of reference we wish to define pu power as paq =(1/2) (eq is+eq ig)+eo b. The factor 2/3
that appear in the Park transformation P of (1-2) ( and the corresponding factor 1 of the inverse Y
reflects the constraint that these expressions apply when transforming from the one frame of reference
to the other. See Appendix 3 for details.

Based on the ahove premises the following defining relationships are set up between flux linkages and
currents within respective axes:

d g f kd kg
Ws = Lg iatlad irtlag ka ] L4 Lad  Lad
¥q = Lq lotlaq i ¥y Lq Lag
W =Ly irtlag igtlad ikd — Inmatrixform: [ ¥ | =| Lag L¢ Lad - W¥=Li (1-24)
Wkd = Lk iketlad irtlad b Hed Lags lLas Lka
Wkq = Liq Ikgtlaq g Wq Lag Liq

For the d- and g-coil the sought voltage balance is readily established by starting from the 3-phase
frame of reference (as also done previously,- see Chapter 1.1 & 1.2) : In the physical three phase
(RST) reference frame, we can for (say) phase ‘R’ of the motor, express the voltage balance as:

er = ir I, + d¥r/dt (1-25)

where eg, i, Pk and r, is - respectively — impressed voltage, current, flux linkages and resistance
of motor phase 'R'. The per phase variables er , ir and Wz are related to their respective d -q axis
components in the following way, see (1-4):
8r = €4 CoSH -eq SiN6 + &,
iR = ig cOSO -iqsind +i, (1-26)
YR = ¥y cosO - ¥y sinb+ 'K,

0 is the angular displacement of the axes of the (RST) reference frame relative to the axes of the d-q refe-
rence frame. Inserting expressions from (1-26) into (1-25), and observing that

dWk/dt = cosB d¥y/dt - sind d'¥y/dt + d¥o/dt - » ‘Fy sin® - ® ¥y cose (1-27)
we get the following 'd-g-o version’ of (1-25 ), where wis angular rotor speed, see App. 3
0= [-eq+raig+ d¥e/dt- ® ¥] coso
+] eq-Taiq-d¥/dt- @ ¥ sino (1-28)
+[-&c+rai+ d¥/dt]
For general validity of (1-28), the following d-q conditions must be observed to equivalence (1-25):
€q=T;ziq +d¥y/dt- ® \Hl
€q=raiqt d¥y/dt+ o ‘Y (1-29)
€ = T4 Iy + d¥,/dt
We assume in the present outline that zero sequence phenomena are inconsequential. Hence the last

equation of (1-29) can be disregarded. In conclusion at this stage, we get the the foilowing equations
describing the voitage balance of the d- and g-coil of the synchronous motor:

€q = Iy ig + dW¥y/dt - C!)\Pq
B = g + AF /At + & By (1-30)
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For the remaining three fixed coils 'f, ’kd’ and 'kq’ of the generalised machine, the respective
voltage balances can readily be defined in this way:

e =r; i+ dP/dt
k=0 = lg fa + d'Hha/dt (1-31)
ekq=0 = Ik ikq + d‘{’kq/dt

Equations (1-30) and (1-31) form together the voltage equations of the model synchronous machine.
The defining flux equations of the machine are given by (1-24). In a summary fashion, all these
equations are shown in Figure 1.6. They form the platform for the ensuing algorithmic development.

d g f kd kg d g f kd kg
€4 la i dWy/dt -1 Wy Voltage equations
8q la d¥/dt 1 ¥, of the model syn-
& |= ri +(d¥/dt | + o ) 2 chronous machine.
Eid ld d¥/dt Weg (Equations (1-30)
€xq I'kq d‘{’kq/dt \qu and (1-31) )
J
€4q I 1;; d "qu/dt qu ‘I’dq (1 -32)
—=—-1 + + ® _
€5 I _lf_k_ d‘Pfk/dt ‘Pfk
where;
d q d q
fa ed ia Wy - q
p = edq = idq = ‘I’dq = qu = (1_33)
la €q iq ¥, 1 a
Ki K¢
re et i ¥
rx = Fkd ex=|ew=0 ix=| ik | W= | W (1-34)
kg €kq =( ikq g
d q f kd kg
Wy Ly Lag Lad
hel Lq Lag
Y | ={Lag Li  Lag Equations copied
\Pkd Lad Lad Lkd from (1-24)
Yiq Laq Liq
d
R Lag  |Lwam | | iaq (1-35)
Wik Ling@g | La i
where; ) . . -
I-d Lad Lad d
Ly = Ligaym = (1-36)
Lq Lag| g
Lad Lf Lad f
Lixog = | kad Lk = | Lad Lka kd (1-37)
Lag Lkq | ka

Figure 1.6 Basic synchronous machine equations: The platform for the ensuing
algorithmic development.
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The rotor flux model
We seek the description of the flux variables Wy = [ WYka Wiq ] t (and - if desired - also their implied
currents i ) . For brevity of expression, we denote the algorithms that are developed in this context,
'the rotor flux model'.

Two sets of equations from Figure 1.6 provide the appropriate basis of this analysis; the lower set of
equations from respectively (1-32) and (1-35):

ey = Iy iy + d¥/dt (1-38)
Wi = Linoday dag + b b (1-39)

We wish to retain the flux variables ¥, as state variables, while eliminating the currents i from the
'surface’ of analysis. Thus we eliminate iy from (1-39) and insert the expression of it into (1-38),
yielding:

dW/dt = eq + (-rg L") W+ (rg Le™ Ltyda) ) g (1-40)
The currents iyq are referred to the model machine’s local d-q axes. We want generally to refer them

to the chosen global system reference phasor. The shift from global to local description is given by the
following transformation:

cosP | -sinf
isq = Tipa where; T= - (1-41)
sinf | cosP

Here small letters (dq) signal locally referred currents, and capital letters (DQ) globally referred.  is
the angular displacement of the local reference axis relative to the global axis.

We insert igq from (1-41) into (1-40) and define for conveniance new flux variables ¢ = oy ¥ .
We then get the following sought form of the equations for modelling of the fluxes ¢y :

dénddt == oy ex+ (-t La™") de* (o rx Lac” Liggag T) oo (1-42)
(1-42) is inconveniant to use. By setting in the appropriate matrices from Figure 1.6, and doing some

further reductions and definitions, we arrive at the following practical version of (1-42), see Figure 1.7:
For further on how machine parameters relate to basic model parameters, see 'Addendum’ on p.1/16.

d( x1/)dt = oy (ex + Fni ipa +Fro' Gx) (1-43)
where:
Ke Effs Er = (Ep + AE;) = field voltage. See Chapter 1.6 Xad = Xa -Xag
e | 0 |k Ki = (/@ ') Xea/ Ko — X'a) X'ag = X'g -Xag
0 |xq A E; = voltage control response X'ag = X"q4 Xag
D Q
(1 0y T'go)) Kad/X'ad) X"aa 008B | -(1/( 6% T'ao)) Kat/X'aq) X'a¢ SiNB Xag = Xg Xag
Fui = (1105 T"do)) X'ag cOSP -(1/(0% T’d0)) Xag siNB X"aq = X'q Xag
(1/(@ T"q0)) Xaq SINB (1/(@ T"qo0)) Xeq COSP
(1@ Tao)) (11X'ag) [(XaalX'ad) (X'a = Xa) + Xas ]| (1@ T'so)) KaaX'aa”) (Xa = X"a)
Fig= (1/(as T"w)) (1/Xag) (Xa = X'a) - {0y T )
- (s Tq0)
Xa, X', X"¢ : direct-axis synchronous, transient and subtransient reactance (pu)
X X'q . quadrature-axis synchronous and subtransient reactance (pu)
Xao . stator leakage reactance (pu)
T4, T"4 : direct axis open stator transient and subtransient time constant (s)
T40 : quadrature axis open stator subtransient time constant (s)

Figure 1.7 Rotor flux model. Main model part describing synchronous motor state variables ¢u=[¢x ¢ Oxal'
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At any time during integration the rotor- and damper currents ix may be derived from equation
(1-39), after introducing ¢w = o ¥ and igq = Fipa:

is= (Xa) ™ (O - Xogr ing) (1-44)
where:
f kd kg
X2adl(Xa ~ X'q) Xag f
Xa = Xad Xag + X'ag- X'ag /(X'q — X"3) kd
XaqlXq~XT) |ka

D Q

Xad COSP | -Xaq SINB |
Xoar = Xikyag T= | Xad 08B | -Xaq sinB |kd
Xaq SN | Xaq cosB | kq

Figure 1.8 Rotor flux model. Residual part of model describing (locally referred) currents ia =[it, ixa, ikal'
given (locally referred) machine fluxes ¢« and (globally referred) stator currents ipq .

In the elaboration of equations (1-43) and (1-44), letter combinations like 'fk’, 'dq’ and 'DQ’
have been used for indexing to (hopefully) ease understanding of the algorithmic development.
From a systems analysis point of view (once the component models have been established),
better notations should be applied. See Chapter 1.7 for summary model descriptions that aim
at being user-oriented.

The electrical circuit model

In the context of power network analysis the task at hand is that of equivalencing the synchronous
motor model of Figure 1.6, by a standardized d-q axis series element comprising an R-term, an in-
ductive X-term, and an emf. AE. See Figure 1.1 and associated text.

Three sets of equations from Figure 1.6 form the basis for the ensuing analysis, namely the upper
set from (1-32), and both sets contained in (1-35) :

€4q = Iy idq + d"qu /dt +® qu ‘qu (1-45)
g = Lag fag + Laym i (1-46)
Y = Lnoq) ldq + L B (1-47)

i solved from (1-47) is inserted into (1-46), which then describes Yy, as a function of igq and
Wi . The expression thus found for Wy, is inserted into (1-45), yielding finally the applied stator
voltage eqq as a function of the machine’s state variables igqq and ¥ . Introducing also the new
flux variables ¢ = s W and duq = @ Yiq, we find as a result from this process:

€4q = Tilggt(Lgg- L(dq) () Lﬂ( L(fk)(dq) ) digg/dt + (1/ ) L(dq)(ﬂ() L dndat (1-48)
+ @ Hyq (Laq - Liauag Lac* L) ) g + (o 01:) Haq Laisg Lac”

By introducing the appropriate submatrices from Figure 1.6 into (1-48), and then elaborating some
further on the equation, we find the following 'intermediate’ state of it, see Figure 1.9. The state is
termed intermediate since stator voltage eqq and stator current iy, still are referred to the machine'’s
own d-q axes. It remains to replace these variables by their globally referred counterparts epq and
ipa, respectively. The machine fluxes ¢y are locally referred, and will conveniantly be kept so
throughout alt modelling processes.
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84q = Taigg+ (V) X" dig/dt + Q X igqg + By dind/dt + Q B» ¢y (1-49):
where;

Q= (w/a) = pu rotor speed

X"g X'
X' = —— and X" = ——
X"q X"g

5 (1/ av) (X"ad/(Xag- X'ad)) (Xd-X’d)l (1) (1/Xag)- Xa — X"d)

1 —
5 -(1/Xaq) Kq = (X")

2 =

(X"adl(Xag Xad)) (Xa ~ X'q) (17Xad) (K'a—X"q)

| (/) (1ee) 0o =X | !
From Figure 1.7 E

L dgw/dt = @ (enc* Fri- ba +Fre ) | (1-43)

Figure 1.9 'Intermediate state 1’ of equation (1-48): It remains to replace locally referred stator
voltage e4q and stator current iy by their giobally referred counterparts upg and ipq

As part of the basis for finalizing (1-49), we point to a few premises and rules that are crucial to
the process of shifting from local to global reference (or vice versa) :

For stator voltage and current the following holds true:

€dq
|dq

T ena cosf | -sinf cosP | sinp
T iba where; T= and T' = (1-50)
sinf | cosf -sinf | cosp

Definitionwise we have for electrical rotor angle and rotor speed:
B=(wyt-8) — dp/dt= (- @) = - (1-Q) (1-51)

From mathematics:
degq/dt = d(T epq )/dt = (dT/dt) epq + T depa/dt (1-52)

From mathematics and (1-51):
dT/dt = (dB/dt) (dT/dB) = w- (1 - Q) dT/dB (1-53)

Introducing the global variables epa and ipa info (1-49), and processing the set of equations in
accordance with premises and rules above, we arrive at 'Intermediate state 2' of equation (1-48).
See Figure 1.10. It remains to develop more userfriendly expressions for the terms Rpq, Xpq
and AEpq, while abiding with the adopted definitions associated with an electrical circuit model.
See Figure 1.1 for summary of definitions.

enq = Rog Iba *+ (1/a) Xoq ding/dt + AEpq (1-54)!

Xog=T'X: T

Roa = fa+ (1-Q) T' (¢! dT/dB-X" T) + (T X* T) + (e T Bt Frg) 5
AEpq=[ay T Byl ex + [(@ T By Fyp) + (@ T Bo)] i

Figure 1.10 'Intermediate state 2’ of equation (1-48). It remains to develop more userfriendly
expressions for Rpo, Xpg and AEpq, abiding with adopted model conventions.
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After some straightforward but tedious laborations, we arrive at the sought electrical circuit mode!
shown in Figure 1.11. At the end of the finalizing process sign conventions and terminology in line
with that adopted for the formal electrical circuit model of Figure 1.1, are observed.

«~ipa  Roo Xba AEpa  =( Vi + Hacdx ) = motor emf.
@
Voa
>UDQ
\
(\2019 = RDQ‘iDQ + (1/0)0)'XDQ'diDQ/dt & Vpg - AEDQ = Upq (1-55)

Electrical circuit model of the synchronous motor in d-q axis frame of reference

AEpq = ( Vi + Hacds ) = synchronous motor emf.

(Ra + X" + (2Q - 1)-X"-sin2p + X"-cos2p ] X+ (2Q - 1)-X"-cos2B — X, -sin2p

Rpa = A _ _ A _ _
X" +(2Q - 1)-X"-cos2p — X", -sin23 ‘ (Ra + X)) - (2Q - 1)-X"-sin2p - X”; -cos2p
X"+ X"cos2B | X"sin2p Cr-Ercosp Er = (Ero + AE¢) = field voltage where Ey, is

Xpg = — y— Vi = |——— initial value and AE; is voltage control

- X"-sin2p X" - X"-cos2p -CrErsing system response. See p. 1/29

Cs =(\/2/( o T do})- (X" aa/X aq)

Q-fi-sinf + fo-cosf Q-fa-sinB +f4-cosp Q-fs-cosp + fs-sinf
Hyx =

C2-f1-cosB - f2-sinf Q-f3-cosp - f4-sinf -Q-fs-sinf + fs-cosP

;(” =0.5(X"g+ X" X't =0.5(X"gq+ X"q) « X' = (00T do))- (X" aa/X ag)* (Xa — X'a) + (100 T"d0))- (X'a ~ X"q)

X? = 05" - X" X" = 05"~ X"rq) X = (Moo T q)- (g = X"o)

f1 = (X - X'g)-(X"ad/(Xad- X aa)) —  Xad = Xd-Xag
f2 = f1-[(Xa = X"a)- [ (1/(000T"60))-(1/X"ad) - (1/(00 T'ao))-(Xaa/X'ad®) 1 - (1/ (©0'T’d0))- (X" ad/X'ad) ] « Xad = Xg-Xag
fa= (X'a— X"g)X ad — X’ag = X"g-Xag
fa = fa-[ (1/(@0T'a0)) (X" ad/ X ac?)-( Xa = X'a) = (1/(@00T"a0) ]

fs = - (Xq— X"q)Xaq « Xag = Xq-Xag
fo = fs - (1/(00:T"q0)) « X' = X"q-Xag

Figure 1.11 Electrical circuit model of the synchronous motor

In the elaboration of equation (1-55), letter combinations like 'fk’ and 'DQ’ have been applied for
indexing to (hopefully) enhance understanding of the algorithmic development. From an ensuing
application point of view, better notations could be devised. See Chapter 1.7 for for summary
model descriptions that generally aim at being user-oriented.
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The electromechanical model
We seek here the description of the final two synchronous motor state variables, - namely pu rotor
speed Q, and rotor’s electrical angle B relative to some chosen synchronous reference. For brevity of
characterization, the algorithms developed in this context is denoted ‘the electromechanical mode!’.

The algorithm that governs motor speed performance is the torque equation of the machine unit. A
brief elaboration of this equation on pu form referred to common system base, follows: In S| units
Newton’s second law states the following torque balance for the rotor system of the motor :

J-dwmec/dt = (Tumeer) — Tnmi(mec)) INM] (1-56)

where J is total moment of inertia of the rotating masses in NMs?, oyec is mechanical angular speed,
Tmeer is electrical motor torque and Tywmeey is Mechanical load torque, both in NM. Trmen s by
definition positive in motor mode of operation. Tywmee) is definitionwise positive for a mechanical
torque that contributes to slowing down rotor speed. With Sg,s as rated system VoltAmpere (VA)
power base, base torque becomes Sgas/Omec(oy. The pu form of (1-56) is found by dividing both
sides of the equation by the system base torque:

(J-Omeco) /Stas)-dQ/dt = (Tien = Timec)) [pu] (1-57)

Here Q = (®mec/ ®meco)) = ®/0() = pu rotor speed, T is electrical motor torque in pu, and Timee) IS
pu mechanical torque. It remains to express the inertia constant in recognizable unit(s) : We
choose here to develop the expression of J in terms of a nominal acceleration time T,. T,is the
time (in s) required to accelerate the unit from stillstand to synchronous speed, given an accele-
rating torque that is constant and equail to the rated torque (Smotor COSQMotor)/ ®mec(o)  Of the motor.
Swotor is rated (VA) motor power, and cosomotor is the unit's rated power factor. Applying this
torque on the right hand side of (1-56) and integrating omec from zero to Omec(o)y We find the
following expression for total moment of inertia: J = Ta-SMOmr-COS(pMmor/mmec(o)Z. This expression is
finally inserted for J into (1-57), yielding this practical pu form of the motor torque equation:

((SMotor/SBas )'Ta'COS(PMotor)'dQ/dt = (T(el)_ T(mec)) [pu] (1"57)

Part of electromechanical model. The description of synchronous motor
rotor speed Q. Acceleration time T used for characterizing total moment of
inertia of rotating masses.

Another widely used normalized inertia figure is the H-constant. H is defined as stored kinetic
energy at synchronous speed divided by machine voltampere rating, i.e.: H= O.5-J-mmec(o)2/SMowr.
This implies the following relationship between T, and H: H = 0.5-T,-COS®uotor -

The electrical motor torque T, is developed next. Per definition we have the following expression
for power supplied to the synchronous motor, see Figure 1.6 and comments on basic premises in
Chapter 1.4 :

Peey = 0.5-€dq"idq (1-58)

Setting in for eqq and igq from (1-32) and (1-33), and observing that ¢qq = 0o-Fyq , We find that;
Plen = 0.5:1a-(id* +ig?) + 0.5-Quigg 1%daq + (0.5/0)-iaq"-Apeiq /dlt (1-59)

1 is defined earlier, see Figure 1.4 and also below. Replacing the locally referenced current iyq by
its globally referenced counterpart ipg according to the transformation T of (1-41), we find:

Peny = 0.5:a-(in” +ig?) + 0.5-Qipg T1-duq + (0.5/00)-ing" T"ddag/dt (1-59)
T

Losses in stator Airgap power Oscillating power
resistance (zero power over time)
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The electrical torque is found by dividing the expression for airgap power by Q. T, = (+ T). The flux
vector ¢yq is determined as a function of ing and ¢w from equations (1-46), (1-47), (1-41). After some
elaborations the following practical algorithm emerges for determining the electrical motor torque Ty :

Tey = 0.5 ing' Tr g (1-60)
where;
%q =X"T it f (hk
and
ip Synchronous motor |
iba=|-— | = current, global |
iq reference. | Synchronous motor
r state variables
O Field- and damper |
Ok = | Oxa = flux linkages, local |
Oxq reference.
cosB | -sinp Transformation that shifts stator
T= = current from global to local refe-
sinf cosf rence axis : igq =T ing See (1-41).
_ 1 cosP | -sinf sinf | -cosB
Ti= (1 T)'= . 1' =
-1 sinf | cosB cosp sinf
X”d
XH =
Xllq
f1 | f3 f1 = (Xg = X'a) X"ad/(Xad X'aq)
f= where; 3= (X’g— X"a)/(X'aq)
- 15 f5 = -(Xq = X"q)/(Xaq)

Figure 1.12 Practical algorithm for computing synchronous motor electrical torque Tieny In (1-57)

The mechanical torque Tme) Will take on different forms, depending on the operational regime;
whether motor or generator mode of operation :

For motor operation (which per definition implies a positive sign of the mechanical torque),
the following premises may in many cases prevail:
Timec) = Timeciop S, Where Timecioy) and exponent x depend on the 'rotational status’ of (1-61)
the motor at t=-0; whether already up and running, or to be started from Q= 0:

if the motor is up and running ;

Timecto) = Teelo) = electrical motor torque at t=-0. The proper value is found by

applying equation (1-60) to data from the initial power system load flow.
K = exponent that depends on the load torque’s sensitivity to rotational
speed for Q close to 1.0 . In many cases: k= (say) 1.5 — 3.5.
If the motor is to be started from stilistand (as e.g. an asynchronous motor) ;

Timecioy = coefficient that contributes to modelling the effect of mechanical friction, air

resistance, etc, during the startup phase. Expected range: (say) 0.02 — 0.05
k= exponent reflecting speed dependency of Timec). Prospective area of variation:

K =(say) 1-5. «x as well as T(mec(oj) May change over the range Q=0 —.

For generator operation (which per definition implies a neg. sign of the mechanical torque):
Tmee) = (Tienoy+AT(mec)), Where T(eyoy is initial electrical motor torque, and AT (mec) is given by the re-
spons of the power control system. For details, see 'model stock’ of Chapter 1.7. (1-62)

Figure 1.13 Example algorithms for computing synchronous motor load torque Tmee) in (1-57)
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The algorithm that governs the variation of rotor’s electrical angle p relative to some chosen
synchronous reference phasor, is definitionwise given by equation (1-51):

B=cyt-0 (1-63)

where 6 is the angular displacement of the axes of the three phase (RST) reference frame,
relative to the axes of the (dq) frame of reference.The sought description flows from (1-63) :

dp/dt = ay (1- Q) (1-64)

Part of electromechanical model: The description
of synchronous motor rotor angle B in radians

Summary synchronous motor model description followed by a simple/qualitative illustration of of
model application, is presented in Chapter 1.7.

Addendum

To enlighten the laborations towards compact motor model descriptions like those of Figures 1.7,
1.8, 1.11 and aiso 1.14 and 1.15, the interrelationship between ‘commercial’ machine para-
meters like (X4,X¢.X" 4.Xq:X" g Tdos 1 dor | qo) @Nd basic model parameters like

(Lao Lad,Lag, Lo Lkdor LigaTa:lka: M. Tkg), @re briefly summed up:

Xd = Xag+ Xad

Xi = Xig+ Xad

Xkd = Xidg + Xad

Xq = Xag+ Xag

Xkg = Xkgo + Xaq

X4 = Xag+ X'ad where 1/X'aq = (1/Xag) + (1/Xio)

X4 = Xag+X'ag  where 1/X"ag = (1/Xaq) + (1/Xto) + (1/Xkde) = (1/X'a0) + (1/Xido)
X'z Xag+ X'sq  Where  1/X7aq = (1/Xaq) + (1/Xkqg)

T'ao = Lifri = Xil(oo ®) (Open stator. 'Seen’ from the field circuit)
T’ = Ling = X/(w ta) where X =Xggg+ 1/( (1/Xaa) + (1/Xs5) ) (Open stator. 'Seen’ from the kd-circuit)
T"q0 = Lika/Tiq = Xkg/(@ Tiq) (Open stator. 'Seen’ from the kqg-circuit)

1.5 The Asynchronous Motor
Compared to the normal synchronous machine the traditional asynchronous machine lacks the field
winding, and symmetry prevails regarding the electromagnetic effect of its rotor circuits.

For the synchronous machine it was presumed appropriate to base ’default’ mathematical modelling
on a five coil, salient pole generalised machine. See Figure 1.5. In view of availability of data for
asynchronous machines as well as the aspect of similar level of precision in modelling of rotating
machines, it would appear reasonable to specify a four-coil, cylindrical pole generalised machine for
modelling of the asynchronous motor/generator. Thus, the machine diagram of Figure 1.5 provides
the proper basis, when noticing the following interpretations/ observations :

The 'pseudostationary’ d- and q coils equivalence in the same way as outlined eartier for the
synchronous machine, the electromagnetic effects of the stator windings of the three phase
asynchronous machine.

There is one superflous coil in the d-axis, since the field winding now is lacking. For ease of
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(later on) interpretation we choose to remove the kd-coil. Thus, the remaining 2 coils
labelled respectively 'f' and 'kq’, take on the function of equivalencing the rotor winding
of the asyn-chronous machine.

Since the phenomenon of magnetic saliency is absent, the former f- and kg- coil now
become identical in their new roles. Index 'r’ for rotor’ is in the following assigned to
both of them. Inductivities and flux linkages may be written as foliows, see (1-23) and
(1-24) for comparison with the synchronous machine:

Forthe d-axis: Ly = Lagtlm Forthe g-axis: Lq = Lagtlm
Lrg = Legtlm Lrig = Ligtlm (1-65)
d q rd
Yo = L4 igtlm i Yy Lq Lm
Yy = Lq lgtlm i h < Lq
Yed = Lrg itlm i — On matrix form ;| ¥g| =|Ly Lrg - ¥=Li (1-66)
lPrq = qu irq'*'[.m iq \Prq Lm

The working out of a practical asynchronous motor model that - in the context of power network
modelling - take the form of a standadized d-q axis circuit element, is conveniantly afforded by
reducing the current synchronous motor model in consistency with the special premises set above.
The elaboration is presented in three steps: Step 1 develops the electrical circuit model, step 2 the
rotor flux model, and step 3 the electromechanical model.

Summary asynchronous motor model description followed by a simple/qualitative illustration of
model application, is given in Chapter 1.7.

The electrical circuit model

The source for our model reduction process is the electrical circuit model of the synchronous
motor shown in Figure 1.11. To establish the appropriate basic algorithmic platform, we first find
the "asynchronous motor version’ of the set of synchronous motor equations assembled in the
bottom part of Figure 1.11. Going from right to left as advised by the arrows, and being aware of
the following implications of the above special premises ;

X' =Xg4 (since our 'simplified” synchronous motor has no third circuit in the d-axis)
X"ag = Xad " ! ! ”
Xa  =Xq=(xag+ Xm) (See (1-65) above)
Xad = Xaq = Xm ! i
X = Xig = Xe = @ Le = (xrg + Xim) " :
Xag =1 (11Xm) + (1/%:g) ) (For comparison: See Addendum at the end of Chapter 1.4.)
X’aq = Xad = X'm = T (1/Xm) + (1 %co) ) v " ”
Xm = X4=(xag+ X'm) " " "
Tdo =Tro=T"q =Lt = X/(ax 1) " ! "
we find that
X" = X'm =(Xag +X'm) X'%e=r (Xm/Xr)2 — X'g=(WUay Teo)) Xm=—Xm)=r (Xm/)(r)2 (1-67)
X'=0 X' =0 « X'q= (e Tr)) Kn—Xm)=X"n (1-68)
f1 = (Xad - X’ad) (xyad/(xad X,ad)) = (Xm‘X’m)/Xm = Xm/Xr ]
fo =1 [- (1@ To)) KaalX'aa) ] = -1r KnlXe?) |
f3 = (X'g = X'a)Xaa = 0 t (1-69)
f4 =0 I
fs = - (Xaq — X"aq)/xaq =- (Xm'X’m)/Xm =5 |
fo=fs (1@ Tro)) = -Xm/X) (X:) = -1 Ke/X?) = F2 J

Figure 1.14 "Asynchronous motor version’ of synchronous motor equations at bottom of Figure 1.11
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For the synchronous motor the equivalent e.m.f. is expressed as AEpg = Vi + Hi dx , see (1-55). In
moedifying this equation to cover the asynchronous motor, three obsevations should be accounted for :

There is no separate e.m.f. associated with the rofor coils. Thus ; Vi =0 .

Three motor flux linkages ¢ =[dr, ¢xq, qx(q]t contribute to producing the e.m.f. AEpq of the synchronous
motor. Thus the matrix Hy is of dimension (2x3). The asynchronous motor modet lacks per definition the
kd-coil, meaning that the flux linkages [¢, qq(q]t are to be interpreted as the ones associated with the
rotor coils of the asynchronous motor. The path to establish the H-matrix for the latter machine implies
therefore deletion of column no 2 of Hy . We denote the so reduced version Hureduced) -

The flux linkages [dx, ¢k for the synchronous motor are referred to the local d-q axes of the model
machine, see comments after equations (1-48) . Since the concept of local axes is of little relevance to
the normal asynchronous machine, we choose to refer also the motor fluxes to the global reference
phasor. The logic of transformation together with the transformation matrix T itseif are given in (1-41).

From the foregoing observations the e.m.f. AEpy for the asynchronous motor can be formulated as
follows, based on Hy. and T:

AEpa = (Hikreduced) T) @ = Hrr ¢ (1-70)

where ¢, are the globally referenced flux linkages associated with the rotor coils of the model-
machine of the asynchronous motor. Inserting from Figure 1.11 and (1-41), we find:

Qfy sinB +f2 cosB | Qfs cosB +fs sinf cosf | -sinf
Hr = (ka(reduced)' T=

Qfycosp-fasin | -Qfs sin +fs cosP| | sinf cosf

0.5 Q (f1+fs) sin2p+f2 cos’B+fs sin’p | 0.5 (fe-f2) sin2P - Q f;

(1-71)

0.5 (fo-f2) sin2B - Q fs | - 0.5 Q (f1+fs) sin2P+f, sin’p+fs cos”p

Based on the adaptions made above, the elements (Rpq,Xpq,Hr) of the electrical circuit model of
the asynchronous motor can now be finalized: The resistance matrix Rpq and the inductive reactance
matrix Xpq of the asynchronous motor are readily established by applying (1-67) and (1-68) to
matrix Rpg and Xpq of Figure 1.11. The matrix H, of (1-71) is finalized by implementing the results
from (1-69), where it appears that f;=-f; and f,=fs. The result is summarized as follows:

—
. o AEs . ,
: <ina Roa Xoa AEpq = (He ¢r)
vpa
> » Upa
l
Vpa = Rog ipg + (1/0d) Xpg dipg/dt & Vpg - AEpq = Upg (1-72)

Electrical circuit model of the asynchronous motor in d-q axis frame of reference

AEpq = (Hi ¢ ) = asynchronous motor emf.

(Example data)

RatRr (XX Xu X, = stator leakage reactance (0.08)
Rpa = X, = rotor leakage reactance (0.08)
X Ra*+Rr Xu/Xo)* Xm = magnetizing reactance (2.50)
X = (ch + X )
X'm (1-73)
XDQ = X)M = (Xag +X'm ) =(Xac + (Xm XfGIX\‘) )
X'm R. = stator resistance (0.03)
R; = rotor resistance (0.03)
-(RiXr) -Q T'ro = LdRr = X/ Ry)
He = XX s = slip=(1-Qam)
Q -(ReXr) X = X X:dXr)

Figure 1.15 Electrical circuit model of the asynchronous motor
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In the elaboration of equation (1-72), letter combinations like 'DQ’ and '’ have been used for
indexing to support understanding of the algorithmic development. From an application point of
view better notations should be devised. See Chapter 1.7 for summary model descriptions that
strive at being more user-oriented.

The rotor flux model

The source for our model reduction process is the rotor flux model of the synchronous motor shown
in Figure 1.7. To have the appropriate basic algorithmic platform, we first evaluate the "asynchron-
ous motor version’ of the matrices (eq,Fg,Fg) of Figure 1.7. To this end we bring to bear the
implications that were ascertained via equations (1-67) to (1-69) and their surrounding text. It
readily follows - when noticing that rows and columns associated with the kd-coil are to be

deleted. - that ;

en =0 ( Since there normally are no e.m.f.s in the rotor circuits)
_ cosf | -sinf ’
Fui = (rr xm/Xr) (Since T’do'_'T”qo=T’ro=Lr/rry Xad=xaq=xm, X”ad=xlad)
sinf | cosp (1-74)
_ -1
Frr¢ - (rr/xr) ( ” ” » )
-1

With the new 'asynchronous motor versions'’ (emlgm,lgm) to replace (eq,Fsi,Faq) in (1-43), we get
the following tentative expression for the rofor flux model of the asynchronous motor, when taking into
account that the rotor flux linkages ¢ for the asynchronous motor are presumed globally referenced ;

d(T ¢)/dt = @ Foy ing + o Fry (T @) (1-75)

Taking the derivative of the matrix product and and rearranging the equation, we find the sought after
formal form of the rotor flux model:

dwldt = @y (T" Fr) fog + a5 [T Fag T— (/) (@B/dt) T* dT/dB] ¢ (1-76)

e
Frri Frr¢

Evaluating the expressions we find the following rotor flux model for the asynchronous motor:

dgn/dt = oy (Fri g + Frg ¢ ) (1-77)
(2x1)
where;
e (Rr Xa/X;)
" (Re Xe/X:) For parameter interpretation,
see Figure 1.15
- (Rr /Xr) (1 - Q)
Frw =
(Q - 1) = (Rr /Xr)

Figure 1.16 Rotor flux model of the asynchronous motor
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The electromechanical model
We seek the description of the remaining asynchronous motor state variable,- namely pu rotor speed
Q. The set of algorithms developed in this context are denoted ‘the electromechanical model’.

The algorithm that governs motor speed performance is the torque equation of the motor. This
equation has already been developed on a practical pu form for the synchronous motor. See (1-57).
We choose to apply the same pu form for the asynchronous motor :

((SMotor/SBas) Té COS(PMotor) dQydt = (T(el) = T(mec)) [DU] (1"78)

Main part of electromechanical model: The description of asynchronous
motor rotor speed Q@ Acceleration time T, used for characterizing total
moment of inertia of rotating masses. H is an alternative normalized para-
meter: H=0.5 Ta coS@motor

Smoter 8Nd Sgys are rated (VA) motor power and system (VA) power base, respectively. cos@uotor
is rated power factor of the asynchronous motor. T, is electrical motor torque in pu, and Tnec) iS
pu mechanical load torque.

The electrical motor torque Tq is developed next by modifying the synchronous motor algorithm of
Figure 1.12: The given expression ¢us = X" T iba+ f ¢ is first infroduced into equation (1-60), giving:

Tey=0.5 itDQ Tt X' Fing+ 0.5 itDQ T+ f gx (1-79)

Here again ¢ = [q;;,cn(q]t is to be interpreted as the flux linkages associated with the two symmetrical
coils equivalencing the rotor winding of the asynchronous motor. d is at the outset locally referenced.
For the asynchronous motor it is conveniant to also have the flux state variables globally referenced.
Thus we have definitionwise, see (1-41): ¢x =T ¢, where ¢, is the flux vector globally referenced.
Inserted into (1-79), we get the following electrical torque equation to investigate in view of all model
simplifications made for the asynchronous motor relative to the synchronous one :

Ten =0.5 foa Tt X! Tipg + 0.5 ipa T1 f Foxr (1-79)

X' now becomes symmetrical as X”4=X"q (=X'w). From this it follows that the first term of (1-79)
becomes zero. f also becomes symmetrical as evidenced from (1-69). Inserting for T.,f and T, the
following practical algorithm comes forth for determining the electrical motor torque T, :

Ten = 0.5 Xa/Xe) (1 o) (1-80)
where;
io Asynchronous motor |
ina=|—_| = current, global |
ia reference. | Asynchronous motor
t state variables
dp Flux linkages asso- |
& =f|—| =  ciated with resp. rotor |
ora coils. Global reference |
_ 1 Xm = magnetizing reactance See Figure 1.15
1= X =Xig+ Xm for more
-1 X; = rotor leakage reactance on data

Figure 1.17 Practical algorithm for computing asynchronous motor electrical
torque Ty in (1-78).
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Pu mechanical torque Timee) Will take on different forms, depending on the operational regime;
whether motor or generator mode of operation. In principle the situation is identical to that of the
synchronous motor :

For motor operation (which per definition implies a positive sign of the mechanical torque),

the following premises may in many cases prevail:
Timec) = Timecio) (¥Qoy)*, where Tmecoy and exponent x depend on the ’rotational status’ of (1-81)
the motor at t=-0; whether already up and running, or to be started from Q= 0:

If the motor is up and running ;
Timec(o)) = Tetoy = electrical motor torque at t= - 0. The proper value is found by
applying equation (1-80) to data from the initial power system load flow.
K = exponent depending on the load torque's sensitivity to rotational
speed for Q not far from 1.0 . In many cases: x = (say) 1.5-4.5.
If the motor is to be started from stilistand :
Timee(o) = coefficient contributing to mode! the effect of mechanical friction, air
resistance, etc, during the startup phase. Expected range: (say) 0.03 ~ 0.07
k = exponent that reflects speed dependency of Timec). k may change over the
range Q=0 —i.Prospective area of variation: k= (say) 1 - 5.

For generator operation (which per definition implies a neg. sign of the mechanical torque):
Tmee) = (Teewoy + AT(mee) ), Where Teeio)) is initial electrical motor torque, and  AT(mee) is given by [(1-82)
the respons of the (wind-)power turbine- and control system.

Figure 1.18 Example algorithms for computing asynchronous motor load torque Timeey in (1-78)

Summary asynchronous motor model description followed by a simple/qualitative illustration of
model application, is presented in Chapter 1.7.

1.6 Modelling of specal voltages in the d-q frame of reference

Two voltage aspects are ealt with; the transformation of the three phase voltage at some reference
system bus, and the relationship between the voltage e; of the model equations of Figure 1.6 and
(1-43), and the equivalent pu voltage component of the machine’s phasor diagram. The latter
aspect is dealt with in a "shortcut’ manner in the following. For more detailed/general outline, see
Appendix 2, p. A2/12- A2/17.

At the outset of network analysis the voltage phasor at some reference bus is often a declared quanity.
In specific terms : Given the symmetrical three phase voltages

cos(o)
Erst = 2 Eer|{ cos(o-2m/3) (1-83)
cos(o-4n/3)

at some specified bus of the system. E.« is the root mean square (r.m.s.) value of the three phase
voltage. o =(ay t+y), wherey accounts for an arbitrary phase shift of the voltages relative to zero time.
For convenience of final expressions — see (1-85) — we further define y = (y. + n/2). This being the
premise, fwo main modelling tasks are dealt with in the following: First on how the specification of
Erst is equivalenced in the d-q axis frame of reference. After that, on the related task of appropriately
modelling the synchronous machine field voltage e; contained in voltage vector ey of equation (1-43).

The transition of Erst in (1-83) to ey of the d-q-0 axis frame of reference, is afforded by the Park
transformation — see Appendix 3:

€dqo = P Erst (1-84)
where; R s T
cos8 | cos(6-2m/3)y cos(6-47/3)| d
P =2/3|-sin@ | -sin(6-2/3)| -sin(6-47/3)| q (1-2)
A Ve A 0

In the present 'synchronous phasor’ context 8 = ey t. Evaluating the product in (1-84), the sought
source voltage description in the d-g-o frame of reference is established:
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m -SiNy ref
edqo = m = '\Q Eeff~ COSYref (1 '85)
€| 0

d-q axis model of given voltage Ersr in the three phase frame of reference.
See (1-83). Eetf=r.m.s. value of given symmetrical three phase voltage.
Yret = arbitrary chosen phase shift. Often convenient choice: vt = 0.

Simple examples of a specified voltage eqq in analysis, are given in the ensuing Chapter 1.7. The
treatment of eqq, in arbitrary complex power networks, is covered in systems modelling Chapter 2.

Next on model representation of the synchronous motor’s field voltage ey, see Figure 1.6 and (1-43):
It is convenient to express this voltage as e¢ =K¢ E: =K Eqo+AEs), where Ey, is initial pu field voltage
read from the machine’s phasor diagram for the initial state, AE; is additional voltage caused by the
voltage control system, and K; is a scaling factor to be determined next: In synchronous, idle operation
with zero stator current the above equation becomes; &) =Ks Eqq) =Kt Eesie), Where Eqgoy is initial pu
machine voltage. The latter equation for the stated idle condition provides the key for determining K; :

From (1-24): Wy(o) = Lg laoytLad ifo) *Lad ixdo) = Lad iy and Yato) = Lq igoytLag ko) =0 (1-86)
From Addendum of Chapter 1.4: r¢= Xadzl(a); Tas Ka—X'q)) (1-87)
From (1-32), (1-86), ed(o) = la iwoytdWay/dt - @ Yooy =0  and ero) = It o) + dFioy/dt = It ko) (1-88)
(1-87) I €q(o) = Ma kfoytd o)/t + @ Wito) = Xad o) = (Xad/Tr) €10y = @b T'do (Ka—X') €f0)/Xad

Observing (1-85) and (1-88) and applying the second of Kirchoff's laws — the voltage law — to our case of
idle motor connected to infinite bus:

€dqo = @dq(o) - efo) = [\2 coSyrer Xad/( 1 T'ao (Xa =X'a))]" Esiio) (1-89)
Here v =0. Then finally from (1-89):

Ki= & Xaol( 0 Tas (Xa—Xa)) (1-90)

Scaling factor Ks in Ef =Ky (Eqo)*AEqs), see Figure 1.7

1.7 Component model summary

In the previous development of component models letters and letter combinations used to characterize
variables and parameters were chosen in part to enhance understanding of the elaboration process as
such. In the summary of component models that follows, new or altered notations may occur. They are

all implemented to ease prospective practical use of the given stock of models. The model summary
comprises:

The Lossy Inductor p.1/23
Electrical Circuit Model p.1/23
Example Lossy Inductor study p.1/24
The Lossy Capacitor Bank p.1/25
Electrical Circuit Model p.1/25
Capacitor Voltage Model p.1/25
Example Capacitor+Inductor study p.1/26
_—The 'extended’
The Synchronous Motor *) p.1/27 p.1/31  synchronous
Electrical Circuit Model p.1/27 p.1/31  motor model.
Rotorflux Model p.1/28 p.1/32
Electromechanical Model p.1/28 p.1/33
Power Control System Model p.1/29 p.1/33
Voltage Control System Model p.1/29
Example Synchronous Machine Study p.1/30
The Asynchronous Motor p.1/34
Electrical Circuit Model p.1/34
Rotorflux Model p.1/34
Electromechanical Model p.1/34
Example Asynchronous Motor Study p.1/35

*) For development of an "extended’ machine model ; see Appendix 2. For summaru mode! description, see p. 1/33 ~1/35.
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Inductor behaviour is described in terms of 2 state variables:

2 current variables iy = [y g ]"

Component parameters.
Per phase description :

oy
RL L L

Electrical Circuit Mode!

(where 't’ stands for 'transpose’)

Ry : Per phase resistance of inductor element. In Q or pu
: Per phase inductance of element.
L defines inductive reactance X_ =y L

p

<« RL X|_ //' pindN
——] L ~ AE =0}
> Vi
{
ve=Rpi + (1/(1))) X di/dt & VL =U

where;
R | -XvL
RL =
X Re
oy L XL
XL = —— =
ay L

Electrical circuit model of lossy inductor in d-q axis frame of reference

(1-91)

(1-92)

(1-93)
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Example Lossy Inductor study

Analysis Task

Consider the simple case illustrated below : A lossy inductor is connected to an infinite bus of voltage
Erst. Erst is @ symmetrical three phase voltage as defined in (1-83). Steady state conditions prevail.
The current in phase 'R’ is sought, following a three phase short circuit at the point of supply (Erst =0).

RL XL
o e ¥ 68—

T Er (index *R’ for phase 'R’)

Lossy Inductor connected to infinite bus

Problem formulation in d-q axis frame of reference

°— T (I~
iL > RL XL 0
T edq edq =

Eeff ‘Q

System model in d-q axis frame of reference

eqq is found from (1-85) with the conveniant choice yer= 0. The above system model is based on the
electrical circuit model (1-91) of the lossy inductor. Applying Kirchoff's voltage law to the system model
we get by inspection:

@dq = Re: i+ (1/ap) Xe dii/dt (1-94)
which yields:

diy/dt = a X" (egq — R i) (1-95)
where;

iL(o) = initial current to be determined from
initial condition analysis, see below

Problem solution is afforded in two main steps: 1) /nitial condition analysis, and 2) Transient performance
analysis:

1) Initial condition analysis. (di/dt=0)
(1-95) solved w.rt. i =iy :

iLd(o) ) Ru | -X¢
i) =|— | = R €qq where R
iLq(o) Xo ! R

2) Transient performance analysis
Solution found by simultaneous integration of equations (1-95) above, given initial value of the
state variables i) .

Current ig of phase 'R’ :  ig = i(g) COSO - iq) SIN®@  where 6 = (ay t+8), and &, is an arbitrary
chosen reference angle. Conveniant choice in many cases: §, = 0.
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The Lossy Capacitor Bank

Capacitor Bank behaviour is described in terms of 2 state variables:

2 voltage variables AE; =[ AEqq AEqq]', which is the voltage across the capacitor

Component parameters.
Per phase description :

Rc

Rc : Per phase resistance of capacitor bank. In Q or pu
C : Per phase capacitance of bank. L

C defines capacitive reactance X; = 1/(«; C)

Electrical Circuit Model

——= X =0 @\ .
L R. P ‘capacitor emf’
' > v, > Ug
\
Ve =R¢i. & Ve - AE; = U, (1-96)

Electrical circuit model of Jossy capacitor bank in d-q axis frame of reference

where:
Re
Rc = (1-97)
R¢
Capacitor Voltage Model
AAEdt = a (Xe i + 1 AE,) (1-98)
X
with initial condition; -
AE¢) = 1 X¢ g0 (1-99)
where;
1/{ws C) Xe
X, = i = % (1-100)
/(- C) Xe
_ 1
1= (1-101)
-1
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Example Capacitor + Inductor study

Analysis Task

Consider the simple case illustrated below: A lossy capacitor bank is connected to an infinite bus
voltage Egst Via a series impedance. Eggy is @ symmetrical three phase voltage as defined in
(1-83). Steady state conditions prevail. The current in phase 'R’ is sought, following a three
phase short circuit at the point of supply ( Egst = 0).

Zy=Ry+ Xy Re

C
.
Er (index ‘R’ for phase ‘R’) |

Capacitor bank connected to infinite bus via series impedance

Problem formulation in d-q axis frame of reference

‘inductor’ ‘capacitor’

T eclq » edq =

Eeff \2

System model in d-q axis frame of reference

€4q is found from (1-85) with y.s =0. The above system model is based on the electrical circuit
model (1-96) of the lossy capacitor bank. Applying Kirchoff's voltage law to the model circuit,-
as dealt with on a formal basis at the end of Appendix 1,- we have:

o
edq = Ry ict (1/ o) Xy dic/dt +R¢ & + AEc (1-102)

(1-102) together with the developed capacitor voltage model (1-98), yield:

digdt =« X'y [eqq - AE; - (Ry*Rc) if] (1-103)

dAE/dt = ay [Xe i +4 AE] (1-104)

where;
ico) = initial current to be determined from

_initial condition analysis, see below
AEg) = 1 Xe ieqo) (1-105)

Problem solution is afforded in two main steps: 1) Initial condition analysis, and 2) Transient performance
analysis:

1) Initial condition analysis. (dic/dt = dAE./dt =0)
(1-105) inserted into (1-103) and solved w.r.t. igpy :

Ry*+Re | Xe-Xy

. - -1 -
fe(0) = R syst' €dq where Reyst =

Xy Xo | Ry*Re

2) Transient performance analysis
Solution found by simultaneous integration of equations (1-103) and (1-104) above, given initial
values of the state variables i¢) and AEc,) -

Current ig of phase 'R’ :  ir = ig(q) 0080 - igq) SING  where 8 = (ay t+ &), and & is an arbitrarely
chosen reference angle. Conveniant choice in many cases : &, = 0.



-1127-
The Synchronous Motor ('SM')
(based on the d-q diagram of a 5-coil generalised machine)

Synchronous motor/generator behaviour is 'per default’ described in terms of 7 state variables :

2 stator current components isw= [isma iswa I ( where 't stands for 'transpose ')

3 rotor flux components dsm = [0r dra Gig I} (fieldw.'f d-axis damperw. ’kd’  g-axis damperw. 'kq' )

1 speed variable Qsm = ®sm /0o

1 rotor angle variable Bsm
To handle voitage control 4 state variables are introduced. Power control in (hydro) generator mode of operation i:

afforded via 3 additional state variables. Altogether (7+7) =14 state variables to model generator mode of operatior

Synchronous Motor parameters to be specified (with example hydro-generator data in parenthesis) :

Xa (0.12pu) X's (0.30pu) Ra (0.005pu) T4 (0.16s) Coson (0.9pu)
Xe  (1.2pu) X”4 (0.20pu) Tw (6.08)) T (5.08) Sy (100MVA)
Xq (0.75pu) X"y (0.30pu) T’s (0.04s) Co (7.5pu) En  (16kV)

Electrical Circuit Model

«ism Rsm Xsm i AEgm = ( Vsm + Hsmdsm ) = motor emf,
=T —— (i) —
> ovey p Usw
\
\{g(%= RSM'iSM + (1/0)0)'XSM'diSM/dt & Vsm - AESM = Usgm (11 06)
Electrical circuit model of the synchronous motor in d-q axis frame of reference
AEsm = ( Vsm + Hswrdsm ) = synchronous motor emf. (1-107)
D Q
(Ra + X7) + (142-AQsm)-X"-sin2Bsm + X"'COS2Bsm | X+ (142-AQsm)-X"-c0s2Bsm — X"-sin2Bsm | b
Rsw = |7 A _ _ v i A Z _ (1-108)
X" + (1+2:AQsm)-X"-c052Bem — X"'r-5iN2Bsm (Ra + X" - (1+2-A0sm)-X"-sin2Bsm - X"-c082Bsml a
AQsm = (Qsm—1) = rotor speed’s deviation from
- - — synchronous value. In pu.
X"+ X".cos2Bsm -X"-sin2Bsm CrErcosfsm E: = (Ero + AE; ) =f ield voltage, where Eg is
Xem = — F— Vsm =}————— initial value and AEs is voltage control
- X".sin2Bsm X' - X’-cos2Bsm -C+ErsinBsm system response. See following p 1/29 .
Cr = (V2/( 0o “T'do))-(X""aa/X aq) (1-109)
f kd kq
Qsm-f1-5inPam + f2-c08Psm | Qsm-fa-sinBsm +4-cosPsm | Qsmfs-cosPsm + fe-sinBsm
Hsm = (1-110)
Qsm-f1-cosPsm - f2-8iNBsm | Qsm-fa-cosPsm - fa-sinBsm | -Qsmfs-sinBsm + fs-cOSPsm
X' = 05X "¢+ X"q) X' =0.5X"w+X"rq) « X' = (W00 T 60)) (¢ aa/X ag)>(Ka -X'a) + (100 Td0))-(X'a -X"a)
B _ (1-111)
X' =0.5X"-X"q) X"t =0.5X"qg-X"rq)  X'q = (oo T @) Kq-X"q)
fi = (Xg - X'a)-(X"ad/ (Xad X'ad)) ) — Xag = Xqg-Xag
f = f[(Xa = X"a) [ (@0 T"d0))-(17X"ad) - (1/(00 T do))-(Xae/X'ad") 1 - (1/(@0T'd0))-(X"a0/X'aq) ] — Xag =X4q-Xag
fa = (X'a = X"a)/Xad — X'ag = X'qg-Xag
fa =fal (1/((Do‘T’do))'(X"adD(’adz)'( Xa=X'a) - (100 T"d0 ) ] (1-112)
fs = - (Kgq = X"} Xaq «  Xag = Xq-Xag
fo = f5 - (1/(00T"0)) «  X'aq = X"qXas
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The Synchronous Motor, cont...

Rotorflux Model

dg%vg/dt = @o'(esmr + Fsmi -ism +Fsmy -dsm ) (1-113)
Here:
D Q
(1/(®0' T"q0))- (Xad/X ad)- X ad-COSBsM | -(1/(00-T'do))- (Xau/X'ad)- X aa-SiNPBsm Ki-E{  Er=(En+ AE) = field voltage
Fsmi = (1199 T"d0))-X'ad-COSPsM -(1/(@00T"d0))-Xaq SiNPBsm esmr=L 0 | Ki= (V2/(00 Ta0)) Xaa /(Xs -X'o)
(1/(0o'T"q0))-X ag-SINPsm (1/(00°T"q0))- X aq:COSPsm 0 AE¢ = voltage control response
(1-114)
f kd kg
~(1/(@g T go))-(1/X ae) [(Xad/X'ag){ X'g = X"d) + X"ag | (1/(0g: T do))-Kaa/X'ag-)-( X'q — X" ) f
Fsmy = (1/(®0T"d0))-(1/Xad) ( Xg = X'a) - Yo T g0) kd
- W0aT"q0) |ka

At any time during integration the rotor currents may be derived from the equations ¢gy = Xparism + Xerismr

Ismr = (X)L dsm - Xoar ism ] (1-115)
where ;
XagCOSPsm | -XaaSiNPsm X2q/(Xg = X'9) Xag_
Xoar =|XagCosBsm | -XaasinBsm X = Xag Xad + X'ag -X"aa /(X' = X"q)
Xaq'SinBsm | XagcosPBsm XZaq (Xq = X"q)
Electromechanical Model
d2ew/dt =(Seas/Som)-(1/(TaCOSON)) ( Tsmet — Tsmmec ) (1-116)
Here:
Tsmer = 0.5i'smTsmi-daq = electrical motor torque , - where ddag = X'sm Tom-ism + fom-dsm (1-117)

Tsmmee = Tsmmec(o)2sm” = mechanical torque in motor mode of operation. (Motor operation implies pos. sign of mech.
torque)

If the motor is up and running at t=-0: Tsmmec(o) = Tsmeio) = electrical motor torque at t = -0. This is found from
equation (1-117) applied to the initial power system load flow. x= (say) 1.5-3.5

If the motor is to be started from stillstand (as e.g. an asynchronous motor) : Tsmmes(oy = coefficient to model
mechanical friction, air resistance, etc. during startup. Probable range: 0.02-0.05

Tsmmec = (Tsmelr) ATmec) = Mechanical torque in generator mode of operation. ATmec is the response from the
power control system. See below for a sample hydro generator power control system.

Chosen VA system power base, and rated VA motor capacity, respectively

SBas, Ssm
Dynamical system’s inertia constant, and motor’s rated power factor, respectively

Ta, COS(PN

sinPsm |-cosPsm cosPsm | - SinPsm X”dl fi| fa f1=(Xa-X'q)- X" ad/ (Xag-X'ad)
Towr = Tow X'on ] fom = F3=(XaX"a)/X'ad
sinBsm COSBSM X"q -f5 fs= ‘(Xq'an)/xaq

cosPsml sinBsm

o

(1-118)
The electrical angle of the rotor is defined as
Bsm = (o't - Osm )
giving rise to the following differential equation describing the angular movement of the Synchronous Motor:
(1-119)

d{%%M{dt = Cl)o'(1 - QSM)
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The Synchronous Motor, cont...

Power Control System Model for generator mode of operation ( here: hydro generator as illustration. )

Aﬁef Ac (1+T: ) 1-(aa T s b ,—Almec 3, For 'normal’ frequency
0 TP (T, Tys + (Tt Ty (6:+6,))5+8, A4 > 1+(0.5 & T)s - control : AQer =0 .
For 'P-control’ :
\ > Ao AQer =0 (Ptarget - Pm)
’/AQ =(Q-1) AQ

dA&/dt = Ky (AQer - (1 - Qo) + AW) — K A& Regulator system

dAwW/dt = Kz Ad — Ky Aw Regulator system

dAg/dt = (3K,/Qsym) A — K Ag Hydrauiic system (1-120)

l
ATmec = Ag — a5 (1 - Qspm) ~ (2/Qsy) A Net change of mechanical torque

Control system parameters:

Ko = 2/(&¢ Tp) Te @ Time constant for hydraulic system (eg 0.3s)
Ky=1/T; Te : Time constant for main servo ( eg 0.08s)
Ko = (& + &)/Te e T: : Transient droop time constant (eg 17s)
Kz = &/T¢ & : Transient droop (eg 0.15pu)
Ks = 1/Ty & : Permanent droop (eg 0.0 — 0.03. The value 0.0
Pm = absorbed motor power =0.5 ism' Usu if frequency sustained by a single unit)

Pm is negative in generator mode. 8o : Initial pu turbine opening(ts). (if t:<0.3 then 4,=0.3)
Prarget = target value of Py,
c = per unit scaling factor (eg.: ¢=0.1)

Voltage Control System Model

/Xuref
> o .t Kr 1
+

> oW T TRy || T Er = ( Eqe) +AEf )
AE, AEs Etminy <E¢ <Efmax)
Ko Tp s < AUt = 0, unless new

— 1 (1+Tps) voltage ref. is set

‘ KQTQS » AQ:(%M"1)
(1+Tas)

dAEf/dt = C1 (AE, - AEf)
dAE/dt = Cp [AUrer+ Uy - U + Kq ( Qe -1) - Ah] - Cg AE; - Cq AE, + Cp AE« (1-121)
dAESS/dt = C5 AEf - C(; Ess

dAh/dt = C; (ngM -1) - Cg Ah

U = (1/2) (usv® + usm?)*® Control system parameters:

Cq=1/Ts T¢ = field circuit time constant (eg 0.1s)
C2=Kr/Tr Kr = resulting forward amplification (eg 70pu)
Ca=Kr KoTr =Kp Cz « Tr = regulator time constant (eg 0.1s)

Cs=1/Tr Ko = transient feedback amplification (eg 0.25pu)
Cs = Ko/To To = transient feedback time constant (eg 0.25s)
Cs= 1/TD

Kq = power stabilizer amplification (eg 1pu)
Cr=KdTqg Exmax) = ceiling field voltage (eg 3pu)
Cs=1/Ty E¢min) = bottom field voltage (eg —2pu)

AU = (U-Uo) = pu voltage deviation Ta = power stabilizer time constant (eg 2s)
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Example Synchronous Machine Study
Consider the simple case of a synchronous machine (to be) connected to an infinite bus of symmetrical voitage
Erst. The given voltage transforms into eqq in the d-q axis frame of reference, as shown by equation (1-85).

System analysis will often imply :
- Initial condition analysis
- System respons analysis in terms of eigenvalue analysis, and/or time response analysis subsequent
to some additional excitation(s) to the system.

Initial condition analysis

The state variables Qsmpy and Psmey together with the field voltage Ey), have to be determined by special
consideration of the task at hand. E.g.:

If the machine is to be started from stillstand, Qsm) =0 and so also all current and flux variables. Bsm) can arbitrarely be
set to zero. Ey may also be 0, if the field winding is kept short circuited during the initial part of the start-up sequence.

If the machine is initially in a steady state mode of operation, Qsmc) =1. In this case it is customary to specify initial conditions
In terms of absorbed power Psmpy and voltage U, at the machine terminals. Thus Bsm(ey and Ego) should be specified so
as to contribute to fulfiling these conditions. This is afforded either by determining Bswm) and Ego) from an initial state
phasor diagram, or by an iterative solution process in which Bswme) and Ege) are simultaneously corrected untit stated initial
conditions are reached to required accuracy. The latter computational scheme is as follows:

Given Qsme) =1 and tentative values of Bswm) and Egy) . Initial values ismp) and ¢smp) are found by observing the con-
straints implied by Kirchoff's voltage law as e.g. expressed by equation (A-19) of Appendix - and the machine flux
constraints of (1-113). In the present steady state context, derivative terms are set to zero. The equations become:

Rsm- ismo) + Hsmio)' Psmo) = (€dg = Vsmo) (from (1-106), (1-85) & (A-19))
Fsmi- ismo) + Fsmeo): @sMo) = - €smr(o) (from (1-113) )
In matrix form:
Rsm | Hsmy | |ismio) (€dq “Vsm(o))
—| = (1-122)
Fsmi | FsMeo)] | Psmo -€3Mr(o)

from which the sought initial vectors isme) and ¢sme) are found. If the initial conditions implied by present solution are ok, the
desired solution has been found. If not ok, PBsmw) and Esg are adjusted appropriately , and a new and improved solution is
found from (1-122). This process continues untit ’ok’ provides for exit. For fuller algorithmic details, see Chapter 2.4.

All power- and voltage control variables are defined in terms of incremental quantities. Their initial values are therefore zero.

Eigenvalue- and/or time response analysis

Given initial condition for the system state variables, which in this simple 'motor alone’ study are the 7 syn-
chronous motor state variables plus the 7 control system state variables. The subsequent dynamic behaviour of
the system is governed by the aggregate of alltogether 14 first order, ordinary differential equations, as laborated
above for the synchronous motor unit in a hydro generator setting, See below. The linearization and processing of

disw/dt = o (Xsm)" (€aq- AEsw - Rt isw ) (from (1-106) & Kirchhoff)
dgsm/dt = s (esmr+ Fsmr ism +Fsmg dsm) (from (1-113))
dQem/dt = (Sgas/Ssm) (1/(Ts cosen)) (Tsmel -Tsmmec) (from (1-116))
dBsm/dt = @ (1-Qsm) (from (1-119))

dAd/dt = Ky (AQef - (1'§26M)+ AW) -Kg Aa
dAw/dt = Kz A& - K4 AW — ATmec= Ag—&o (1- Qsm) ~ (2/Qsm) Aa | (from (1-120))
dAg/dt = (3K,/Qsm) A4 - Ks Ag

dAEf/dt = C1' (AE,— - AEf )
dAE/dt = Cy AUet+Uo - U + Kq ( Qsm -1 ) - Ah] - Cs AE¢- Cg AE; + Cp AE (from (1-121))
dAEss/dt= C5 AEf - Ce Ess

dAh/dt = Cy (Qgm -1) - Cg AR

such equations for eigenvalue analysis, is found in Chapter 3.Time respons analyses are dealt with in Chapter 4.
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The ’Extended’ Synchronous Motor
(based on the d-q diagram of a 6-coil generalised machine)
Synchronous motor/generator behaviour is described in terms of 8 state variables :
2 stator current components sy = [isma ismq I (where 't' stands for transpose ')

4 rotor flux components dsm = (B drg dka Oig ]' (fieldw.'f fieldw.'q damperw. 'kd’ damperw. 'kq')
1 speed variable Qsm = @sm /oo

1 rotor angle variable Bsu
To handle volfage control 4 state variables are introduced. Power control in (hydro) generator mode of operation
is afforded via 3 additional state variables. Altogether (8+7) =15 state variables to mode! generator mode of
operation:

Synchronous Motor parameters to be specified (with example adjustable speed machine data in parenthesis) :

Xas  (0.1pu) Xa (0.35pu) Ra (0.008pu)  T"q (0.04s) Cosen  (0.9pu)
Xs  (1.4pu) X"a (0.22pu) T (1.0s)) T (1.0s)) T  (10.0s)
Xq  (1.4pu) X"q (0.22pu) X'q (0.35pu) T4 (0.04s) Co (12pu)

Electrical Circuit Model

<«ism Rsm Xsm AEsm =(Vsu + Hsm-dsm) = motor emf.
:
i SM
L g7
g)?ﬂ" = RSM'iSM + (1/0)0)'XSM'diSM/dt & Vsm - AESM = Usm (A2-35)

Electrical circuit model of the extended synchronous motor in d-q axis frame of reference

AEsw = (Vsm + Hsm-dsm) = synchronous motor emf.
(Ra+X")+ (Qsmret +2~AQsm)-)_("~Sin2[35|v|+)2"rC082BSM -Qsmrer- X'+ (QsMres +2-AQsm)~)Z"-COSZBsM -)Z"rsinZBSM
RSM = A — — A — -
Qsmrer X' +(Qsmrer +2-:AQsm)-X"-c082Bsm -X"r8in2Bsm | (Ra+X"y) = (Qsmres +2-AQgm)-X"-5iN2Bsm -X"rcos2Bsm
Qsmrer =(1-C) , where Q= pu angular speed of rotor
mmf relative to rotor. See p.A2/11
AQsgm =(Qsm- Qsmrer), Where Qgm =pu rotor speed
X”+)Z”-cosZBSM -)_(”-sinZBSM Cf‘Ef'COS(BSM'Bf) E; =(v2.Erer +AE¢ ) = peak field excitation.
Xsm = — P V= — AE¢= voltage regulator response. See p.1/29.
-X"-sin2Bsm X"-X"-cos2Bsm -CrErsin(Bsm-Bs Ci= (\/Zl(mo-T’do-ef))(X"ad/X’ad). See p.A2/8.

Bsm = synchronous motor angle, see Fig.A2-3.
Br = phase shift of magnetizing ac voltage.

See Figure A2-3.
f fq kd kq

(Qsm-f1 fou-f7)-sinBsm+fa-cosPsm|(Qsm-f7 - fou-f1)-cosBsm+fa-sinPsm Qsm-fa-sinBsm+fs-cosPsm Qsmfs-cosBsmtfe-sinBsy D
Hsm 4

(Q sm-fi-fou-f7)-cosBsm-fo-sinPsm -(Qsm-f7 -fou-f1)-sinBsm+fa-cosPsu Qsm-fa-cosBsm-fa-sinBsm -Qsm-fs-sinBem+s-cosPsw |Q

X205+ X"  X'r=05K"w+X") X' = (U(00Ta)- (X ssXa0(Xa = Xa) + (1(00T"ao))- (e = X
X' =05(X"a-X")  X'r=05(K"a - X'rq) < X' = (M@0 Tao))- (X aeXa) (Xq = X'a) + (100 T"q0))-(X'q = X"q)

fou = shortened notation for frotrey) = pu frequency of 3-phase voltage applied to field winding. Not subject to sign shit.
fi = (Xa - X'a)-(X"ad/(Xad-X'aq)) « Xad =Xd-Xag

f2 = f1[(X'a = X"a) [ (100 T"a0))-(1/X"aq) - (1/(@0-T's0))-(Xad/X'ad) | - (1/(w00-T'g0))-(X” a6/ X'act) ] « Xag = X'g-Xao
fa = (Xqg—=X"g)/Xag « X'ag = X"g-Xag
fs = o[ (1/(00 T'do))(X”a0/X ad?)-( Xa ~ X'a) - (/{06 T"ao) ]

fs = - (X'q — X"q)/X'aq < Xag =Xq-Xeo

fe =-15[ (1/(OJO‘T’qO))'(X"aq/X'aqz)'( Xq=X'g) - (V@0 T"q0) ] « Xag = Xq-Xag
f7 = - (Xq - X'g)(X"a¢/(Xaq'X'aq)) ) « X'aq=X"q-Xao
fo = - f7-[(X'q = X"a) [ (1/(00'T"q0))-(1/X"aq) = (1/(00 T'q0))-XaaX'aq") 1 - (1/(00 T'q0))- (X" ag/Xaq) ]
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The ’Extended’ Synchronous Motor, cont...

Rotor Flux Model
d?w{dt = g (esmrtFsmirismtFsme-dsm) (A2-94)
where:
Ks -Es |¢ Er = (V2-Ere + AE;)-cosf =voltage of field coil 'f. See page A2/14 - 15 Xag = Xd ~Xag
esmr = |KigEig fq Etq = (¥2-Erene) + AE()-sind; = voltage of field coil 'fq’. See page A2/14 -15 Xad = X'd -Xag
0 | Ke = [(V2/(©0 T do€r)-Xaa /(Xa - X'a)] 1 For the adjustable speed SM X'ag = X"g -Xag
0 ka Krq = [(V2/00 Tqo-€10))Xag /(Xq - X'q)] b (ie. the symmetrical machine): Xaq = Xq -Xag
(sr, &) = factors =1, unless adjusted speed SM. } Kr=Kyq & & =eq, seep. A2/15. X'ag = X'q Xag
A E¢ = voltage control response. (Voltage phase not a control variable here). X"aq= X"q Xag
D Q

(1 /{00 T'd0))- Kad/X'ad)-X""ag-COSP | -(1/(wo T do))- (Xad/X'ad)-X"ad-sinB |
Fsmi =] (1/{®o: T q0))-(Xag/X'aq) X" ag'SINB (1/(00T'q0))-(Xag/X'ag)-X"ag-COSP } fq

(1/(00°T"do))-X ad-COSB - (100 T" 40))-X ag-sINP kd
(1 /((DO'THQO))‘X,aq‘SinB (1 /((Do'T”qo))'X,aq'CoSB kq
f fq kd kq
[ RITA)) ~frotor(pu) (Xad/X’ad2)~( Xg— XM g
frotor(pu) kad,(fq,f(}) (Xaq/X'aqz)'( X’q — )(”q)/'r’&0
Famy=(1/wo)|(1/T" do)-(1/Xad)-(Xg - X'a) - 1T g
(1 /T”qo)'(1 /Xaq)( Xq - X'q _ 1/Tuq°
Frof) = - (1//(Tao-X'aa))-[(Xaa/X'ag)-( X'a = X"d) + X"aq ]
Fag(fa.fa) = - (1/ /(T'qo-X aq)) [(Xae/X'aq)-( X'q = X"q) + X"aq ]

B = angular displacement of the local machine reference axes relative to the global axes
Br= specified phase shift (relative to local axes) of applied three phase field voltage.
frotorpu) = PU frequency of applied 3-phase rotor voltage. (Base frequency: 50Hz. Not subject to sign change)

Xg, X'a, X"q : direct-axis synchronous, transient and subtransient reactance (pu)
Xq X'oX"q : quadrature-axis synchronous, transient and subtransient reactance (pu)

Xag . stator leakage reactance (pu)
Tw, "o direct axis open stator transient and subtransient time constant (s)
T T : quadrature axis open stator transient and subtransient time constant (s)

Model application alternatives:

- If adjustable speed SM: Symmetrical maching; Xs=Xo, X'¢=X'q, X"a=X"q, T'0=T'qo, T"0o=T"q0, Ki=Kq. Pt to be set.
- If ‘traditional’ SM . Individual parameter setting. Br = 0. f; =0 (i.e. dc to the field circuit)

- If ’traditional’ AM : Symmetrical machine. No field voltage excitation : E=E=0. i =0. No P&U-control.

At any time during integration the rotor currents may be derived from (A2-19) :

ismr = (Xee) " +(dsm - Xoarisw) (A2-95)
where:
f fq kd kq
Xadl (Xg = X'g) Xad. f

er = Xzaq (Xq - X’q) Xaq fq
Xad Xag*tX'ad - X ad /(X' — X"q) kd

Xaq XagX'sq X'sq/(X'a — X"g)| ka

D Q

Xag'€OSP | -Xag-sinB| f
Xag'SiNB | Xag-cosP | fq

Xpar = Xngay T = | Xag-cosP | -Xag-sing | kd

XagsinB | Xagq-cosB | kg
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The ’Extended’ Synchronous Motor, cont...
Electromechanical Model

d(%%gn/ dt =(Sgas/Ssm)-(1/(Ta-coson))-( Tsmel = Tommec ) (A2-96)
Here:
Tsmet = O.5-i'3M-TSM1-¢dq = electrical motor torque , - where ¢aq = X sm -Tsmism + fom-dsm (A2-97)

TsMmee = Tsmmec(o)Q2sM* = mechanical torque in motor mode of operation. (Motor operation implies pos. sign of mech.
torque)

If the motor is up and running at t=-0: Tsmmec(o) = Tsmel(o) = electrical motor torque at t = -0. This is found from

equation (1-117) applied to the initial power system load flow. k= (say) 1.5-3.5
If the motor is to be started from stillstand (as e.g. an asynchronous motor) : Tsmmecio) = coefficient to model

mechanical friction, air resistance, etc. during startup. Probable range: 0.02-0.05

Tsmmec = (TsMelio) +ATmec) = Mechanical torque in generator mode of operation. ATmec is the response from the
power control system. See below for a sample hydro generator power control system.

Sgas, Ssm = Chosen VA system power base, and rated VA motor capacity, respectively
Ta, cosen = Dynamical system'’s inertia constant, and motor's rated power factor, respectively

- sinBsm |-cosBsm | cosPsm | - SinBsm X"4q fi fa f1=(Xg-X'a)- X" ad/(Xag-X'ad)
Tsmt = “"' Tsu= X’ sm= fom = f5=(X"g-X"g)/X’aq
cosBsml sinBsm sinBsm | cosPsm X"q -f; -5 f5=-(X’q—X"q)/X’aq
f7=-(Xq-X'9)-X"ag/(Xaq-X'aq)

(A2-98)

The electrical angle of the rotor is defined as, see equation (A2-43);
Bsm = (0ot —( Bsm +6¢)
giving rise to the following differential equation describing the angular movement of the *Extended’ Synchronous Motor:

dBm‘/dt = 0 (1-Qf-Qgn) where; Qsw= pu angular speed of rotor (A2-99)

(Tx1) - -

Q¢ = filf, =pu angular speed of rotor m.m.f.
relative to rotor. See p. A2/11.

Power Control System Model for generator mode of operation ( here: hydro generator as illustration. )

Ai%ref Ar (1+ Tes) p| 1=(@oT)s | g, Alwmee . For normal frequency
T P TeT)s + (Tt Te(orrdo))stdy A8 | 1+(0.580To)s T - control : AQyer = €.
T For 'P-controf’ :
\ —> a, AQref=C'<P‘arget -Pr)+O
I/AQ =(Q-1) AQ
dAd/dt = Ki-( AQuer - (1 - Qan) + AW) — Ko-AQ Regulator system
dAw/dt = Ky-Ad — Ky-Aw Regulator system
dAg/dt = (3K,/Qspm)-A8 — Ko-Ag Hydraulic system (A2-100)
{
ATmec = AQ — &g(1 - € -Qqn) — (2/Qsp)-Ad Net change of mechanical torque
Control system parameters:
Ko = 2/(85-Tr) Tr : Time constant for hydraulic system (eg 0.3s)
Ki=1/T¢ T.: Time constant for main servo ( eg 0.08s)
Ko =(8p + 8)/Tec « Ty : Transient droop time constant (eg 17s)
Kz = d/Tt & : Transient droop (eg 0.15pu)
Ka= 1T, dp : Permanent droop (eg 0.0 — 0.03. The value 0.0
Pm = absorbed motor power =0.5-isy"Usm if frequency sustained by a single unit)
Pm is negative in generator mode. 3o : Initial pu turbine opening (). (if ts <0.3 then 4,=0.3)
Plarget = target value of Py,
c = per unit scaling factor (eg.: c=0.1)

Voltage Control System Model — See chosen example system on p. 1/29
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The Asynchronous Motor ('AM’)

Asynchronous motor/generator behaviour is described in terms of 5 state variables:
2 stator current components = [iamg iam@ ]  (Where 't stands for transpose ')
2 rotor flux components dam = [Dry b 1| (1-123)
1 speed variable Qam = oan/eo

Motor parameters: Electrical data:(Xa, » Xea s Xm » X1} , S€€ parameters in bold type below. Inertia const. T, & friction torque, see below

Electrical Circuit Model

= A rT e ((AE) .
«iam Ram Xan S?kAEAM = (Ham-¢am )
>\
’ > Uam
4
Vam = Rawriam + (1/0o) Xam-diaw/dt &  vam - AEam = Uam (1-124)

Electrical circuit model of the asynchronous motor in d-q axis frame of reference

AEam = (Ham§am ) = asynchronous motor emf.

(Example data)

) Ra+R; - (Xm/X,) X'm - Xao = stator leakage reactance (0.08pu)
Ram = X:s = rotor leakage reactance (0.08pu)
X'm R.+R, ~(Xm/Xr)2 Xn = magnetizing reactance (2.50pu)
X = (Xes + X )
X'm (1-125)
Xam = X'u= Kao +X'm ) =(Xag + (X XealXo) )
X'm R. = stator resistance (0.03pu)
R, = rotor resistance (0.03pu)
'(RI‘/XI') -Oam Tw =L/R = Xr/(®o~Rr)
Hae = (Xm/Xd) - s = slip=(1-Qam)
Qam -(Rd/Xy) X'm= (Xm-XralXr)
Rotorflux Model
d;gfm_/ dt = oo (Famiriam + FampGam) (1-126)
Here:
(Re -Xe/Xy)
Fami =
(Re -Xm/Xe)
(1-127)
- (R /X)) (1-Qam)
FAM{) =
!QeM - 1) d (Rr /Xr)
Electromechanical Model
dQ{W/ dt =(Sgas/Sam)-(1/(Ta-c050))-( Tame — Tammec) (1-128)
Here: 1
_ 1
Tames = 0.5-(Xm/X,)-(‘T -iaw)-bam = electrical motor torque where 1= (1-129)
-1

Tammes = Tanecto) (Qam'Qame)” = mechanical torque in motor mode of operation. (Motor
operation implies positive sign of mechanical torque).

If the motor is up and running at t=-0:  Tamecto) = Tamei) = €lectrical motor torque at t=-0. Found from (1-129).
k= (say) 1.5-4.5, depending on type of load. Qawm = initial rotor speed
If the motor is to be starfed from stillstand :Tameciy= (say) 0.03-0.07= coefficient modelling mech. friction, air resistance,
etc. k= (say)1-5. Tamecy @nd x may vary over the range Qam=0-1

Tammee = (Tamely *ATmec) = mechanical torque in generator mode of operation. (Generator operation implies negative sign of
mechanical torques) Tamere is initial electrical motor torque. ATnec is the respons from the power control system.
Saas, Sam = Chosen VA system power base, and rated VA motor capacity, respectively.
Ta, cose = Dynamical system’s inertia constant, and motor's rated power factor, respectively.
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Example Asynchronous Motor Study

Consider the simple case of an asynchronous motor (to be) connected to an infinite bus of symmetrical
voltage Erst. The given voltage transforms into eqq in the d-q axis frame of reference, as given by (1-85).

System analysis will often imply:
- Initial condition analysis
- System respons analysis in terms of eigenvalue analysis, and/or time response analysis
subsequent to some additional excitation(s) to the system

Initial condition analysis
The state variable Qaw) has to be determined by special consideration of the task at hand:

If the motor is to be started from stilistand, Qame) =0, and so also the rest of the machine state
variables. |.e. the currents iawme) and fluxes ¢am)-

If the machine is initially in a steady state mode of operation, Qame) = (1 — Samey) , Where Sayy is
initial motor slip. In such a case it is customary to specify initial condition in terms of absorbed
motor power Pau) from the network. Initial pu speed Qawm() (Or equivalentity slip Sam()) should
then be set so as to contribute to fulfilling this specification. The determination of Qame) IS CON-
veniantly afforded by an iterative process in which Qaw,y is adjusted until specified initial condition
is reached to required accuracy. The computational scheme may be outlined as follows:

Given a tentative value (= e.g. 1.0pu) of Qawm(). Corresponding initial values iameo) and dam) are
found by observing the constraints implied by Kirchoff’s voltage law as (by analogy) expressed by
equation (A-19) of Appendix, - and the machine flux constraints of (1-126). In the current steady
state context, derivative terms are set to zero. The equations become:

Ram- iamo) + Hamo) dameo) = €dq (from (1-85) & (1-124) )
Famic iamo) + Famero): amey = 0 (from (1-1286) )
In maftrix form;
Ram I Hame) | | iameo) €dq
—| = (1-130)
Fami IFAM¢(0) Pam(o) 0

from which the sought initial vectors iame) and ¢ame) are found. Absorbed motor power is given as
Pame) = 0.5 i Uy If computed value is ok, an acceptable initial solution has been found. If P amo)
is not (yet) ok, Qam is adjusted appropriately, and a new and improved solution is solved from
(1-130). This process continues until "ok’ allows for exit from initial system analysis. For algorithmic
details on the general multimachine case, see Chapter 2.4.

Eigenvalue- and/or time response analysis

Given initial value of the system state variables, which in this simple 'motor alone’ study are the 5 asyn-
chronous motor variables (iam ¢av Qam). The subsequent dynamic behaviour of the system is governed
by the 5 first order, ordinary differential equations for the asynchronous motor, that are developed earlier:

diaw/dt = @ (Xam )" (€4q - AEam - Raw ian ) (From (1-124) & Kirchoff)
d¢AM/dt = FAMi' iAM +FAM¢ @M (From (1-1 26)) (1-131)
dQAM/dt = (SBas/SAM) (1/(Té COS(P)) (TAMeI - TAMmec ) (From (1‘1 28))

The linearization and processing of such equations for eigenvalue analysis, is covered in Chapter 3. Time
respons analyses are dealt with in Chapter 4.



2. The Power Network Model

page

2.1 Electrical Circuit Models and The Primitive System 21
Electrical circuit models 2/1

The primitive system 2/2

2.2 Network topology 2/3
2.3 Network modelling 2/4

2.4 Initial Condition Analysis 2/8



-2/1-
2. The Power Network Model
The modelling of power network loop currents is summarized in Appendix1. In the following the
methodology will be extended to also cover modelling of power network capacitor voltages. The full
network modelling process is covered via processing and discussing of the concrete system given
below. Although small in size, the example system is assumed representative qua content of main
types of power network components.

Synchronous Motor
I data: Seep. 1/25

___
=
X

Eye Iy Xy Xfy

—T—— I | ®_
Asynchronous Motor

Zpymmy data: Seep. 1/29
L
Pr Qu _é P Both SM and AM assumed up
Qn | i Qi and running for t=0_: *)

Bsme) =-0.380158 rad
Eqoy =1.792434 pu
Q amp) = 0.983866 pu

*)The following initial conditions are specified: Pgw =-0.8pu, Esm =1.0pu, Pam =0.5pu. For load flow solutuio; see Chapter 3.11.2.
Figure 2.1 : Single line diagram of specified power system at given point in time

In the per phase frame of reference, the following per unit (pu) data are given for the system at t=-0:

External system : Infinite bus, where r.m.s. voltage Eyem = 1.05 and y:=0. See (1-85).
Lossless series capacitor bank : rey — jXey; fey=0 Xy = 0.025

Series impedance Ihytxy  ; y=0.03 xy=0.125

Transformer x5 = 0.01 x =0.07

Inductive Load no 1 : Py =0.60 and Q1 =0.20 at Vigae1 =1, implying ri=1.5 and x4 =0.5
Inductive Load no 2 1Pz =0.25 and Q2=0.80 at Vieag2=1, implying r=0.356.. and x; =1.139..
Lossless shunt capacitor bank : Pg =0.0 and Qg =0.70 at Viade =1, implying ry =0.0 and x,=1.4285...
Asynchronous motor (AM’) :The motor model comprises three submodels; the Electrical Circuit Model, the

Rotor Flux Model, and the Electromechanical Model, see (1-124) to (1-129),
Chapter 1. The Electrical Circuit Model is the submodel of network relevance.

Synchronous motor (SM’) : In generic terms the comment above for AM is valid also for the SM. In specific
terms; see (1-106) - (1-119).

2.1 Electrical Circuit Models and The Primitive System

Electrical circuit models to apply in modelling of the main power network components, are summarized
in Chapter 1.6 & 1.7. Applying the pertinent data from above to the ’Infinite bus voltage’ (1-85) and
the 'Lossy Inductor’ (1-91/92), we readily get the following d-q axis circuit models of the given voltage,
series impedance, dummy impedance ), transformer, and impedance type inductive loads :

eq -SiNYref 0 ") 0 0 0| O
Infinite bus voltage : egq = = 2 Eyety = Dummy imp.: Rp = Xp={ ——

€q COSYref 1.485 0 0 0l O

0.03 |-0.125 0.125 0.00 0.01|-0.07 007 0O
Series impedance : Ry= Xy= Transformer 'Ry = | ——— Xi=

0.125, 0.03 0.00 [0.125 0.07{ 0.01 0 10.07

1.501 -0.50 0.50|] O 0.356]-1.139 1139 0
Inductive load no 1: Ru= Xns —T— Ind. Load no2: Rz = Xz =

0.501 1.50 0 }0.50 1.139] 0.356 0 }1.139

*) The ‘dummy impedance’ (here set to 0) allows for definition of a conveniant set of system loops. See later.
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For the above circuit models other than the one modelling the infinite bus voltage, the e.m f. is zero.
For space-saving reasons these 'zero-vectors’ are omitted from the above display.

Circuit-wise the lossy capacitor bank is represented by the terms ( R¢,X.=0,AE¢). ‘Locally’, the
capacitor voltage submodel applies Xc for description. For the two capacitor banks the specified
initial conditions imply setting of the voltage source vectors according to (1-99). The capacitor
related terms become:

0| O 0.025, O _ 0.019081
Series capacitor : Rey= Xey = + AEcy) = 1 Xoy boyio) = |
01 0 0 0.025 -0.010619
0 0 1.428571 | 0 _ 0.057253
Shunt capacitor : Ry = Xa = l AEg = 1 X4 lgey = | ——————
01 0 0 1.428571 1.413120

The d-q axis circuit model (at t=0_) .of the asynchronous motor, is found by applying motor data and initial
condition data to the algorithms (1-125) :

0.058168| -0.157519

0.157519 0 0.128647
Xam=|— AEam) = Hamoy damo)

Asynchr. motor : Ram = I
0.157519] 0.058168 0 0.1567519 1.276071

The d-q axis circuit model (at t=0_) of the synchronous motor is found by applying motor data and initial
condition data to the algorithms (1-107) — (1-110) :

0.045654 |-0.285186 0.213769| -0.03446 -0.22720
Synchr. motor : Rsm(o) 3 Xsm(o) = AEsm©0)=Vamoy*Hsmiy eme) = —————
0.214814 |-0.025459 -0.03446 | 0.286231 1.52919

The primitive system for any considered point in time , is merely a suitable lineup of the electrical circuit
models of the network components valid at that point in time. Re-arranging the component description
established above, the primitive system of the power network of Figure 2.1, can take on the form shown
in Figure 2.2. See Appendix1. For convenient identification the circuit models are assigned numbers from
1’ to '9", as given in Figure 2.3. In principle the numbering is arbitrary. To enhance system overview as
well as speed of computation, the numbering logic should observe both topological and component-
oriented considerations, - see later.

1 2 34 56789 1 2 3 45 6789
o—c—s 1 1 | Ram 1] Xam AE amo)
*——a 2 2 Rsmeeo) 2 Xsmo) AEsm0)
o——23 3 Ry 3 X 0
o——— 4 4 Re 4 X 0
o——25 Roprimitive = 5 Rp Xipimitive = 5 Xo Sprimitve(o) =| O
o—~—2 6 6 Re 6 Xa AE o)
o——o 7 7 R.;,y 7 XW AEcy(o)
o8 8 Rt d X 0
e—» 9 9 Ry IS Xy €dq
Oriented terminal Impedance terms of primitive network Source impact of
graph of primitive primitive network
network.
d
Vprimitive = Rprimitivé ipn'mitive + (1) XLprimitivé diprimitive/ dt & Vprimitive — ©primitive = Uprimitive

Figure 2.2 The primitive network of the power system of Figure 2.1, valid for t=-0.




-2/3-
2.2 Network topology
Graphwise the topology of a network is established by connecting together the graph elements of its
primitive system, as directed by the single line diagram of the network at hand. The oriented graph of
the system in Figure 2.1 is formed by inteconnecting the primitive network graph elements of Figure
2.2, as advised by the single line diagram of Figure 2.1. The system graph is shown in Figure 2.3 :

: Asynchronous machine

: Synchronous machine
: Inductive load no 1

: Inductive load no 2

: Dummy connection

: Shunt capacitor bank

: Series capacitor bank
: Transformer

: Series impedance+ infinite bus

N
© o~NoO o PwNn =

b =no. of nework graph elements = 9
Nnode = NO. of nodes of network graph = 5

Figure 2.3: Oriented graph of the system in Figure 2.1.

The formal modelling of the interconnection of electrical circuit models may be afforded by different
topological matrices comprising plus/minus '1’, or ‘0’ as matrix elements. In the present outline a
system loop matrix B is used to formally describe how the circuit models are tied together.

The system loop matrix B is conveniently defined on the basis of a chosen free and cotree of the
oriented graph of the network, see Figure 2.4a:

* The tree is a set of Nyee graph elements that connects ali nodes of the network graph without closing any
circuit. Nyee = (Nnoge-1), where Nnode is the number of nodes of the connected network graph. For the
graph of Figure 2.3, Nyee =(5 -1} =4. The chosen tree of this graph is shown with thick line in Figure 2.4a.

Capacitor elements must belong to the tree, and the capacitor elements should conveniently be numbered

first among the tree elements. It is also conveniant to locate any exogenously specified voltages to
elements contained in the free.

e The remaining Nioop=(b - Niree) graph elements constitute the corresponding cotree of the oriented network
graph. b is the number of elements of the graph. Each cotree element - or chord - identifies a unique loop
of the network graph. Thus the collection of chosen cotree elements identifies a necessary and sufficient
set of independent system loops for evaluation of network flow solutions.

The cotree elements of the graph are suitably numbered first. The chosen cotree of the oriented graph of
Figure 2.3, is shown by thin lines in Figure 2.4. With b=9 we note that N, = (9-4) =5.

Elementno —

loopno1 2 3 4 5 6 7 8 9
L 11 00 000 11 1
2/01 00 0)0 11 -1
B= 3{0 0 1 0010 10 -1]=(Bchord,Buree]
9 40 0 0 1 0jO0 1 1
50 00 0 11 1 11 2-1)
a) Oriented network graph b) Loop matrix B

Figure 2.4: Graph description in terms of tree, cotree and B-matrix
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The system loop matrix B gives the incidence of the independent system loops as defined by the set of
cotree elements — or chords - , and the oriented graph elements of the system. The numbering of the
cotree elements can conveniently identify also the set of independent system loops, and the chosen
orientation of the cotree elements can similarily define positive direction of the system loop currents.

The loop matrix B of the oriented graph of Figure 2.4a is shown in figure 2.4b. B can be partitioned
into a submatrix Behora that describes the incidence of loops and chords (=cotree elements), and sub-
matrix By.e that describes the incidence of loops and free elements. Given the conventions above,
Behora Will always be a unit matrix. In the chosen compact d-q axis matrix notation "1’ stands numerically
for a 2x2 unit matrix and 0’ for a 2x2 emty matrix. See Figure 2.4b.

To facilitate the processing of matrix equations, it is desirable to partition the submatrix Bgee. With the
chosen numbering convention regarding tree elements, we define;

Bires = [ Btc,Btorest ] (2-2)

where; 6 7

10,1

B, =submatrix describing the incidence 201
of loops and the subset of tree ele- Here: By = 3|01 | (2-3)

ments that comprise capacitors 4101

5{1 {1

8 9

B:.rest = SUbmatrix describing the incidence T7-1

of loops and the 'rest’ of the tree 11
elements. Here: Birest = |01 (2-4)

1M

i

2.3 Network modelling

With Joop currents and voltage across capacitors defined as power network state variables, the network
loop equations for the power system can - as shown in Appendix 1 - be compactly expressed as foliows,
in the d-q axis frame of reference:

Eicop = Rioop loop + (17 @) Xuoop® d]loop/dt (2-5)
where;

Elop = - B epimiive = (Nioopx1) d-q axis loop voltage vector comprising the driving voltage of respective
Niop loops of the network graph

eprimive = (bX1) voltage vector in the d-q axis frame of reference. epimiive COMprisies the e.mf. associated
with respective b graph elements of the network

loop = (Nieopx1) d-q axis loop current vector comprising the current of respective Nieop cotree elements of
the network graph. Orientation of the currents is here opposite the orientation of the cotree elements.
Current from a source is thus defined negative. Current supplied to a load is correspondingly
defined positive. See special discussion under heading 'Network Modelling’ in Appendix 1.

Rioop = B Rprimitive B = {(NisopxNioop) Network loop resistance matrix in the d-q axis frame of reference.
(2-6)
Xiioop = B Xigrimitive B' = (NioopXNisop) Network loop inductive reactance matrix in the d-q axis frame of
reference.

Rpimiive = (bxb) primitive network resistance matrix. Rprimitive is the collection of resistances
associated with resp. b elements of the network graph. Rprimitve is diagonal.

Xiprimitive = (bxb) primitive network inductive reactance matrix. Xiprimitve 1S the collection of
inductive reactances associated with respective b elements of the network graph.
Xiprimitive 18 Normally diagonal. See text following Figure A.3 of the Appendix.

B = (Nisepxb) network loop matrix giving the incidence of network loops and elements of
the network graph.
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To bring (2-5) on a more useful form, the product B erimive Should be further developed. To this

end B is already partitioned, see (2-1) - (2-4). epiminve iS partitioned as follows :

r €chord _l

epn‘ mitive =

€tree -l

where ecnorq cOMprises the voltage sources associated with chords or cotree elements, and ey
comprises the voltage sources associated with free elements.

€yee 1S @gain partitioned:

€ree =

r € _l]
L et—resl-l

(2-7)

(2-8)

where ey is the (Ncx1) subvector of eye. that comprises the formal voltage sources defined by capa-
citors. N¢ is the number of capacitors of the single line diagram of the power network. In the current
example N.=2. (Recalled from earlier: Each capacitor is structurally accounted for in terms of a tree
element, and these capacitor graph elements are assigned numbers before (any) remaining tree ele-
ments are given numbers). €< iS the subvector of ey.. comprising the voltage sources that belong
to the remaining tree elements .

From the foregoing definitions flow :

- t
B epn'mitive - [Bchord7 Btree] [echord:etree]
= Bchord €chord + Btreé Ctree

t
B'::hord €chord [Btc-Bt-rest] [etc,et—rest]
Bchord €chord T Bté ©c + Bt—rest €trest
€chord T Bté € t Bt-rest Ctrest

(since Bonora = 1, - per definition)

(2-9)

Equation (2-9) states : Resulting voltage source excitation of respective network loops can be viewed
as the sum of three contributions:

€chord -

Btd L= T

Bt-rest €t rest

The contribution from
voltage sources located
to cotree elements

The contribution from
voltage sources formally

equivalencing capacitors.

The contribution from
voltage sources that
reside in the 'rest’ of
the tree elements.

In the present case: echorqg =

in the present case: By €=

In the present case: Byrest €rest =

= K== o)

=Sjalal i (N

AEcl

AEy

AE

=| _AEqy

AE,,

e e

ENEN O N N

AEcl

AEc|+ AEcy

1
[
j=3
E=]
a b ow N -
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Inserting (2-9) into (2-5) and solving w.r.t. the derivative of the network loop currents, we get the
following set of first order ordinary differential equations to govern the variation of power network
loop currents:

diloop/ dt = oy xLloop-1‘ [' Rloop iIoop = Btd €tc - €chord - Bt—rest et-rest] (2'10)

The voltage across the capacitors of the system is given by the (N¢x1) voltage vector eq. These
voltages are defined as state variables, and in the following the differential equations governing
their time variation are developed.

In our adopted d-q frame of reference, the differential equations governing the voltage AE; across
any given capacitor of ‘throughput’ current i , is fetched from our stock of models in Chapter 1.7,
- see equations (1-98) and (1-99) there :

dAEc/dt = @y (Xc ic + + AEg) (2-11)
with initial condition; _
AE¢) = 1 Xc g (2-12)
and definitions (1-97), (1-100) & (1-101);
Re . :
Rc = ‘—’— 2-13)
Re .
1/(wp C) Xe
Xc = = (2-14)
1/(av C) X
_ 1
1= (2-15)
-1

Equations (2-11) relate to one capacitor voitage. Extending the description to cover the set of N¢
capacitor voltages ey , one can write ;

de/dt = ay (Xcprimitive ke + 1t €) (2-16)

where Xcprimitive - in d-q axis frame of reference - is defined to be a diagonal (NcxNc¢) matrix
containing the sequence of reactances X, along the main diagonal. iy is the set of capacitor
currents that constitute a subset of the current vector iy that comprise the full set of free element
currents of the network graph.

?tc is - in the d-q axis frame of reference - a (NcxN¢) diagonal matrix that repeats the matrix 1
along its main diagonal.

The currents i, in (2-16) are per se not state variables. They are however, related to the loop
currents which are the chosen state variables. Equation (A-7) of Appendix1 states that the currents
ivee associated with the free elements of an oriented network graph, are generally expressible as
linear combinations of the currents ij,,, associated with the cotree elements —or chords — of the
graph. In formal terms the following holds true:

. _ t .
ltree = Btree' lioop (2-17)
For the subset of capacitor currents i , (2-17) takes on this form:
it = Btct‘ iloop (2-18)

Equation (2-18) is used in (2-16), and the following useful system of equations finally appears for
describing capacitor voltage performance :

dew/dt = @ (Xcprimitive B Tioop* Tte €tc) (2-19)

Equations (2-10) and (2-19) describe the electrical performance of the power network. Put together
they represent the electrical network model in a d-q axis reference frame of formulation:
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diloop/dt = XLIoop_1' Rloop 'XLIoop-1' Btc iIoop XLlov::p.1 XLloopq' Bt-rest
=Wy — — - €chord = @ | ——————— | Etrest (2'20
dey/dt Xcprimitve Bie' | 1o et 0 0
where;
ioop = (Nioopx1) vector of loop currents comprising the current in resp. chords. lloop1 iam
Each loop current comprises a d-and a g-component, so that numeri- In present iloop2 ism
cally iiop is of dimension (2NipepX1). Nioop is the number of independent example: floop 3 Tioopa| =| i
loops of the oriented network graph. It is also the number of cotree ele- floops i2
ments -or chords- of the graph. iloops in
The orientation of the /oop currents iop is here defined opposite the (2-21)
orientation of the currents of the cotree elements. See Appendix 1.
Power supplied to loads will then be positive, when derived from iloop-
Elem. no
e = (Ncx1) vector of capacitor voltages in the d-q axis frame of reference. AEq |6
Each voltage comprises a d-and a g-component, so that numerically ey Here: ey = (2-22)
is of dimension (2Ncx1). N is the number of capacitors of the single AEq |7
line diagram of the power network.
|7;op no
echord = (NioopX1) vOltage source vector associated with resp. cotree elements of AEam|4
the graph, d-q axis frame of reference. Each voltage comprises a d-and AEsM 2
a g-component, so that numerically echora is of dimension (2Njoepx1). Here: echora =| 0 |3 (2-23)
For the synchronous motor : AEsm =(Vsm+Hsm ¢sm), see (1-106). 0 |4
For the asynchronous motor  : AEam =Haw tau , see (1-124). 0 (s
etrest = (Niree - Nc )x1 voltage source vector associated with the 'rest’ of the tree Elem.no
elements , ie the tree elements that are not representing capacitors. Each 0 |
voltage comprises a d- and a g- component, so that e.rest numerically is  Here: trest = (2-24)
of dimension 2(Nyes - Nc )x1. Nyee = number of tree elements of the graph. €dq |9

Infinite bus voltage edq = [eq, €q]' = 2 Eyey [-Sinyrer ,COSYred] = [0 ,1.485..

B = (Niopxb) system loop matrix in the d-q axis frame of reference. Entries are +/-1 or 0. '1’ means numerically
a 2x2 unit matrix. '0’ means a 2x2 emty matrix. b is the number of elements of the oriented graph.

Elem.:— _ chords tree-elem 6 7 8 9 Lgopno
10000{0111 01 11
01000{011-1 01 1-1]2
B = [Behord, Biree) Here: B={ 001001010 -1 Bt =} 01 Btrest =] 0 -1]3 (2-25)
00010(011 -1 01 1-1]4
Biree = [Btc,Btrest | 00001111 -1 11 1-1ls

Bchord Blree

Rioop = B Ryrimitive B! = (NioopXNioop) Network loop resistance matrix in the d-q axis frame of reference. Each element
Rioppfi,j] Of this matrix 'hides’ a 2x2 'local' d-q description. Numerically Ricep thus is of
dimension (2NioopX2Nigop)

Rprmitive is - in the d-q frame of reference — a bxb matrix displaying the R-term of each and
every element of the system graph. Rprimitive is diagonal. Each element Rpimavelij] of this
matrix 'hides’ a 2x2 'local’ d-q description. Numerically Rprimitive then is of dimension (2bx2b).
For simple illustration of Rprimitive , S6€ Figure 2.2.

Xtioop = B Xiprimitive B'= (NioopxNioop) network loop inductor matrix in the d-q frame of reference. Each element XLioopli,j]
‘hides’ a 2x2 "local’ d-q description. Numerically Xueop then is of dimension (2NioopX2Niggp).

Xiprimitive is - in the d-q frame of reference — a bxb matrix displaying the X, -term of each and
every element of the system graph. If there are no mutual coupling between circuits, Xiprimitive
is diagonal. In the present example Xiprmitive is diagonal. See Figure 2.2 forill. . Each ele-
ment Xiprmiivelij] 'hides’a 2x2 ’local’ d-q description. Numerically Xiprimitive then is of
dimension (2bx2b).

Figure 2.5 Summary description of the electrical state variables (loop currents and capacitor voltages) of a power network
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2.4 Initiai Condition Analysis
Whether eigenvalue- or time dynamical analysis is to be conducted next, an appropriate initial state has
to be defined for the system. In the following the process of arriving at the proper initial value of all state
variables is dealt with.

The initial value of state variables of rotating machines have to be determined by special consideration:

If a synchronous motor is to be started, its pu speed Qgu) = 0, and so also all initial machine
current and flux variables.The electrical angle Bsm) can arbitrarely be set to zero. The synchro-
nous motor’s field voltage Egoy may also be zero, if the field winding is kept short circuited
during the initial part of the start-up sequence.

If a synchronous motor is initially in a synchronous mode of operation, Qgmpy = 1. In this case

it is customary to specify initial conditions in terms of absorbed power Pgw) and voltage Ugw
at the machine terminals. Thus Bsmp) and Ege should be specified so as to contribute to full-
filing these requirements. Computationally, this is afforded either by determining Bsme) and
Eqo from an initial phasor diagram (which may be feasible only for a very small system), or by
an iterative solution process in which Bswe) and Egg are simultaneously corrected (together
with all other such 'control variables’) until stated initial conditions are reached to required accu-
racy. Absorbed (or produced) reactive motor power is in principle a byproduct from the stated
solution process. The process is further developed below, and exemplified in Chapter 3.11.2.

If an asynchronous motor is to be started, its pu speed Qawe) = 0, and so also all initial
machine current and fiux variables.

If the asynchronous motor is initially in a steady state mode of operation, it may be appropriate
to specify initial conditions in terms of absorbed motor power Pauvgy . Thus Qame) should be
specified so as to fulfill this power requirement. Computationally, this is afforded by including
Qamy as one of the simultaneously corrected ‘control variables’ of the above mentioned
iterative solution process. Absorbed reactive motor power flows as a byproduct from the
solution process.

With (finally or tentatively) specified values (Bsmp), Efo) » Qom) » Qamo) ), the premises are set for com-
puting initial values of the rest of the pertinent power system variables. l.e: The network loop currents
ilop(0) . the capacitor voltages ey , the asynchronous motor fluxes @am() , and the synchronous motor
fluxes %M(O) .

The solution vector z)=[iop(o)» €tc(o)» Pamco)» dsmio)T is found by simultaneously solving (2-20), (1-126)
and (1-113) for steady state conditions, - i.e. after setting the derivative terms =0. At the outset we
then have:

di|oop/dt "xLloop-1' Rloopl 'XLIoop_1' Btc iloop(o) XLIot:p-1 XLIoop—1' Bt-rest

=0= wy t| = : -y €chord(o) = Ub €trest (2-26)
deyc/dt Xcprimitive Btc 1te €tc(o) 0 ]
diam/dt =0 = ay (Famr amo) + Fameo) damio) ) (2-27)
désm/dt =0 = @ (esmro) + Fsmi) ismio) + Fsmg demo) ) (2-28)

We notice that XLkmp'1 is common factor to all terms of the upper system of equations of (2-26), and
hence can be omitted in the present context. As a common factor to ali equations & can also be
omitted. The set of equations above may then take on the following form:

Ricop Bte iloop(o ~€chord(o) -Be-rest tres
- e + (2-29)
Xcprimitive B 14 ) 0 0
( Fam iamo) + Famgo) Pamo)) = 0 (2-30)
(Fsmi(o) ismio) + Fsmg demio) ) = -esMr(o) (2-31)
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The vectors on the right hand side are avalable from previous Chapters: From Chapter 2.3 we have;

Loop no,

€chord(o) = {Nioopx1) voltage source vector associated with resp cotree AEam(e) |Hamo) damo) 0 /
elements of the graph. d-q axis frame of reference. AEsme)| |[Hsmio) dsmio)| |Vsmo b

D! €chord(o) = 0 = 0 H 0 |5

For the synchronous motor : AEsm(o) = (Vsmo)tHsmoy Geme) )- 0 0 0 |,

For the asynchronous motor: AEame) = Hame) dam(o). 0 0 0 |s

(See (1-106) and (1-124))

Birest €rest = the loop voltage contribution from the voltage sources that 1} -1 -€dq J1
reside in the 'rest’ of the tree elements. It is convenient to choose 1 -1 -€dq |2
the tree of the oriented graph so that external sources - if any - D! Brrest@trest ={ 0] -1[-| 0| = -eqq|s
belong to the ‘rest’ of the tree elements. The infinite bus voltage: 1 -1 | eqq €dq |4

1 ‘1 'edq 5

edq =[ed, eql' = [\ Eyer sinyrer , 2 Eyefy 00SYrer ]!

The above expressions for ecod and Brrest ewest are applied to (2-29). For given initial values (Bsmo), Ex0y, Qsm(o),
Qamo) ) €quations (2-29) -(2-31) can then be compactly expressed as follows, for determining initial conditions:

Hsyst(O) Zo) T Esyst(o) ’ (2-32)

The sought initial values z() are solved from (2-32). The algorithmic details are summarized as follows:

Z(o) = H'sysio) Esysio (2-33)
where;
iloop(o)

Z) =| etc(o) = initiial value of electrical network state variables, when values are
Bam(o) (finally or tentatively) specified for (Bsm). Eftc) , Qsmio) » Qamio) ) -
dsM(o)

iggp €t Gam M
Hame  — @9
Hsm(o)
RIoop(O) Btc
Hsyst(O) = (10x10) (10x4) (10x5)
(2-34)
XCprimitive Btct 1tc
{4x10) (4x4)
Fawmi Famgoy 1 @)
, FSmi(o (5x10) FSM¢
(5x4) Comments:
l

€dq -2 Eyety SinYres In most cases:

€dq - Vsm(o) edqq = ———— v arbitrarely =0.

ey —— v Ey(et COSYref Eyem =(e.g) 1.05

edq
(2-35) Esysii0) = €dq where;

0 e Ct Exoy 00SBsmo For details:

0 e Vsmey = [———— See Chapter 1.6,
-€3Mr(o) -Ct Eqoy sinBsmo eqgn. (1-109) .
(19x1)

Kf' (s
esmrio) =|__ 0 See (1-114) .
0

Figure 2.6 Initial value of electrical network state variables z() , when the variables Bsm(o), Efo) , Qsmio) , Qamio)
are (finally or tentatively) specified.
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The solution (2-33) will provide the desired initial load flow, when such sets of specified variables Bsu),
Esop Qomio)» Qam) are applied, that all imposed component- as well as systems related operational
constraints are met. In case of infeasibility, proper adjustments must be made until the desired initial
system status is established.

An efficient gradient technique for establishing the desired initial conditions is outlined next by way of
applying it to the example system of Figure 2.1. Example initial operational constraints :

External infinite bus voltage " Eyem = 1.0pu.
Power supplied to the synchronous motor : Pspargetioy = -0.8pu (generator mode of operation)
Synchronous motor voltage . Esmrargetig) = 1.0pu.

Power supplied fo the asynchronous motor : Payargetoy = 0.5 pu.

The iterative solution process comprises three main steps. Applied to the current case, the process
becomes as follows:

1. Stipulate initial value of Bsu), Efoy, and Qamy - Set final value Qsm) =1.0. Set Eyer as specified.
2. Solve for the rest of the initial state variables according to (2-33). Register as byproduct from the

solution, the quantities (Pswm) » Esmio) » Pampoy ) for which there are specified target values.
Compute the deviations (AD) from target values:

APsmo) Psmio) = PsMtarget(o)
AD = [AEsm) |= |Esmio) = Esmtarget(o) (2-36)
APam(o) Pamio) — Pamtarget(o)

If the absolute value of each deviation is below some individually set treshold, the sought initial
solution is found, and exit is made from the iterative process.

If the sought solution is (still) not found, a set of more appropriate values (Bsmw), Efc), and
Qam(o)) have to be applied. To this end ; go to label 3).

3. Incrementally and simultaneously adjust Bsu), Efo), and S$amp so that an improved initial
power flow balance can be attained. The updated and improved value of respectively Bsw),
Efo)y and Qame) » €an conveniantly be defined as currently available value plus a proper
incremental correction to be determined at this stage of analysis :

To evaluate the corrections (ABswmp), AEfo), AQampe) ) ON a simultaneous basis, a sensitivity
analysis is conducted to find the elements of the sensitivity matrix 8 of the defined relationship
(2-37) :

|APsym | ABsm
AESM = S . AEf (2-37)
APAM AQAM

In the present case where S is a (3x3) matrix, this intermediate sensitivity analysis comprises
3 separate sensitivity computations:

Firstly, the sensitivity of Psy, Esu and Pay w.r.t. an incremental increase of fsu is investigated.
This is afforded by setting Bsm = Bsmio) + ABsm , and solving (2-32) while Ego) and Qamo) are
kept unchanged (i.e. AE; and AQam of (2-37) are both zero ). APsm = (say) 0.01rad. From
solution (2-33), the new values (Psw, Esm, Paum) are evaluated, and so also the associated
incremental increases APsm = Psm- Psmo), AEsm = Esu - Esmey and APam = Pam - Pamioy - The first
column of S can now be computed, as we definitionwise have - since both AE; and AQam =0 in
(2-37) - that Si1= APsm/ABsm, Sz1 = AEsw/APsm, Sa1 = APaw/ABsm . Psu is resetto Bswmy -

Secondly, the sensitivity of Psy , Esm and Pay w.r.t. an incremental increase of E; is investigated.



-2/11-
This is afforded by setting Er = Eqo) + AEr , and solving (2-32) while Bswe) and Qame) are kept
unchanged (i.e. ABsm and AQaum of (2-37) are both zero ) . AE; = (say) 0.01pu. From the new
solution (2-33), values (Psm, Esm, Pam) and associated marginal increases APsy =Psm -Psmo),
AEsm = Esm - Esmpo) and APam = Pau - Pamo) are evaluated. The second column of $ can now be
found, as we definitionwise have that Si2 = APsw/AEs , Sz» = AEsw/AE; , Sao = APaw/AE;s . Es is
reset to Egq) .

Thirdly, the sensitivity of Psu , Esu and Pay W.r.t. an incremental increase of (s is investigated.
This Is afforded by setting Qam = Qamo) +AQam , and solving (2-32) while Bswy and Egg are kept
unchanged (i.e. ABsy and AE; of (2-37) are both zero ). AQam = (say) 0.01pu. From the new
solution (2-33) we evaluate the values (Psm, Esm, Pam) and the associated marginal increases
APsy = Psm - Pse), AEsm = Esm - Esme) and APam = Pay - Pamo) - The third and last column of S
can now be found, as we definitionwise have that S13 = APsu/AQam , Sz = AEsm/AQam, Sas =
APa/AQanm . Qam is reset to Qam(o) -

With given sensitivity matrix § and prevailing deviations AD relative to target values (Pswargeto),
Esmtarget(o), Pamtargeto) ), €quations (2-37) is applied to estimate the set of increments (ABsw , AE;,
AQam) that will eliminate prevailing deviations: Using (- AD) as 'excitation’ on the left side in
(2-37), and solving w.r.t. the desired simultaneous increments become

ABsm
AE; |=-8'.AD (2-38)

AQnpm

The computed incremental values from (2-38) are then used to produce an updated and im-

proved set of initial values (Bswm) , Efo) » Qamo)) . in accordance with e.g. the dynamic update
logic illustrated by (2-39).

Bsmo) «PBsmp) * Kk ABsm
Etoy «Efoy +k AE; (2-39)

Oamioy < Qamo) + k AQam

k is a scalar factor of default value 1.0 . An alternative value in the prospective range
(0.0<k<.0) implies in principle safer but slower convergence. Following update of initial
conditions as specified by (2-39), return is made to step 2. of the iterative process.
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3. Eigenvalue Analysis

Given the description of an initial operational state of a power system. We seek the system'’s eigen-
values which describe the inherent dynamic characteristics of the system, when incrementally
disturbed from the specified initial state.

If the power system’s state variables are z, the stated task implies determining the eigenvalues
associated with matrix A of the linearized formulation;

dAz/dt = A-Az (3-1)

where Az comprises the incremental state variables. In the following the content of A pertaining to
the system of Figure 3.1, is developed. Although specific in its approach, the presentation is generic

in the sense that a general methodology is applied in modelling of incremental power system
performance, and self- and mutual elements of matrix A are developed on general algorithmic form
for state variables associated with all main types of power system components. As synchronous
machine model is applied the model of Chapter 1.4 (which is based on the 5-coil generalised machine).

Synchronous Motor.
e % EE—— Chapters 1.7 & 3.11.1

@ @ Asynchronous Motor.

Chapters 1.7 & 3.11.1

P Qu —E-‘_[S P Both SM and AM assumed up
T

Qi Qi and running for t=0_: *)
BSM(O) =.0.380158 rad
Ef(o) =1.792434 pu
Q AM(@O) = 0.983866 pu

Ey(eff) =1.05 Ty Xy

Xoy

*)Specified initial conditions: Psy=-0.8pu, Esu=1.0pu, Pan=0.5pu.The above implied values are found iteratively. Chapter 3.11.2

Figure 3.1: Example power system under study

The presentation is a three-stage outline; Chapter 3.1 - 3.9 develop the self- and mutual elements
of A, Chapter 3.10 deals with placing them together to form A, and 3.11 discusses/checks sample
results.

3.1 Performance of the derivative of incremental power system loop currents Ai,op
From equation (2-20) of the systems analysis chapter 2, we have:

diloop/dt = 030')(Llo¢::p-1'("Rloop‘iloop - Btc'etc - €chord - Bt—rest‘et-rest) = (mo‘xLloop-1)'Giloop (3'2)

= (-Rioop-iicop=Btc-€tc @chord - Bt.rest@trest) (For initial,steady state conditions: Giiop=Giisop(o) =0) (3-3)
ioop = State variables in terms of system loop currents
e, = state variables in terms of capacitor voltages
Rioop = B~R,,,i,,1m\,e-Bt = (NioopXNioop) System loop resistance matrix in the d-q axis frame of
reference. Rioop is @ function of the 'local’ state variables §, Qsm and Qaum . (3-4)
B, = topological submatrix where the elements can be 0,1 and -1. See Chapter 2.2
€chords = [AEtAM, AE'sy, 0, 0, O]t = voltage sources vector associated with the cotree elements
or chords. Fetched from the stock of machine models of Chapter 1.7:
AEam = Ham-dam
AEgm = Vsm + Hsm dsm (3-5)
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where;
dam = [dra ¢rq]t = asynchronous motor state variables in terms of d- and g-axis rotor
flux components
dsm=1[ & dua Pxg I' = synchronous motor state variables in terms of three rotor flux
components associated with respectively the field winding (f), the equivalent
d-axis damper winding ('kd’) and the equivalent g-axis damper winding ('kq').

The state dependent machine matrices Haw , Hsm and Vsys are fetched from Chapter 1.7 :

"(Rr/Xr) 'QAM
X/ Xp) - (3-6)
Qam -(R/Xp)

Ham

Qsufy ~sin]33M + fz‘COSBSM Qe fs -sinBsM +f4-COSBSM Qamfs -COSBem + fs -sinBSM
Hsm = (3-7)
stfrCOSBsm - fz'Sinﬂsm Qsm'fa 'COSBSM - f4-SiﬂBSM - QSM-fs 'Sinﬁsm + fs-COSBSM

Cf‘(Ef(o) +A Ef)'COSBSM
Vsm = (3-8)
‘Cf"(E{(o) +A E;)-sinBSM

From the foregoing it is observed that the derivative of the loop currents i is @ function of a subset
of the state variables;

ditoop/dt = f(iloop» €tc s PamM » Dsm s Bsm » Qsm 5 Q2 sm 5 AEr) (3-9)

We seek the corresponding incremental network loop current behaviour, and can on the basis of (3-2)
make the following formal algorithmic development for the ensuing analysis:

A(diloop/(:“:) = A[((’3o'xLlcaop-1)'Giloop] = A[((’30')(Lloop-1)]‘Giloop(o)+ (mo'xLloop(o)-1)‘AGiloop (3-10)

Since Giiepo) = 0 for the initial steady state condition specified as basis for the eigenvalue analysis,
we have;

dAie0p/dt = (@o-XLioopto) ' )-AGiicop (3-11)

( 3-11) provides the platform for determining the sought incremental performance dAijeep/dt. To evalu-
ate the content of AGiw,, We formulate (3-12): Equation (3-9) implies that diiop/dt of the example,
may depend on J =( 5x2+2x2+(2+3)+3+1)= 23 individual state variables Az;. Thus we can formulate :

J=23 J=23
dAiloop/dt = (mo'x-1Lloop(o))‘J;(aGiloop/azj)'AZ] = %:1Ailoopj'Azj = Ailoop‘AZiloop (3-12)

AiIoop
dAiloop/dt =[Ailoopiloop: Ailoopetm Ailoopq)AM. Ailoop‘bSM. AiloopBSM- AiloopQSMy AiloopQAM, Ailooquf]' Aetc (3'13)
Adam
Adsm
ABsm
AQSM
AQSM
A(AE g

in the following the content of the coefficient matrix Aiigep is developed.
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3.1.1 The elements Aiiopinop Of coefficient matrix Aijggp .
From (3-12) and (3-3): )
AiIoopiloop = ((Do'XLIoop(o)- )'(aGiloop/ailoop)
o

A(i{%?(?g?” = '(0)°'x'-l°°P<0)-1)'R|oop

where;
t .
Ricop = B-Rprimitive'B . (see Appendix1)
XLloop = B'XLprImltlve'B ”

The elements of coefficient matrix Aijjo, defining the influence on
dAieop/dt of the incremental system loop currents Aijoop

3.1.2 The elements Aigec Of coefficient matrix Ai, .
From (3-12) and (3-3): ,
Ailoopetc = (mo‘XLIoop(o)-1)'(aGiloop/aetc)
o

Aiiooofic = (00X "B
(105(0‘8}) tc ( o' /ALloop(o) ) tc

where;
B, = submatrix describing the incidence of
loops and the tree elements that com-
prise capacitors. See Chapter 2.2.

The elements of coefficient matrix Aijop, defining the influence on
dAijgep/dt of the incremental capacitor voltage components Aey .

3.1.3 The elements Aiydam Of coefficient matrix Aig, .
From (3-12), (3-3) and (3-5):
Ailoop¢AM = ((Do'xLloop(o).1)'(aGiloop/ad)AM) = '(C‘)o'xLloop(o)-1)'(aechord/ad)AM)

where;
i
@ chora/Obam = |22
(8x2)
o
o M
/(\1i6c),&g¢AM = (mo‘xLloop(o)- ) ( 0)
(8x2)
where;
-(R/X;) -Qamo)
Hame) = (Xn/X0)1
QAM(o) -(RI'/XT)

The elements of coefficient matrix Ai,op defining the influence on
dAieep/dt of the incremental asynchronous motor flux compo-
nents Adam -

(3-14)

(3-15)

(3-16)

(3-17)

(3-18)

(3-19)

(3-20)

(3-21)
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3.1.4 The elements Aipdsu Of coefficient matrix Aioop .
From (3-12), (3-3), (3-5) and (3-7): )
Ai!oopd)SM = (C\)o'XLloop(o)d)'(aGiloop/a¢§M) = ‘(mo'xLloop(o)' )'(aechord/ad)m)

where;
0 23)
d€chora/Obsm = | Hsmo)
0(6x3)
>
0 (2x3)
. A
Aqgogd)SM = (mo'xLIoop(o) ) 'HSM(o)
(10:3) 0 (6x3)
where;
f1-SiNBsm(o) + f22COSPsmo) | fa-SiNBsmio) +T4-COSPsme) | f5COSPsmie) * Te-SiNBsmo)
HSM(o) =
f1-COSPsmqo) - F2rSiNPBsmoy |f3-COSBsmie) - Ta-SiNBsmo) | ~fs-SiNBsmoy+ f6-COSPsm)

The elements of coefficient matrix Aiqp defining the influence on
dAieep/dt of the incremental synchronous motor flux components - Adsy .

3.1.5 The elements Aiy,Bsu Of coefficient matrix Alipgp -
From (3-12), (3-3), (3-5), (3-7) and (3-8):

AiloopBSM = (mo'XLloop(o)-1)'(aGiloop/aBSM)

'(ﬂ)o'xLloop(o)-1)'( a(Rloop'iloop(o))/aBSM + aechord/a[-))SM )

>
0 (2x1)
OGiioop/OPsm = | -DismBsm(o)
0(6x1)
o
0 2x1)
APy = (0o XLioopto) ) FDismBsmo)
J%QP) 0(6x1)
where ;

DismRioop =2

DismEsm =

Dismhsm =

DismBsme) = ( DisuRioop + DismEsm + Disuhsm )

(X"-c082Bsmioy — X"'8iN2Bsmoy) | -(X"-siN2Bsm(o) + X"rCOS2Bsm(c)

-isMio)

-(X”-sin2Bsm(oy +X'rCOS2Bsmio)) 1-(X""-CO82Psmio) — X"rsin2Bsmio))

- Cr-Ex 0y sinBsmo)

-Cr-Ef (0 cOSBsM(o)

f1-co8Psmio) ~f2-SiNBsmioy | f2-COSPsmic) -fa-8iNBsmio) -f5-sinBsmo)+fs-cOSBsmo)

-bsmio)

-f1-sinBamo) -f2-COSPsm(ey| ~fa-SiNPsmio) -f4-COSPsmie)| -f5-COSPsmio) -To-siNBsmio)

The elements of coefficient matrix Aiqop defining the influence on
dAiep/dt of the synchronous motor incremental rotor angle AB.

(3-22)

(3-23)

(3-24)

(3-25)

(3-26)

(3-27)

(3-28)

(3-29)

(3-30)

(3-31)

(3-32)
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3.1.6 The elements AiqQsm Of coefficient matrix Aijgqp .
From (3-12), (3-3), (3-5) and (3-7):
AiloopQSM = (C‘)o‘xLloop(o).1)'(aGiloop/aQSM)

'(Coo'XLIoop(O)-1)'( (Rioop-iloop(o))/0Qsm + O€chord/0Qsm )

o
0 (2x1)
OGiioop/0Qsm = | -DismQsm(o) where  DismQsmio) = DismCsmie)(1) + DismQsmio)(2)
0(6x1)
>
0 (2x1)
AliogpQsm = (mo'XLloop(o)‘1)' -DismQsmo
oy 0(6x1)

f1-sinBsmi) | fa-SiNBsmioy |f5-COSPBsm(o)
DigmQsmioy(1) = -Osm(o) =Tsm1(o) Fsm Psmio)
f1-coSPBsmo) | fa-COSPsmo) |-f5'SINBsmo)

_ | sin2Bsmey COS2Bsm -
DiSMQSM(O)(Z) =2.X" 'iSM(o) where X’ =0.5(X"q -—X”q)
C032BSM(°) -sin2BSM(o) (see (1-111))
sinBsme) | -COSPsm) fi | fa
Temiey = and fom =
cosBsmo) | SiNBsmo) fs

The elements of coefficient matrix Aijo, defining the influence on
dAieep/dt of the synchronous motor incremental rotor speed AQgw.

3.1.7 The elements AigpQam Of coefficient matrix Algop -
From (3-12), (3-3), (3-5) and (3-6):

AiloopQAM = ((Do‘xLloop(o)-1)'(aGiloop/aQAM) = ‘(@o'XLloop(o)A)'aechord/aQAM

o
DismQamio)
a'-:-'chord/ angM =
0(8x1)
o
_ 4 -DismQamo)
All?{)&%‘\M = (o XLiooplo) ) Oexty
where;
o -1 _ _
DisuQamoy = (Xm/Xr) | - bamo) = X Xr)-1-damo)  (see (1-129) for def. of 1)
11 0

The elements of coefficient matrix Aip defining the influence on
dAiieop/dt of the asynchronous motor incremental rotor speed AQam.

(3-33)

(3-34)

(3-35)

(3-36)

(3-37)

(3-38)

(3-39)

(3-40)

(3-41)
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3.1.8 The elements AiE; of coefficient matrix Aigop -
From (3-12), (3-3), (3-5) and (3-8):
AiIoopEf = (mo‘xLloop(o)d)'(aGiloop/aAEf)

= (00 XLioop(o) ' )-0€chora/ OAE; (3-42)
)
0 (2x1)
aechordlaAqu = DiSMEf(O) (3-43)
0(6x1)
o
; 0 (2x1)
AilgooEr = (0o XLicopio) ):|~DismEro) (3-44)
8 0(6x1)
where;
. Cr-cosBsm(o)
DISMEf(Q) = (3-45)
-Cr-sinBsuo)

The elements of coefficient matrix Ai,o, defining the influence on
dAijeep/dt of the synchronous motor incremental field voltage A(AEy) .

3.2 Performance of the derivative of incremental capacitor voltages Ae
The variation of the voltages e is given by equations (2-20) of the systems analysis Chapter 2:

detc/dt = (Do'( xCprimItlve'Btct‘iloop + 1tc'etc ) = (Do'Gec (3"46)
Here; }
Gec = ( XCprlmitive‘Btct‘iloop + 1tc'etc )
e, = state variables in terms of capacitor voltages
= state variables in terms of system loop currents
= diagonal (NcxN¢) matrix (in the d-q axis frame of reference) containing the sequence
of component reactances X, along the main diagonal. N¢ is the number of capacitor
_ banks in the system. For definition of X;, see Chapter 1.3, p.1/6.
1« = (NcxN¢) special 'diagonal’ matrix that comprises '0’- and '1'-elements. See p.2/6 for
definition.
B, = submatrix describing the incidence of loops and the free elements that comprise
capacitors. See (2-3) of Chapter 2.2 for illustration.

(3-47)

|loop
xCprimitive

From the foregoing we see that Ge. is a function of a subset of the state variables:
Ge,; = f(ijop s €tc) (3-48)
We seek the incremental capacitor voltage behaviour and can on the basis of (3-46) make the
following 'platform’ for the ensuing analysis:
A(dey/dt) = A(w,-Geg)

)
dAe/dt = 0,AGE, (3-49)

(3-49) provides the basis for determining the sought incremental performance dAe/dt . Equation
(3-48) implies that AGe, may depend on J=(5x2+2x2)=14 individual state variables Az . Thus we
can formulate:

J=14 J=14
daey/dt = 0o (0Gedoz) Az, = T Aeq:dz; = Aecizee (3-50)
£ -

dAe/dt = [Aedioop Aecec][ Alioop , A€l (3-51)

_In the following we will develop the ( here 14) elements of the coefficient vector Ae,.
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3.21 The elements Aeiio, Of coefficient matrix Ae..
From (3-47) and (3-50):
Aéciinop = (0Gec/Biioop) (3-52)
o

A(%?;'Sfp = 0y XCp[Imigive' Btct (3-53)

The elements of coefficient matrix Ae, defining the influence
on dAe/dt of the incremental system loop currents Aljoop

3.2.2 The elements Aece. of coefficient matrix Ae, .
From (3-47) and (3-50):
Aece:. = oy (0Ge /dey) (3-54)
o

A(it(:gc = oy e (3-55)

The elements of coefficient matrix Ae, defining the influence
on dAe/dt of the incremental capacitor voltages Ae .

3.2 Performance of the derivative of asynchronous motor incremental flux
components Agay
The variation of the asynchronous motor fluxes ¢am is given by equations (1-126) of systems
component Chapter 1.7:
doam/dt = @y (Fami iam + Fame ¢am ) = @5 Gdam (3-56)
Here;
Goam = (Fami iam + Famg dam ) (3-57)
¢am = state variables in terms of asynchronous motor flux components
iam = state variables in terms of asynchronous motor current components (=current
components of network loop no. '1")

(Rr- Xin/Xs)
Fami =
(Rr- Xm/Xs)
(see (1-127))
-(Re/Xe) | (1-Qam)
Famg =
Qam-1) | - (R /Xr)

From the foregoing it is observed that Goam is a function of a subset of the state variables:
Goam = fliams dam » Qam) (3-58)
We seek the incremental asynchronous motor flux behaviour and can on the basis of (3-56)
develop the following ’platform’ for the ensuing analysis:
A(dam/dt) = A(as Goam)
o
dAd)AM/dt = 0y AGq)AM (3-59)

(3-59) provides the basis for determining the sought incremental performance dAga/dt .
Equation (3-58) implies that AGoam may depend on J=(2+2+1)=5 individual state variables
Az . Thus we can formulate:

J=5 J=5
dAdam/dt = oy j_21:(3(5‘1>AM/<’921) Az = §1A¢AMJ' Az = Adam+ AZgam (3-60)
. ol 2 2 A0aM) A% = Adan: AZOaw
dAdam/dt = [Adamiav » Adamdan » Adamam 1 LA M » Adtan , AQam T (3-61)

In the following we will develop the (here 5) elements of the coefficient matrix Adpy -



-3/8-
3.3.1 The elements Adaniaw of coefficient matrix Aday .
From (3-57) and (3-60):
Adaviam = @5 (0G dam/diam)

Adapian = @ Fami
(2x2)

where;

(R: X m/Xr)

Fami =

(Ri Xm/Xr)

The elements of coefficient matrix A¢am defining the influence on dAgaw/dt
of the asynchronous motor's incremental stator currents Aiam

3.3.2 The elements Adaudam of coefficient matrix Adam -
From (3-57) and (3-60):

Adamam = @5 (0Gdam/Odam)

A%%?AM = @y Famgo)i

where;

'(Rr/xr) ‘ (1'QAM(0))

Fameo) =

(Q‘\M(o) '1) | - (Rr /Xr)

The elements of coefficient matrix Aday defining the influence on dAgay/dt
of the asynchronous motor's incremental flux components Adam

3.3.3 The elements AdaQam of coefficient matrix Adam .
From (3-57) and (3-60):

AdanQam = @ (0Gdam/0Qam)

AdamQam = 0} 1t m(o)i

(2x1

where;

1 B
| (For def. of 1, see Chapter 1.3)

1

The elements of coefficient matrix Agay defining the influence on dAdaw/dt
of the asynchronous motor's incremental speed AQaum

(3-62)

(3-63)

(3-64)

(3-65)

(3-66)

(3-67)

(3-68)
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3.4 Performance of the derivative of synchronous motor incremental flux
components Adsm

The variation of the synchronous motor fluxes ¢sm is given by equations (1-1 13) of systems
component Chapter 1.7 :

désm/dt = «y (esmr + Fsmi lsm +Fsmg dem) = s Gdsu (3-69)
Here;
Gosm = (eswr *+ Fsmic ism +Fsmg dom) (3-70)
¢sm = state variables in terms of synchronous motor flux components
ism = state variables in terms of synchronous motor current components (=current compo-
nents of network loop '2")
Kt (Eqo)+AE)
eswr = |__0 ( where Kr = (\2/(@s Tao)) Xaa/(Xa — X'a) )
0
(10T do))- KaaXag} X'ag COSPsm - (/{7 40)) (Kaa/X'ag) X'ad SinBsm
Fsmi = [ (1T "40))- Xag 00SPsM - (1T do)) X'ag SiNPsu
| (T q0)) Xeq SiNPsm (1/(@0T"q0)) Xaq 0OSPsm
(1@ Tao0)) (1/X'aq) [ (Xad/X'aa) (X'g = X"a) + X"aa] | (1/(@xT'a0)) Kat/X'ad>) (X'a = X"q)
Fsmy = ((exT"a0)) (1/Xad) (Xa —X'a) - MenT"g0)
- T q0)
From the foregoing it is noticed that Gésy is a function of a subset of the state variables:
Gdsm = f(ism, Gsm , Psm, AEy) (3-71)
We seek the incremental synchronous motor flux behaviour and can on the basis of (3-69), (3-70)
and (3-71), develop the following ’platform’ for the ensuing analysis:
A(ddsm/dt) = A(ex Gdsm)
o
dAdsm/dt = @ AGagy (3-72)

(3-72) provides the basis for determining the sought incremental performance dAdsw/dt . Equation
(3-71) implies that AG¢sy will depend on J = (2+3+1+1)=7 individual state variables Az . Thus we
can formulate:

J=7 J=7
dAdgsw/dt = a)oF;(BGq)SM/BZj) Az = j=21A¢SMJ Az = Adsy Azdsy (3-73)

>
dAdem/dt = [Adsmism, Adsmbdsm, AdemPsm, Adsmaed [Ai'sm, Ad'sm, ABsm, A(AEQ] (3-74)

_Inthe following we will develop the (here 7) elements of the coefficient vector Adgy .

3.4.1 The elements Adsyism of coefficient matrix Adgy .
From (3-69) - (3-74):
Adsmism = 0 (0G Psm/dism) (3-75)
o
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where;

Fsmi) =

Adsyisu = @ F
‘?gxhg)SM @ Fsmi(o)

(3-76)

(1/(T40)) Kad/X'ad) X"ag COSPsm(o)

- (1/(vT'd0)) (Xad/X'ad) X"ad SiNBsmio)

{(1/(aT"d0)) X'ad COSBsm(o)

- (1T 40)) X'ad SinBsmo)

(1/(T"g0)) Xaq SiNBsm(o)

(10T q0}) X'aq COSPsho)

The elements of coefficient matrix Adsy defining the influence on
dAdsw/dt of the synchronous motor’s incremental stator currents Aism

3.4.2 The elements A¢sudsy of coefficient matrix Adgw -
From (3-69) - (3-74):

oy

Adsmdsm = 0k (0G dsm/ddsm)

(3-77)

where;

Adsmbsm = @ Fsug
©x3) . .

(3-78)

“(1(@T’60)) (1/X'ag) [ (Xaa/X'ag) (X'g — X"g) + X"aq ]

(1@ T'a0)) KaeX'ad®) (X'a = X"q)

Famp =

(T g0)) (1/Xad) (Xa— X'a)

- T do)

- (6T q0)

The elements of coefficient matrix A¢sy defining the influence on
dAdsp/dt of the synchronous motor's incremental flux components Adsm.

3.4.3 The elements Adsyfsy of coefficient matrix Adsm .
From (3-69) - (3-74):

N

AdsmBsm =

o (0G dsm/IPsm)

(3-79)

where ;

oF sm/oBsm =

>
o
¥z
o=l
~w
£
il

@ (OFsmi/0Bsm)

-(1/(@T'g0)) Kaa/X'aq) X"aa SiNPBsmio)

- (1/(6nT o)) (KaaX'ag) X"a¢ COSPsmo)

-(1/(0T"d0)) Xad SiNPBsmio)

- (1/{ 0T " o)) X'ad COSPsm(o)

(1@ T"g0)) Xaq COSPsm(o)

- (1@ T"g0)) X'aq Sinsmio)

(3-80)

- isM(o)

The elements of coefficient matrix Adsy defining the influence on
dAdsw/dt of the synchronous motor’s incremental rotor angle ABgwm.

3.4.4 The elements Adsyaer Of coefficient matrix Adgw .
From (3-69)- (3-74):

ol

Adsmaer = @ (0Gdsm/0AEY)

(3-81)

oy K
A%M%Ef = oy (desm/0AE;) = 0
(3x1 0

(3-82)

The elements of coefficient matrix Adsy defining the influence on
dAdsn/dt of the synchronous motor's incremental field voltage A(AEy).
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3.5 Performance of the derivative of synchronous motor incremental rotor
angle ABsy

The variation of the synchronous motor rotor angle B is given by equation (1-119) of the systems
component Chapter 1.6:

dBsm/dt = o (1-Qsm )= @ GPsm (3-83)

Here;
GBsm = (1-Qsm) (3-84)

Bsm = state variable in terms of synchronous motor rotor angle Bsy. Psm describes the
movement of motor rotor relative to the synchronous speed of the chosen reference
phasor ( which here is the exogenously applied voltage).

Qsm = state variable in terms of synchronous motor per unit (pu) rotor speed.

From the foregoing we see that GBgy is a function of a very limited subset of the state variables:
GBsm = f(Qsm) (3-85)

We seek the incremental synchronous motor rotor angle behaviour and can on the basis of (3-83) -
(3-85) develop the following ’platform’ for the ensuing analysis:

A(dBsm/dt) = A(as GBswm)
dABSM/dt =y AGBSM (3-86)
(3-86) provides the basis for determining the sought incremental performance dABsu/dt .

Equation (3-85) implies that AGBgy will depend on J=1 state variable; AZ; = Az4 = Qgy. Thus we
can formulate:

=1
dABsu/dt = Glij=1zaGBSM/azj) Az, = ABgmQsm- AQsm = ABgw AZBsy (3-87)

_Inthe following we will develop the single element AgsyQsy that is the content of Agy .

3.5.1 The element ApgyQsy of coefficient matrix Apgy .
From (3-83) - (3-87):

ABsmQsm = @ (0GBsm/0Qsm) (3-88)

AB%M)QSM =- (3-89)

The element of coefficient matrix Apgy defining
the influence on dABsm of the synchronous
motor’s incremental rotor speed AQgy .
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3.6 Performance of the derivative of synchronous motor incremental speed AQgy
The variation of the synchronous motor pu speed Qgn is given by equation (1-116) of the systems
component Chapter 1.7 :

dQom/dt = (Sgas/Ssm) (1/(Ta cosEN)) ( Tsmel — Tsumee ) = Com GOsm (3-90)
Here;
Csm = (Sgas/Ssm) (1/(Tscoson))
Gasm = (Tsmei — Tsmmec) (3-91)

Qsm = state variable in terms of synchronous motor pu rotor speed

Temel = 0.5 i'sm Tous Quq = electrical motor torque, where ¢uq = X"sm Tsu ism + fam dom
=0.5 itSM TSM1 X”SM Tem iSM + 0.5 itSM TSM1 fSM qBM . See (1-118) for definition of fSM . (3-92)

ism = state variables in terms of synchronous motor current components (=current compo-
nents of system loop '2’ )
sinf | - cosP cosf - sinf X4 f1 | fs
Tsm1 = Tom = X'sm fsm 7
cosp sinf sinp cospB X"q | -f5

TsmMmee = Taommecio) sm® = mechanical torque in motor mode of operation. (Motor operation implies
pos. sign of mech. torque)

If the motor is up and running at t=-0: Temmec(o) = TsMeio) = electrical motor torque at t =-0. This is
found from equation (1-117) applied to the initial power system load flow. = (say) 1.5-3.5

If the motor is to be started from stilistand (as e.g. an asynchronous motor) : Tsmmec(o) = coefficient
to model mechanical friction, air resistance, etc. during startup. Probable range: 0.02-0.05

Tsmmee =(Tsmelie) *ATmec)= Mechanical torque in generator mode of operation. ATmec is the response
from the power control system. See below for a sample hydro generator
power control system.

Sgas,.Sam = Chosen MVA system power base and rated MVA motor capacity, respectively
Ta,cosgn = Dynamical system’s inertia constant and motor’s rated power factor, respectively

From the foregoing we see that Gagy can be expressed as a function of a subset of the state
variables:
Gasm = flism, ¢sm , Bsm, Qsm , A&, Ag) (3-94)

We seek the incremental synchronous motor speed behaviour and can on the basis of (3-90)
develop the following 'platform’ for the ensuing analysis:
A(dQsm/dt) = A(Csu GOsm)
o
dAQgu/dt = Cegy AGQsm (3-95)

(3-95) provides the basis for finding the sought incremental performance dAQgyw/dt .Equation
(3-94) implies that AGasy may depend on J= (2+3+1+1+1+1) = 9 individual state variables Az;.
Thus we can formulate:

=9 J=9
dAQgy/dt = Csy j=214(3C'3‘QSM/321) Az = JZ;IAQSMJ' Az, = AQsm AZosm (3-96)

Aigy
dAQew/dt = [AQsmism, AQsmbsm, AQsmpsm, AQsmasu, AQsmAa, AQsmAgl: | Adsm (3-97)
ABsm
AQgm
A(AQ)
A(Ag)
In the following we will develop the (here) 9 elements of the coefficient matrix AQsy -
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3.6.1 The elements Agqgyisy of coefficient matrix AQgy .
From (3-90) - (3-97):

Agsmism = Csm (0Gasm/dism) (3-98)
o
A%sx%ism = Agsmism(1) + Aqsmism(2) (3-99)
where;
Adsuism(1) = 0.5 Caw ismo) ((Tsmio) X* Tomo)) + (Tsmrce) X* Tomo))') (3-100)

Sin2Bsm(o) | CoS2BsMmo)

= 0.5 Csm (X“d - X"q) itSM(o)

c0S2Bsmi) | -Sin2Bsmio)

t ‘ T+ sinBsmo) | f1- COSPsmio)
AQsyism(2) = 0.5 Csm (Tsmio) fom Gmie) = 0.5 Csm Gsmo) | T2 SNPswio) | T3 CoSPsmo | (3-101)

f5 COSPBsmio) | -fs SiNPsm(o)

The elements of coefficient matrix AQgy defining the influence on
dAQgw/dt of the Synchronous Motor's incrementat stator current Aigy

3.6.2 The elements AQsydsy of coefficient matrix Aqgy .
From (3-90) - (3-97):

AQsybsm = Csm (0G asm/Odsm) (3-102)

Afﬁ%ﬁ’SM = 0.5 Csu i'smo) Tomi(o) fsm (3-103)

The elements of coefficient matrix Aqgy defining the influence on dAQgy/dt
of the synchronous motor’s incremental flux components Adsy

3.6.3 The element AqsyPsy of coefficient matrix Aqgy .
From (3-90) - (3-97):

AgsmBsm = Csm (0G asm/9Psm) (3-104)
o
o c0S2PBsm(o) | -SIN2Psmo) cosPsmo) | SiNPBsmo
AQsuPBsm =05 Cam (X's -X q) i'smio) isMioy+0.5 i'smo) fom dsme
(ixt) -sin2Bswm(o)|-cOS2Bsmio -SinBsmio)FosPsm(o
(3-105)

The element of coefficient matrix Aqgsy defining the influence on
dAQsw/dt of the Synchronous Motor’s incremental rotor angle ABgw.
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3.6.4 The element AoguQsy of coefficient matrix AQgy -
From (3-90) - (3-97) and (1-120):

Agsmasm = Csm (0Gasm/0%sm)

Aﬂ?mf)lsm = -Csm &

The element of coefficient matrix Aqsy defining the influence
on dAQg/dt of the synchronous motor's incremental rotor
speed AQsy, When in generator mode of operation.

3.6.5 The element AQguA; -of coefficient matrix. AQgy .
From (3-90) - (3-97) and (1-120):

AgsmAs = Conm (0Gasu/0AE)

AQsyAs = 2 Cey
(1x

The element of coefficient matrix Aggy defining the influence
on dAQxw/dt of the synchronous motor’'s incremental gate
opening A(Ad), when in generator mode of operation.

3.6.6 The element AQgyAg of coefficient matrix AQgy .
From (3-90) - (3-97):

AQsmAg = Cgam (0Gasm/0Ag)

A%)M)Ag = -Csm

The element of coefficient matrix AQgy defining the influence
on dAQgw/dt of the synchronous motor's incremental power
control variable A(Ag), when in generator mode of operation.

(3-106)

(3-107)

(3-108)

(3-109)

(3-110)

(3-111)
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3.7 Performance of the derivative of asynchronous motor incremental speed Ay
The variation of the asynchronous motor pu speed Qan is given by equation (1-128) of the systems
component Chapter 1.7 :

dQam/dt =(Sgas/Sam) (1/(Ta c080)) ( Tamel — Tammes.) = Cam GOam (3-112)
Here;
CAM = (SBas/SAM) (1/(Ta CDS(p))
GQam = (Tavel — Tammec) (3-113)
Qam = state variable in terms of asynchronous motor rotor speed
— _ 1
Tamer = 0.5 Xe/Xe) (1 iam )} duw = electrical motor torque , see (1-129), where 1=
-1

Tanmee = Tamecto) (Can/Camie))* = mechanical torque in motor mode of operation. (Motor
operation implies positive sign of mechanical torque).

If the motor is up and running at t=-0  : Tamecto) = Tameyo) = electrical motor torque at t=-0. Found from (1-129).
k= (say) 1.5-4.5, depending on type of load. Qawm) = initial rotor speed
If the motor is to be started from stillstand : Tamecioy= (SaY) 0.03-0.07= coefficient modelling mech. friction, air resist-
ance,etc. x = (say)1-5. Tameqey and k may change with Qay .

Tammec = (Tameioy*ATmec)= Mechanical torque in generator mode of operation. (Generator operation implies negative
sign of mechanical torques) Tameio) is initial electrical motor torque. ATme: is the respons from the power
control system.

Sgas,Sam = Chosen VA system power base, and rated VA motor capacity, respectively.
Ta,cosp = Dynamical system's inertia constant, and motor's rated power factor, respectively.

From the foregoing we see that Ggay is a function of a subset of the state variables:

Gaam = f(iam, dam , Qam) (3-114)

We seek the incremental asynchronous motor speed behaviour and can - on the basis of (3-112) -
(3-113) - develop the following 'platform’ for the ensuing analysis:
A(dQam/dt) = A(Cam GOam)
-
dAS)AM/dt =Cam AGOm (3-1 15)

(3-115) provides the basis for determining the sought incremental performance dAQay/dt . Equation
(3-114) says that AGQay depends on J = (2+2+1) = 5 individual state variables Az; .Thus we can
formulate :

J=5 J=5
dAQu/dt = Cam J;(BGQAM/BZJ) A% =j=21:AQAMJ. A% = AQam- AZoam (3-1 16)
)
dAQam/dt = [AQamiam, Aamdam, AQamQam 1 [ Ai‘am, A6 am,- AQaw T (3-117)

In the following we will develop the (here) 5 elements of the coefficient matrix AQay .

3.7.1 The elements AQuuiav of coefficient matrix AQay .
From (3-112) - (3-117):

AQamiam = Cam (0GQam/0iam) (3-118)
=
Aff%i)AM = 0.5 Cam (X/X): q§AM(o)—1 (3-119)

The elements of coefficient matrix AQay defining the
influence on dAQaw/dt of the asynchronous motor's
incremental stator current Aiam
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3.7.2 The elements AQuudam Of coefficient matrix AQaw -
From (3-112) - (3-117):

AQx mdam = Cam (0G Qam/odam)

(3-120)
-
Ag,(\M%AM = 0.5 Cam (Xe/Xe) (F iant(o))’ (3-121)
The elements of coefficient matrix Aqaw defining the influence on
dAQaw/dt of the asynchronous motor's incremental flux Adiam
3.7.3 The element Aoau0anm Of coefficient matrix AQay -
From (3-112) - (3-117):
AQam9am = Can (0G Qam/0Qam) (3-122)
o
Aﬂ(/m?AM = -Cam ¥ Dam/Qam(o) (3-123)
where;
k= (say) 1 -3 = exponent describing pu speed
sensitivity of the asynchronous motor load torque. (3-124)
Dam = Tameio), if the AM is up and running at t=0_
Dam = (say) 0.03-0.07 , if the AMis in a starting sequence.

The element of coefficient matrix AQay defining the influence on dAQaw/dt of
the asynchronous motor’s incremental rotor speed AQaw, - in motfor operation.

3.8 Incremental power control performance of the synchronous motor in generator
mode of operation.

The variation of the power control state variables is governed by e.g. equations (1-120) of the
systems component Chapter 1.7, assuming that a (high head/Francis) hydro power plant is at
hand:
dAa/dt = Ky (AQes-(1- Q) + AW) — K A
dAw/dt = K3 A8 — K4 AW
dAg/dt = (3Ko/Qsm) A8 — Kg Ag
d

= Gaa = f(Qgm,AW,A)
= Gaw = f(A4, Aw)
= Gag = f(Qsm,A8,AQ)

Regulator system
Regulator system
Hydraulic system

(3-125)
ATmec = Ag - é0 (1 - QSM) - (2/QSM) Ad

Net change of mechanical torque

Control System model parameters/variables:

Control System data input:

Ko=2/(8 T T: : Time constant for hydraulic system (eg 0.3s)
Ki=1/T, Te : Time constant for main servo (eg 0.08s)
Ka= (8 + &)Tc T : Transient droop time constant (eg 17s)
Ks = &/Ty & : Transient droop (eg 0.15pu)
Ka=1/Ty & : Permanent droop (eg 0.0 — 0.03. The value 0.0
Pn = absorbed motor power =0.5 f'sy esm if frequency sustained by a single unit)

Pm is negative in generator mode. Purget : Target value of of absorbed motor power (eg -0.8)
Piarget = target value of Py, 4, : Initial pu turbine opening (ts). (if ta<0.3 then 4,=0.3)
c = per unit scaling factor (eg.: c=0.1)
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We seek the incremental behaviour of the state variables (A&, Aw, Ag), and can on the basis of
(3-125) develop the following 'platform’ for the ensuing analysis:

A(dAd/dt) = AGaa
A{dAw/dt) = AGaw (3-128)
A(dAg/dt) = AGag

o
dA(A8)/dt = AGaa a)
dA(AW)/dt = AGaw b) (3-127)
dA(AgY/dt = AGag c)

(3-127) provides the basis for determining the sought incremental state variable performance.
Equation (3-125) implies that AGaa, AGaw and AGag will depend on respectively J = 3, 2 and
2 individual state variables Az;. Thus we can formulate:

J=3 J=3
AGas = .21(BGAa/azj) Az = Z‘aAAéj- Az a)
j= =
J=2 J=2
AGaw = ,Z1(BGAwlaz,-) Az = _21AAw,- Az; ' b) (3-128)
= =
J=2 J=2
AGAg = _%(BGAQ/E)Z]) Az = 21, Aag; Az c)
= =

_In the following we will develop the 3, 2, 2 individual partial derivative terms that contribute to
AGaa, AGaw and AGag, respectively.

3.8.1 Performance of the derivative of incremental turbine regulator opening A(Aa)
From (3-125), (3-127a) and (3-128a):

J=3

= [ Asansy, Aasaa, Anaaw] [AQsy , A(A), A(AW) | (3-129)
where;
AddQwm = Ky
Asana = K, (3-130)
Anrdaw = K1

Power Control System. Description of regulator opening gradient dA(A&)/dt

3.8.2 Performance of the derivative of incremental power control variable A(Aw)
From (3-125), (3-127b) and (3-128b):

J=2

= [Aawaa, Aawaw] [A(A), A(AW) T (3-131)
where;
Aawpaa = Ky (3-132)
Aawaw = -Ky

Power Control System. Description of controf variable gradient dA(Aw)/dt
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3.8.3 Performance of the derivative of incremental power control variable A(Ag)
From (3-125), (3-127¢) and (3-128c):

J=2

= [Aagas, Aagag] [A(A4), A(Ag) T (3-133)
where;
Argrs = 3 Kf/Qsu) = 3 Ky (3-134)
AAgAg = .

Power Control System. Description of control variable gradient dA(Ag)/dt.

3.9 Incremental voltage control performance of the synchronous motor

The variation of the voltage control state variables is given by equations (1-121) of the systems
component Chapter.1.7 : v

dAEf/dt = 01 (AE,— -AEf) = GAEf = f(AE,, AEy)
dAE/dt =C, [AUref+U0'U+KQ (gZSM'1 )-Ah] -C3 AE; -Cy4- AE+C, AE = GAE,
= f(ism, dom, Bsm, Qsm AEqr, AE, AE 5,AD)

dAEg/dt = Cs AE¢ - Cg Egs = GAEs;s = f(AE;, AEss)
dAh/dt = C7 (Qem-1) -Cg- Ah = GAh = f(Qgm,AD) (3-135)
Control system model parameters/variables: Control System data input:
U= (1/2) (esv’ + esn)™®
Ci=1/T¢ T¢ ; field circuit time constant (eg 0.1s)
C, = Kr/Tr Kr ; resulting forward amplification (eg 70pu)
Cs=Kr Ko/Tr =Kp G « Tr ; regulator time constant (eg 0.1s)
Ca=1Tr Ko ; transient feedback amplification (eg 0.25pu)
Cs =Kpo/To To ; transient feedback time constant (eg 0.25s)
Cs=1/Tp Ka ; power stabilizer amplification (eg 1pu)
Cr=KdTa Exmaxy ; ceiling field voltage (eg 3pu)
Ce=1Tq Eqminy ; bottom field voltage (eg -2pu)
AU = (U-Ug) = pu voltage deviation Ta ; power stabilizer time constant (eg 2s)

We seek the incremental behaviour of the state variables (AE;, AE,, AEs, Ah), and can on the
basis of (3-135) develop the following 'platform’ for the ensuing analysis:

A(JAE:/dt) = AGagr

A(dAE/dt) = AGAE, (3-136)
A(dAE/dt) = AGAE,,

A(dAh/dt) = AGan

o:
dA(AE )/dt = AGags a)
dA(AEYdt = AGAE, b) (3-137)
dA(AEs)/dt = AGAE,, c)
dA(Ah)/dt = AGah d)

(3-137) provides the basis for determining the sought incremental state variable performance.
Equation (3-135) implies that AGagr, AGAE, , AGAE. and AGah will depend on respectively
J=2,10, 2 and 2 individual state variables Az . Thus we can formulate:
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J=2 J=2

AGpg = j2=:1(aGAEf/aZj) Az = Ej;,?\AEﬁ Az,

J=10 J=10

AGAE, = ;(aGAE,/azj) Az = ZlAAE.]- Az
= =

N

J= J=2
AGAEss = X(dGAE./0zZ)) Az = Z1AAESSJ~ Az;
=

=y

N

J= J=2

AGAh = _Z(BGAh/aZj) AZ‘ = -Z.IAAhi AZJ
= i

J

a)

b) (3-138)

c)

d)

In the following we will develop the 2, 10, 2, 2 individual partial derivative terms that contribute
to AGaer, AGAE,, AGAE,, and AGah, respectively. For overview reasons (3-138) is processed

in sequence a), c), d),

3.9.1 Performance of the derivative of incremental excitation voltage A(AE)

From (3-135), (3-137a) and (3-138a):

J=2
dA(AE)/dt = Z1AAEf j Az = Aper AZpgs
.............................. J=
= [AaeaeAsened [AAEY), AAE,) 1
where;
AAEfAE[ = -Cl
AAEEAEr = Cl

(3-139)

(3-140)

Voltage Control System. Description of excitation voltage gradient dA(AE;)/dt.

3.9.2 Performance of the derivative of incremental voltage control variable A(AE)

From (3-135), (3-137c) and (3-138c¢):

J=2

= [ AaessacaAaessaess] [MAEq), A(AEg) T

where;

AAEAEy = C§
AAEGAE, = -Cg

(3-141)

(3-142)

Voltage Control System. Description of voltage control variable gradient dA(AE)/dt.
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3.9.3 Performance of the derivative of incremental speed stabilizer variable A(Ah)
From (3-135), (3-137d) and (3-138d):

J=2
dA(Ah)/dt = ;AAhj Az = Apne AZan
.............................. =
= [Ashags, Aanan] [AQsu, A(ah) T (3-143)
where;
Aangsw = Cy (3-144)
Aanan__ = -Cs
Voltage Control System. Description of speed stabilizer variable gradient dA(Ah)/dt.
3.9.4 Performance of the derivative of incremental voltage control variable A(AE,)
From (3-135), (3-137b) and (3-138b):

- =10 : Aigy
dA(AE)/dt = TAnerj AZ = Aper AZpge Adsm
............................. = . AB

= [ Aaerism, Aaergsm, AAerBsm, AAErasm » AAErAEd , AAerAEr » AAErAEss: Aaeran] | AQsm | (3-145)
A(AEy)
A(AE))
A(AE)
A(Ah)
The elements of coefficient matrix Aag, are outlined in the foliowing :
A%l-irzi)SM = 9GAE /dism = -Cz ( 0.5/Usme)) €'swio) Rewio) (3-146)

From of Chapter 1.7, and the chosen premise of shifting direction of network loop currents as
given by (A-10) of Appendix, we have (in d-q axis frame of reference) the following relevant
expression for the synchronous machine terminal voltage, see (A-19) of Appendix:

esm = Rgm ism + ( Vsm + Hsm dem)
In the per phase frame of reference the pu magnitude of this voltage is

Usm = (1/) ((esma ) + (esmq )*) °°

From (3-147) —(3-148) itis seen that Usm =f(ism; ¢sm,Bsm, Qsm ). The partial derivative of Usu
w.r.t. asubset z of these state variables, can generally be expressed as ;

AUsml9z = (0.5/Usm(o)) €'smoy desm /32

With z = ism, and using (3-147) in (3-149), the sought equation (3-146) is readily found.

It appears from (3-135) that establishing (3-146) implies knowing pu SM voltage Usm = f(ism ) :
(3-147)

(3-148)

(3-149)

Voltage control system. Start of description of coefficient matrix Aag,, see (3-145).
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With z =

where;
— i1
1= e r ........
i
(X" cos2Bsmio) — X" SiN2Psme)) | -(X" SiN2Bsmio) + X'+ 00S2Bsm(o))
Rsmpoy = 2w - . .
-(X"- sin2Bsm(o) + X'y c052Bsmio)) i (X" cos2PBsmie) — X"+ SIN2Bsmio))

AA}%;q)g)M = 0AAE, /odsm = -C» (0.5/Usm(o)) €'sme) Hsmio)
X

dsm, and using (3-147) in (3-149), the equation (3-150) is readily found.

ArerBsm = JAAE, /9Bsm

+ eSM(o) RSMB(O) 'SM(O))

Since both Rsm , Vsm, and Hsm are functions of Bsu, (3-151) is the sum of three contributions. _
See equations (1-108) -(1-112) for definition of synchronous motor terms Rsy, Vsu, Hsw, as well as X" & X

A%Erg?sm = aAAE.—/aQSM —Cz Ko _
e T ORSEIOAMSM = b2 T

sin2Bsmo) COSZBSM(O)

See (3-37) for Tsmi(o) & fam.

C0S2Bsmio) i -SiN2Psmio

ApeAEr = JAAE [OAE; = -Cg
(1X1) PITTITSeT
Apgrasr = OAAE /OAEr = -C4
1x1)
AA(E1rA1Ess 0AAE, [0AEss = C»
X
AfE' h = JAAE. foAah = -C,

(3-150)

(3-151)
(3-152)

(3-153)

(3-154)

(3-155)

(3-156)

(3-157)

(3-158)

(3-159)

Voltage Control System. End of description of coefficient matrix Ag.

See (3-145).
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3.10 System matrix A

The incremental performance of all state variables has been investigated in preceeding Chapters 3.1
-3.9, leading to the coefficients of the defined A-matrix of the system. Figure 3.2 summarizes the
established incremental/ linearized description of power system performance around some specified
operating point. The A-matrix thus defined is on compact form, and further detailed in (3-160).

dAi|°°p/dt = Ai|oop Aziloop R (3-1 2)
dAe/dt = Aes Az, (3-50)
dAdam/dt = Adam AZdam (3-60)
dAdsm/dt = Adsm AZbsm (3-73)
dABsw/dt = ABsu AZBsy (3-87)
dA%M/dI = AQsm AZaswm (3-96)
dAQau/dt = AQanm AZgam (3-116)
dA(A&)/dt = Aus AZas (3-129)
CdA(AWYAE = Ay AZay ’ (3-131)
dA(Ag)/dt = Apg AZug : (3-133)
dA(AEg)/dt = Apr AZags (3-139)
dA(AE )/ dt = Apgr AZag, (3-145)
dA(AEgs)/dt = Aagss: AZaess (3-141)
dA(AhYdt = Aan- AZan (3-143)

Figure 3.2 : Incremental/ linearized description of power system performance
around specified operating point.’"Compact’ performance description.

Ai|oop [Ai|oopiloop1 Ailoopetm Ailoop‘bAMx Ailoop¢SM’ AilOODBSM’ Ai‘OOPQSM’ Ai'°°DQAM’ Ai'°°pEf]
Aec [Aeciloop: Aecec]

Adam [Adamiam » Adamdam » AdamSam ]

Adsm [Adsmism , Adsmbsm » AdsmBsm Adsmaer]

ABsm [ABsmQsm]

AQsy [AQsmism, AQsmbdsm, AQsmBsm: AQsmasm, AQsmAa, AQsmAg]
AOan [AQamianm, AQambam, AQamQam]

Acompact =| Asa =1 [Asaeu, Arana, Araaw] (3-160)
Anw [ Aawaa, Aawaw ]
Ay [ Aagaa, Aagag]
Apgr [ Aseaer, Aaenel]
Aner [ Aaerisu, Aaergsm, AaerBsm, Aaerosm . AAErAEr , Aaeragr , AaeraEss: Aagran]
AAEss [AAEssAEf, AAEssAEss]
Asn [ Aahacsv . Aananl

The Az — vectors of Figure 3.2 are subvectors that comprise only those state variables that incre-
mentally influence on the derivative of respective incremental state variables. This feature is what
makes the A-matrix of (3-160) compact or ‘non-sparse’.
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We seek the sparse description (3-1) in which Az is the set of all incremental state variables. In the
present study case we have:

AiIoop
Ae,

Adam
Adsm
ABsm
AQgy
AQam

= | A(A8)
A{AwW)
A(Ag)
A(AEY)
A(AE)
A(AEss)
A(Ah)

Adapting the A-matrix description of (3-160) to the full vector Az, we at long last arrive at the
sought A of (3-1):

Aiigopiioop Riicopet: Alloopdafs AibopQ)%M AlioopBsm| AloopClsth  AlloopSam AiopEqs
Aeciloop AeEe
Adamiam Adamdam AdanQam
Adsmisu Adsmbsm| AdsmBsm Adsmeq
A= ABsuQsm
A Qsmism AQsmbs AQsmpsm |AQsmasm AQsmAs AQsuAg
AQapiau AQsmdal AQamQam
AAZ Qs AAAAA | AAAAW
AAWAS |AAWAW
AAgAa AAgAg
Aseqaed | Aseqiaes
AsErism Asensm | Asessm | Aserasm AserAE g | Anerser | Asgraess | Asern
AAEssAqu AAEssAEss
Asnscsm Asnan

Figure 3.3 A-matrix for sample power system of Figure 3.1
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3.11 Example eigenvalue analysis
3.11.1 System data
For overview reasons all the data pertaining to system components, their interconnection and o initial

system status, are summarized in the following.

The single-line diagram of the power system is shown in Figure 3.4. All per unit (pu) data given are
referred to common system basis.

Synchronous Motor
I data: See p. 1/27

-~
x
&

Ey(eff] Ty Xy Xfy

— | S
Asynchronous Motor
Data: Seep. 1/31

P Qe f a} P2 Both SM and AM assumed up

Qr and running for t=0_

Figure 3.4: Example power system under study

External system:
The external system is assumed to be an infinite bus with per phase r.m.s. voltage Ex =1.05
pu. Angley.s is arbitrarely set to zero. See Chapter 1.6.

Initial conditions:
As initial operational conditions for the system we specify the following:

Power supplied to the synchronous motor Psmtargero) = -0.8pu. This means generator
mode of operation.

Synchronous motor voltage Esmargeto) = 1.0pu.

Power supplied to the asynchronous motor Pamtargeto) = 0.5pu. The reactive power
supplied to the motor ( Qamtargeto) ) » Will flow as a byproduct from the initial condition
analysis, see next .

Series impedance (ry +j X):
ry = 0.030pu
Xy, = 0.125pu

Series capacitor bank (Iey —j Xy):
rey = 0.000pu
Xey = 0.025pu

Transformer (r;+j %) :
r. = 0.01pu
x¢ = 0.07pu
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Impedance type, inductive load *1° { Py +j Q) :
P = 0.60pu Load defined at 1.0pu voltage
Qjy = 0.20pu (inductive)

Impedance type, inductive load 2’ (P +] Qp) :
P2 = 0.25pu Load defined at 1.0pu load voltage
Qi = 0.80pu (inductive)

Shunt capacitor bank (Pg-j Qq) :

P. = 0.00pu Load defined at 1.0pu load voltage
Qq = 0.70pu (capacitive)

Dummy series impedance (rp +jxp )

Introduced for 'multiple purpose’ reasons. For the present load flow:
rp = 0.0pu
Xp = 0.0pu

The synchronous motor ( here representing a hydroelectric generator) :
Xas=0.12pu X'4=0.34pu R, =0.005pu T”;=0.16s Cosqy = 0.9pu
Xe =1.20pu X’4=0.20pu T4, =6.0s Ta =5.0s
Xy =0.75pu X" =0.30pu T"q =0.04s Cp=7.5pu

Synchronous motor voltage control system:

Ts =0.1s ; field circuit time constant

Kk =70pu ; resulting forward amplification \

Tk =0.1s ; regulator time constant '

Ko = 0.25pu ; transient feedback amplification ( See equations (1-106)- (1-121)
To =0.25s ; transient feedback time constant V7 for full parameter interpretation)
Ka =1.0pu ; power stabilizer amplification

Efmaxy = 3.0pu ; ceiling field voltage

Efminy = -2.0pu ; floor field voltage >

Ta =2s ; power stabilizer time constant

Synchronous motor power control system (when in hydro generator mode of operation):

T, = 0.3s ; Time constant for hydraulic system

T. = 0.08s ; Time constant for main servo ( eg 0.08s)

Ty = 17s ; Transient droop time constant

O = 0.15pu ; Transient droop

d = 0.00pu ; Permanent droop. (0-0.04) (The value 0.0 apply if the
frequency is to be sustained by this unit alone)

Prarget = -0.8 ; Target value of of absorbed motor power. (Applicable
when loading up automatically, following synchroni-
zation)

The Asynchronous Motor (in motor mode of operation)

Xae=0.08pu  X,;=0.08pu X, =2.5pu ( See equations (1-125)-(1-129)
Ra =0.03pu R, =0.03pu =2.0pu for parameter interpretation )
Ta=4.0s

3.11.1 |Initial conditions
With initial conditions specified as stated above, the iterative solution process described in section
2.4 of systems chapter 2, is called upon for targeting the given operating point to required accuracy.

As arbitrary starting values for the set of “Joad flow control variables’ (Bsmoy :Exo) » Qamoy) discussed
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in section 2.4, we choose ; Bsmc) =0, Exoy =1.5pu, Qami) =1.0pu. Applying the three-step logic that
comprises equations (2-36) to (2-39), and using the default value 1.0 of the factor k of (2-39), -
we arrive at a feasible solution after 6 iterations. Exit from the iterative process is made when

Res < 0.001pu (Res’ is abbreviation for 'Residual’) (3-161)

where Res = (ResVgy + ResPgy + ResPan). The contributions in parenthesis are the deviations in
absolute (pu) terms from target value, of respectively synchronous moftor voltage, power supplied
to the synchronous motor, and power supplied to the asynchronous motor.

The iteratively determined ‘load flow control variables’ contributing to giving a valid initial load flow,
are:

Bsm) = -0.380158rad.
Eq = 1.792434pu (3-162)
Qamp) = 0.983866pu

Main characteristics of the established initial load flow for the system in Figure 3.4 are as follows:
The infinite bus:  Voltage : 1.0500pu ({specified)

Active power : 0.5667pu (delivered to the study system)
Reactive power : 0.3154pu ( the study system acts reactively as an

~ inductuctor)
Load bus’1 : Voltage : 1.0048pu
Active load "1’ : 0.6057pu
Reactive load "1’ : 0.2019pu (inductive)
Active power : -0.0505pu (delivered to the transformer)
Reactive power 1 0.0753pu (the transf. acts reactively an inductor)
Motor bus : Voltage : 1.0000pu (specified)
Active SM power : -0.7999pu (specified power to synchronous motor :
—0.8pu)
Reactive SM power : -0.4427pu (the SM acts reactively as a capacitor
bank)

Active AM power : 0.4993pu (specified power to asynchronous motor :
0.5pu)
Reactive AM power : 0.4174pu (the AM acts reactively as an inductor)

Capacitor load :-0.7001pu ( capacitive)

Active load '2’ 1 0.2500pu
Reactive load'2" : 0.8001pu (inductive)

3.11.2 Systen eigenvalues

The A-matrix defined in (3-1) is etablished as advised in previous sections 3.1 to 3.10. The system’s

eigen-values are then computed using the QR-algorithm on A, after first reducing it to Hessenberg
form.[1]

Three different cases based on the above defined power system, are dealt with in the following. The
first is denoted ‘Normal system case’ and presents the eigenvalues for the system in Figure 3.4,
given initial conditions as shown above. The other two; ‘Special system case 1’ and ‘Special system
case 2’, are included to illustrate how the use of special (i.e. simplifying) premises to the system of

Figure 3.4, can allow for simple/ manual ’spot-checks’ of the correctness of the devised processes of
system modelling and analysis :
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’Normal system case’ :

With the system as given in Figure 3.4 and further detailed above, the computed eigenvalue picture may
be drawn as shown in Figure 3.5.

Re(Lambda) Im(Lambda) Frequency(Hz) Frequency(Hz)  Timeconst.
DQ ref frame Phase ref frame (s)
*) *) . *) **) ***)
“47.939 1869.945 297.611 247.611 0.021
“47.939 ~1869.945 "297.611 “247.611 0.021{ - Associated with
“53.055 1236.798 196.843 146.843 0.019! shunt capacitor C
"53.055 ~1236.798 "196.843 ~146.843 0.019
~841.307 313.943 49,966 0.034 0.001
~841.307 “313.943 "49.966 .-0.034 ________0.001
~30.025 400.461 63.735 y 13.735 0.033!
"30.025  ~400.461 ~63.735 713735  0.033!
27.307 311.751 49.617 0.383 777 770.037 ) Associated with
“27.307 “311.751 ~49.617 o - ~0.383 0.037 series capacitor C,
"94.965 313.079 49.828 0.172 0.011
~94.965 "313.079 ~49.828 S0.172. 0.017
"27.645 224.663 35.756 114.244 0.036
"27.645 "224.663 "35.756 T14.244  0.036!
“11.867 42.195 6.716 6.716 0.084 1 Associated with
"11.867 “42.195 "6.716 6.716 0.084 | voltage regulator.
~33.589 9.933 1.581 1.581 0.030 | Asynchronous motor
~33.589 79.933 "1.581 ~1.581 0.0307 oscillation frequency
"21.390 0.000 0.000 0.000 0.047
71.249 12 137 1.932 1.932 0.800 }—Synchronous motor
"1.249 12137 "1.932 ~1.932 0.800] oscillation frequency
"9.403 0.000 0.000 0.000 0.106
~8.330 0.000 0.000 0.000 0.120
~3.684 0.000 0.000 0.000 0.271
~1.829 0.000 0.000 0.000 0.547 4~ Associated with
"0.359 0.818 0.130 0.130 2.782 | SM field circuit &
~0.359 -0.818 -0.130 -0.130 2.782 | voltage regulator
0.000 0.000 0.000 0.000 999.000
~0.500 0.000 0.000 0.000 2.000

*) Electrical network related eigenvalues are referred to the synchronous 50Hz
d-q frame of reference.

**) Electrical network related frequencies are referred to per phase frame of
reference ( by shifting the d-q referenced values +/- 50Hz).
Eigenvalues with |Real(Lanbda)|{<50 and |im(Lambda)<50 ( i.e. f< ca 8Hz)
are assumed to relate to electromechanical transients or control gear
fransients, and their associated frequencies are not given the stated
"post-treatment of being shifted +/- 50Hz
**)The time constant associated with a real or complex eigenvalue is defined as
T=1/|Real(Lambda)|. If both real and imaginary part of Lambda are zero, T is
arbitrarely set to 999.

Figure 3.5 : Eigenvalue picture associated with the specified system of Figure 3.4
The two leftmost columns are the ‘raw’ results from the eigenvalue subroutine. Column no. 3 gives the

frequencies in Herz implied by column 2. it is noted that the power circuit related frequencies of
column 3 are referred to the synchronous 50Hz d-q frame of reference.
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The two rightmost columns give -respectively- system frequencies when consistently referred to per
phase frame of reference, and time constants associated with real and complex eigenvalues. The
‘origin’ of main oscillatory modes is commented on in the figure. identification has been afforded via
sensitivity analysis.

'Special system case 1’

Via special data input we wish to degenerate the system of Figure 3.4 into the series circuit of Figure
3.6. It is then possible to evaluate an oscillatory circuit mode in two ways; by longhand use of a simple
formula, and by application of the devised computational scheme to a degenerated system model.

Series reactance Series capacitor Transformer reactance
. 2088 } ey
Xy =0.125pu Xey =0.025pu Xt =0.07pu
Shunt
Qo =0.7pu ——  capacitor

o Xt =1/0.7pu

Xigoy =Xy + X =0.125+0.07 = 0.195pu
Xetoty = Koy + Xg = 0.025+(1/0.7) = 1.453571429pu

Figure 3.6: System of Figure 3.3 degenerated into a simple L-C series circuit.

For the circuit of Figure 3.6 we readily have the following resonant frequency:

feircuit = fo- “Xcaot) I Xegoy ) [Hz] (3-163)

forcut = 50V (1.453571429/0.195) = 136.512 [Hz]
Next approach is eigenvalue analysis : To have the system model of Figure 3.4 aitered so that (in
numerical terms) the series circuit of Figure 3.6 emerges as a part of it, new dummy data must
be specified for some of the circuit models. The components that are influenced :

Series impedance (r, +j X)) :
r, = 0.0pu (new)
xy = 0.125pu (as before)

Transformer (ry+j X):
rr =0.0pu (new)
X =0.07pu (as before)

Impedance type, inductive load '1" ( Py +j Q) :
P = 0.0pu (new)
Qi = 0.0001pu  (new)

Impedance type, inductive load '2° ( Pz +j Qp) :
P =0.0pu (new)
Q2 =0.0001pu  (new)

The synchronous motor : All data unchanged, except;
R. =50000pu (to approx. the effect of electrically disconnecting the motor)

The asynchronous motor : All data unchanged, except;
Ra = 50000pu (to electrically disconnect the motor)
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With system data modified as given above, the eigenvalue picture becomes as shown in Figure 3.7:

Re(Lambda)  Im(Lambda) Frequency(Hz) Frequency(Hz) Timeconst.
DQ-ref frame Phase ref frame (s)

* * * **) ddek
"99720885.972  314.159 50.000 0.000 0.000
"99720885.972 ~314.159 ~50.000 0.000 0.000
~78539826.716 0.000 0.000 0.000 0.000
~52359881.305 0.000 0.000 0.000 0.000

“0.009 1171.901 186.514 136.514 113.358
"0.009 ~1171.901 “186.514 "136.514 113.358
"0.009  543.582 86.514 36.514 113.358
"0.009 ~543.582 ~86.514 ~36.514 113.358
0.000  314.856 50.111 0.111 6478.013
0.000 7314.856 ~50.111 "0.111 6478.013
0.000  313.463 49.889 0.111 6478.013
0.000 7313.463 "49.889 “0.111 6478.013
0.000 314.159 50.000 0.000 999.000
0.000 ~314.159 ~50.000 0.000 999.000

~11.897 42.226 6.721 ) 6.721 0.084

“11.897 "42.226 "6.721 "6.721 0.084

“17.205 0.000 0.000 0.000 0.058

“15.125 0.000 0.000 0.000 0.066

~3.653 5.069 0.807 0.807 0.274
~3.653 ~5.069 ~0.807 ~0.807 0.274
"2.500 0.000 0.000 0.000 0.400
~0.667 1.462 0.233 0.233 1.500
~0.667 ~1.462 "0.233 "0.233 1.500
“0.207 0.000 0.000 0.000 4.836
“0.062 0.000 0.000 0.000 16.095
"0.162 0.000 0.000 0.000 6.171

0.000 0.000 0.000 0.000 348097296.032

0.000 0.000 0.000 0.000 999.000
~0.500 0.000 0.000 0.000 2.000

*) Electrical network related eigenvalues are referred to the 50HZ d-g frame of
reference. To have them referred to per phase frame of reference, + or- 50Hz
is added.

Eigenvalues with [Real(Lanbda)|<50 and |Im(Lambda)<50 ( i.e. f< ca 8Hz) are
assumed to relate to electromechanical transients, and are not given the
"post-treatment”of adding + or -50 Hz.

**) The time constant associated with a real or complex eigenvalue is defined as
T=1/|Real(l.ambda)|. If both real and imaginary part of Lambda is zero, T is
arbitrarely set to 999.'

Figure 3.7 : Eigenvalue picture associated with ’Special system case 1’

As should be expected, we recognise from the above menu of modes, also the resonant frequency
that previously emerged from equation (3-163). As the sought mode is an inherent electrical
circuit-defined frequency, no need has been of establishing valid initial conditions for this particular
eigenvalue analysis.

Special system case 2’

Whereas the special case above provided for a check of a network related resonant frequency, the
present case aims at demonstrating a similar check of a machine oscillatory mode. In particular, we
will focus on the oscillatory mode of the synchronous motor. The motor’s operational conditions (i.e.
voltage and absorbed power) are arbitrarely chosen the same as before, but the network to which
the motor is connected, is being modified :

Via adjusted data input we will alter the system of Figure 3.4 into the series circuit case of Figure 3.8.
It is then possible to evaluate an oscillatory eigenvalue mode in two ways; by use of a simple formula
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that approximates the undamped, oscillatory frequency of a synchronous machine ("SM’) connected
to an infinite bus via a series reactance, and by application of the current computational tool to a
suitably reduced system model.

The 'simple’ SM :
Constant magnitude
Eyem =1.05pu  (Xy +X{)=0.27pu  Esm=1.0pu of voltage (E") 'behind’
AT ! SM subtransient machine
lsm — — reactance X" (=X"¢=X"q).
Psm =-0.8p Here: X"'= 0.25pu.
Xext = (Xy +X)=0.27pu
X5 = (Xy +X; +X”) = 0.27+0.25 =0.52pu
Initial conditions:  External voltage : Eyemn = 1.05pu (specified)
Motor voltage  : Esm = 1.0pu ( i )
Power to motor : Psy =-0.8pu ( )
Motor current :lsm = 0.806194pu (computed from load flow)

Figure 3.8 : System of Figure 3.4 modified into case 'Simple SM connected to infinite bus’.
Model basis for evaluating oscillatory frequency from formula (3-164).

Presuming a 'simple’ synchronous machine as defined in Figure 3.8, we have from basic system
theory that the undamped oscillatory machine frequency of the configuration of Figure 3.8, can be
expressed as

fow = (1/(2m)) [y Eyem E? cosP/(Xz Ty cosgu)]™®  [HZ] (3-164)
Definitions:
Eyem = external specified voltage. Here: Eyem =1.05pu
Esm = synchronous machine voltage. Here: Egy = specified = 1.0pu
lsm = pu synchronous machine current from initial load flow. Here; 154=0.806194pu.
E" = pu voltage 'behind’ the machine’s subtransient reactance X".
E” can be computed on the basis of (Eyefn , Esm, lsm, Xext , Xz) :
Setting a=lsm Xs and b=Ilsm Xex , we have;
E" = [ (Eyen — a)* ~ (ab) (Eyem — b— E”) (Eyen— b + E") "° (3-165)
= 0.994755 in the current case.
B = electrical angle between phasors Eyer and E”. To determine cosf
we have, - according to the 'Law of cosines’ ;
cosP = (Eyem’ + E"? — a?)/(2 Eyem E”) (3-166)
= 0.917368 in the current case.
Xz = (Xex +X7) = total pu reactance between Eyeq and E”.
Xexx = (Xy+X;) = total pu ‘external’reactance ; reactance between Ey. and Egy.
Ts = inertia time constant for synchronous machine. Here. T, = 5s.

cosen= rated power factor of synchronous machine. Here: cosey = 0.9.

Inserting the proper values into (3-164), we get the following oscillatory frequency for the
synchronous machine;
fsm = (1/(2 =) [100 = 1.05 0.994755 0.917368/(0.52 5 0.9)°° = 1.805 [Hz] (3-167)

Next approach is eigenvalue analysis: To have the system model of Figure 3.4 altered so that (in
numerical terms) the series circuit of Figure 3.8 becomes a part of it, new dummy data must be
specified for some of the electrical circuit models. The components that are influenced :

Series impedance (ry +j X)) :
ry = 0.0pu (new)
Xy = 0.2pu (new; changed arbitrarely from 0.125pu)

Transformer (ri+jX):
rr = 0.0pu (new)
x = 0.07pu (as before)
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Impedance type, inductive load "1’ (P +j Q) :
Pi = 0.0pu (new)
Qi =0.0001pu  (new)

Impedance type, inductive load °’2’ ( P, +j Qp) :
Piz =0.0pu (new)
Qiz=0.0001pu  (new)

Shunt capacitor bank (Pg-j Qq):
Pq = 0.00pu (as before)
Qq =any value =here 50000pu (new; any effect of Qg is eliminated via setting of rp, see next )

Dummy series impedance (rp+ j Xp): (in series with the shunt capacitor bank; for topological reasons. See 2.2)
rp = 50000pu (new ; to in effect disconnect the shunt capacitor bank from the system)
Xp = 0.0pu (as before)

The Synchronous Motor : All data unchanged, except;
X"¢=0.25pu ( changed from 0.2pu)
X"q=0.25pu ( changed from 0.3pu)
T"4=100s  (increased from initial value =0.04s to contibute to mimicking fixed magnitude of E” )
Tllq = 1008 ( n ” n ” = 0_163 k22 n n ” . » " n " )

Synchronous motor voltage control system : All data unchanged, except;
Kg = 0.0pu ( to in effect disconnect the regulator)

Synchronous motor power control system : All data unchanged, except;
Tc = 50000s ( to in effect disconnect the regulator)

The Asynchronous Motor : All data unchanged, except;
Ra =50000pu (to in effect disconnect the motor from the system )

With system data modified as given above, the eigenvalue picture becomes as shown in Figure 3.9 :

Re(Lambda) Im(Lambda) Frequency(Hz) Frequency(Hz) Timeconst.
DQ-ref. frame Phase ref. frame (s)
~276868229.397 314.159 50.000 0.000 0.000
T276868229.397 "314.159 ~50.000 0.000 0.000
"43585417.190 314.159 50.000 0.000 0.000
"43585417.190 ~314.159 ~50.000 0.000 0.000
~3.023 314.159 50.000 0.000 0.331
"3.023 "314.159 ~50.000 0.000 0.331
~3.653 314.128 49.995 0.005 0.274
"3.653 7314.128 749.995 ~0.005 0.274
“0.115 11.386 1.812 1.812 8.663
~0.115 "11.386 “1.812 "1.812 8.663
0.000 314.159 50.000 0.000 7957746.538
0.000 "314.159 ~50.000 0.000 7957746.538
0.000 314.159 50.000 0.000 999.000
0.000 ~314.159 ~50.000 0.000 999.000
0.000 314.159 50.000 0.000 999.000
0.000 ~314.159 ~50.000 0.000 999.000
~8.304 0.000 0.000 0.000 0.120
~0.478 0.000 0.000 0.000 2.091
~0.059 0.000 0.000 0.000 16.999
~0.007 0.000 0.000 0.000 153.194
~0.003 0.000 0.000 0.000 396.365
0.000 0.000 0.000 0.000 999.000
0.000 0.000 0.000 0.000 999.000
0.000 314.159 50.000 0.000 999.000
0.000 ~314.159 ~50.000 0.000 999.000
~10.000 0.000 0.000 0.000 0.100
“4.000 0.000 0.000 0.000 0.250
~10.000 0.000 0.000 0.000 0.100
70.500 0.000 0.000 0.000 2.000

Figure 3.8 : Eigenvalue picture associated with 'Special system case 2’
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As we would anticipate ; the above menu of modes comprises one resonant frequency that is fairly
close to the value given by (3-167), - the difference being about 0.4%.

[1]: W.H.Press, B.P.Flannery, S.A.Teukolsky, W.T Vetterling : Numerical Recipes (Fortran Version),
Cambridge University Press, 1989
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4. Time Response Analysis
Given the description of an initial state of operation of a power system. We seek the variation over
time of the system’s state variables and their interactions, following some specified disturbance to
the system.

Again we devote our attention to the system of Figure 3.4, -the detailed description of which is given
in Chapter 3.11.1. In the following we will consider the main transients of interest, subsequent to
respectively a three phase short circuit, start/ loading of an asynchronous motor, start/ loading/
disconnection of a synchronous generator, islanding of a local power system,- and finally ; a
comparison of responses when applying the same disturbance to respectively a ‘weak’ and ’strong’
power system. The transient performance of the adjustable speed synchronous machine is dealt with
in Appendix 2.

4.1 The differential equations
The conceptual as well as specific basis for producing the differential equations needed to model the
dynamical performance of the given power system, have been developed in Chapter 1 and 2.

The ( 5x2+2x2 =14) equations describing the performance of the power network loop currents iloop aNd
the power network capacitor voltages e, are contained in (2-20) of Network Modelling Chapter 2.3 :

diloop/dt =-0y xLIoop-1’ (Rloon iIoop + Btt’: €c * €chorg T Bt-resf el—rest) (4‘1)

detc/dt =y (XCprimItlvé Btct iIocp + 1t(‘. etc) (4"2)

The ( 2+1=3) equations describing the performance of the asynchronous motor’s fluxes and angular
speed are given by (1-126) and (1-128) of Systems Component Summary Chapter 1.7 :

doam/dt = ay Faur iav + Famg Gam) (4-3)
dQam/dt = (Spas/Sam) (1/(Ts c0s9)) ( Tamel — TaMmec) (4-4)

The ( 3+1+1=5) equations describing the performance of the traditional synchronous motor’s fluxes,
angular speed and electrical rotor angle are given by (1-113), (1-116) and (1-119) of Chapter 1.7 :

dosm/dt = ay (esmr + Fsmr ism +Fsme dem) (4-5)
dQsm/dt = (Sgas/Ssm) (1/(Ts cosen)) ( Tsme — Tsmmes ) (4-6)
dBsw/dt = - (1- Qem) (4-7)

The performance of the synchronous motor’s voltage control system is in the present outline described
by the four differential equations (1-121) of Chapter 1.7 :

dAE/dt = C; (AE, -AE;) (4-8)
dAE,/dt = Cp [AUer+Uo -U+Kq (Qen -1) -Ah] -Cs AE;-C4 AEA+C, AE (4-9)
dAE/dt = CsAE; - Cg Exs (4-10)
dAh/dt = C; @-1)-Cg Ah (4-11)

The performance of the power control system of the synchronous motor in generator mode of operation,
is exemplified by the three differential equations (1-120) of Chapter 1.7 :

Ad/dt = Ki (AQes ~(1-Qsy) + AW) — Ky AR Regulator system (4-12)

dAw/dt = Kz;Aa-K; Aw Regulator system (4-13)

dAg/dt = (3K,/Qsy) A& -K; Ag Hydraulic system (4-14)
d

ATmee = Ag— &5 (1- Qsn) - (2/Qsn) A Net change of mechanical torque

The differential equations (4-1) to (4-14) describe the behaviour of alltogether 29 state variables. These varj-
ables go into the (29x1) vector of system state variables, here denoted Respons:
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lioop ( 5 loop currents, giving 5x2=10 d-q axis current variables)
€ ( 2 capacitor voltages, giving 2x2=4 d-q axis current variables)
bam ( 1 asynchronous motor,giving 1x2=2 d-q axis flux variables)
dsm { 1 synchronous motor, giving 1x3=3 d-q axis flux variables)
Bsm ( 1 synchronous motor rotor angle)
Qsm ( 1 synchronous motor rotor speed)
Respons = Quum ( 1 asynchronous motor rotor speed) (4-15) (4-15)

(26x1) Ad (1 turbine gate opening beyond initial setting. (1.e.: Ad) =0) )
Aw ( 1 power control variable, where Aw, =0)
Ag ( 1 power control variable, where Ag) =0)
AE;¢ ( 1 excitation voltage 'beyond’ initial setting. AEgq =0)
AE; ( 1 voltage control variable, where AEq =0)
AEg ( 1 voltage control variable, where AEgs(o)=0)
Ah ( 1 SM speed stabilizer variable, where Ahgy =0)

The initial value of all control system related state variables is per definition zero, as stated in paren-
theses above. Initial value of all other state variables is provided from an initial condition analysis, see
Chapter 2.4.

The circuit elements (Rsu, Xsum, AEsy) that networkwise model an ideal synchronous motor, are functions
of one or more of the machine’s own ’local’ state variables (Bsu, txm, AEy) . See Chapter 1.7, equations
(1-108) - (1-110), for functional details. The circuit elements (Ram, Xam, AEanm) representing an ideal
asynchronous motor, are in part a function of the machine’s own 'local’ state variable axy. See

Chapter 1.7, equations (1-125), for functional details. If e.g. saturation phenomena are to be accounted
for, the above circuit elements may become functions of machine currents and voltages as well.

From the foregoing it is evident that the system loop resistance matrix Ry, and the system loop inductor
matrix Xueop both become functions of a subset of the system s 'local’ state variables. To account for
this functionality, Risep @and Xpeop (and naturally also Xuoop ) have to be continually updated during
processes of numerical integration. in the example studies accounted for below, a Runge-Kutta fourth
order integration algorithm has been applied for solving equations (4-1) - (4 14). 'Continous update’ of
the network model implies in this case by choice generating updated versions of Ry, and Xy, (and
also Xuoop ) multiple times in the course of advancing the solution one integration time step.

4.2 On presentation of power network currents and voltages

During integration processes power network currents and voltages are conveniently dealt with in terms
of d-q axis variables iy, and €.g. Uaq. For practical result presentation it is often suitable to transform
these variables back into their per phase equivalents igrst and ugsy:

At the outset the d-q axis variable like igq and ugq are computed from their corresponding per phase
variables, by the Park transformation P ,- where 6=(w; t- ). See p.1/3 and Appendix 3 ;

lggo = P irst (4-186)
Udgo = P Urst
where; R s T
cosB | cos(0-2n/3)] cos(8-4n/3) |d
P =2/3|-sinB ] -sin(0-21/3)| -sin(0-47/3) |q 4-17)
Vo Ya Y )

For back transformation we invert (4-16):

irst = P lgo (4-18)
UrsT = P Uggo
where;
cos0 -sind 1
P' = [cos(8-2n/3) | -sin(6-2m/3)| 1 (4-19)
cos(0-41/3) | -sin(6-41/3)] 1
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For the current in (say) phase 'R’, we have from (4-18) and (4-19), when observing that zero
sequence currents are absent in our studies:

ir = lg COSO - iy SiNG

We define:
ig =k sind
1 —>k=(id2+iq2)0'5
iq =k cosd
and get;
ir = k (sind cosd - cosd sing) = k sin(3 - 8)
D.
iR= (ig> +ig> )>°- sin(5 - ) & = arctan(igia)
Per definition: b where;
iR = 2 lrme SIN(S - 6) 8=(a t-B)

From the two foregoing expressions for ir we deduce the following basic algorithm for determining the
root mean square (r.m.s) value of per phase current and voltage, based on the corresponding d-q axis
variables:

s = (172} (ig® +ig)"°
and by analogy; (4-20)
Unms= (1/2) (ug” + ug? )

r.m.s. value of power network currents and voltages
produced from corresponding d-q axis variables.

Power network currents and voltages presented in the foliowing, are r.m.s. values as defined by (4-20).
r.m.s. values will per definition be equal to, or greater than zero. In the diagrams to follow, anr.m.s.
variable is described in terms of its time response curve, plus three specific figures ; its value at start
of analysis, its maximum value within the time range analyzed, and its correspondingly defined
mimimum value.

Other diagram variables such as e.g absorbed motor power, electrical torque, rotor field- and damper
currents, and synchronous motor rotor angle, may attain positive as well as negative values as they are
instantaneous quantities. Such quantities are in this presentation characterized by 3x2 = six figures in
addition to the curve depicting its time variation: The first three are the ones defined above for r.m.s.
variables. The last three are included to enhance the understanding of where origo is placed along the
y-axis in this special ( APL-graphical) presentation. Thus, the last set of 3 figures is a 'lifted’ version of
the first set, so that - if minimum value of the variable is negative - this minimum becomes the 'zero
reference’ in the graphical presentation.

4.3 Three phase short circuit

Referring to Figure 3.4 a three phase short circuit of duration 0.25s, is implemented by transiently
replacing load "2’ (P,=0.25, Q>=0.80ind.) by a new one (Piznew = 1000.0, Qizpew = 0). Thisis
equivalent to introducing a short circuit impedance z= 0.001+j0 at the motor bus of the existing
system . All figures being pu data.

The same sequence of events is repeated for two different analysis durations in order to illustrate the
detailed ’inner life’ of a short circuit, as well as the more longterm/overall consequences on system
performance of this type of disturbance. Time increment At during integration: 0.0005s.

Figure 4.1 — 4.9 give sample detailed resulis for a period of analysis of 0.5s. The short circuit is
applied at t = 0.05s and removed 0.25s later at t = 0.3s. A few comments to the results:

As the fault is implemented via setting of new parameters for load '2', the short circuit current appears
as the current supplied to load '2’. See Figure 4.8. We notice that the short circuit current in the d-q
frame of reference, comprises a distinct oscillating frequency. From the figure we estimate the duration
of 9 cyclesto 0.5x2.2/6.1 = 0.1803s, giving an estimated frequency of = 9/0.1803 =49.92Hz. For a



e AbsorbedSynchronousMotor Power[pu] Synchrenous Motor Voltage [pu]
Start{Max-/MinValue:” 0.80/0.23{ 3.08 Start{Max-/MinValue:1.00/1.00{0.00

With Min. power as new ref: :
Start-fidax-/MinValue:2.2943.32/0.00
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decay of 63% we estimate from the figure a duration of 0.5x1.5/6.1= 0.123s, and thus a decay time
constant of that size for the oscillating frequency. This fits well with formal analysis: Computing eigen-
values for the short-circuited state ( i.e. after freezing initial value of Bgy, Efand asynchronous motor
slip, and setting load '2’ to its new value), we find an oscillatory eigenvalue of frequency 49.969Hz
and time constant T=0.128s.

The asynchronous motor contributes to the peak of the short circuit current of Figure 4.8. This can be
seen from Figure 4.6. Short-circuiting the shunt battery connected to the motor bus implies a current
pulse that will also contribute to increasing the short circuit current peak. This is evidenced from Figure
4.9. To limit this current pulse, the dummy series impedance is here set to (rp + jxp) = 0.01+j0.005pu.
The pulse peak of the diagram is most likely not a 'hit’ of the true peak; to be sure of having a
computed value close to the this peak, the integration time step would have to be considerably smaller.

SM stator current {pu)
Start-/Max-/MinValue:0.9149.48/0.12

o JI

g — o i ooy o s e e e B —— e

Figure 4.1 Absorbed Synchronous Motor Figure 4.2 SM terminal voliage F:Lgure 4.3 SM stator current

i

Start-j'Max—."MinVaIue:Z.SS!S.fIZJZﬁS

“Field Current fpul Machine Anale frad} . T
Start-iMax-IMinValue:2.35/6.42/2.35 ] Start-fMax-/MinValue: 0.38/ 0.36/ 1.78 ‘ E Start-/Max-fMinValue:0.65/7.2040.01 ;
With Min. current as new ref.. i With Min. anale as new ref: ; ;

[s1£3]

AM stator current [pu)

% Start—iMax[MmValue1 4041.4248.00

D T

PO o e e e POSEEP, e T

E

M l 1,;._....,., opm ot M ] _[ - lI“ﬁe:-:*":-”-—:w,—,—ww1

Figure 4.4 SM field current Figure 4.5 SM rotor angle Flgure 4.8 Asy’nchronous Motor ( AM )
stator current

Start-!Max—.fManalue:U.EZ!B.dﬁ(ﬂ.BZ ; | Start-iMax-{MinValue: ; i Star-fMax-IMinValue:0.70/4.4270.00

External Current (pu) ; L2 load current {pu] Shunt capacitor current [pu)

0.84/23.52}0.05

TG, P ST

e smnRas T

Figur; 4.7 Current at external bus F:.gure 4.8 'Load2’ t—fault.) current Figure 4.9 Shu.nt capacitor current

Figure 4.1 - 4.9 Three phase short circuit at the motor bus of the system of Figure 3.4.
Sample results for an analysis period of Tmax = 0.5s. The short
circuit is applied at t=0.05s and removed 0.25s later at t=0.3s.

Figure 4.10 — 4.18 give sample results for a period of analysis of 3s *) The short circuit is applied at
t=0.1s and removed 0.25s later at t = 0.35s. We observe that the system fully recovers from the
disturbance in the course  of the chosen period of analysis.

*TWithin the time interval (up to ca 0.5s) that is common to Figures 4.1-4.9 and 4.10- 4.18, characteristic figures
(like max. and min.) of any given variable may or may not be registered the same for both durations of analysis.

This is due to the chosen logic of result presentation: Regardiess of value of Trax, 1000 discrete values of each
variable is retained for drawing and characterization purposes. Thus, time resolution for presentation becomes a
function of Tmax, Causing an increasing number of 'intermediate’ variable values to be omitted with increasing Tmax.
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[ Absorbed Synchronous Motor Power{pu)
Start-iMax-{Min¥alue: 0.80/0.59} 3.08

; With Min. power as new ref: g2
Start-fldax-{Min¥alue:2.2843.680.00 E

Synchrenous Motor Voltage [pu])
Start-fidax-{MinYalue:1.0041.04/0.00

SM stator current [pu)
Start-{Max-{MinValue:0.0.91/3.48/0.12

o " i N o R R

Figure 4.10 Absorbed SM power Figure 4.11 SM terminal voltage Figure 4.12 SM stator current

ooz

Field Current [pul 1. Machine Anale [rad] . e ' AM stator current [pul o ;
Start{Max-IMinValue:2.35/6.42/2.30° : Start-iMax-/MinValue: 0.38/0.34f 1.78 h Start-fMax-{MinV¥alue:0.65/7.20{0.01 °
#  wWith Min. current as new ref.l With Min. anale as new ref {

Start{Max-idinValue:1.40/2.13{0.00.

|

Loy T

3
1A
i
J

[ $ie s Y e

Start-/M ax-!Mi_nVa!ug:Z.SSiB :12}23({].” ]

e

Figure 4.15 AM stator current

s

Figure 4.13 SM field current Figure 4.14 SM rotor angle

External Current {pu} ] E Shunt capaci
.: . . pacitor current [pu)
Start-{Max-{MinValue:0.6218.48/0.36 ; Start-Max-fMin¥alue: 8 g e X
1 0.84)23.52/0.09 Start-fMax-/MinValue:0.70/1.42{0.07
g 1
;—1g’”:11’3 4.1&;’ Cu”;:re;\t ”;t ”e;:t.ernal bus Figure 4.17 'Load2' (=fault) current Figure 4.18 Shunt cspacitor current

Figure 4.10 — 4.18 Three phase short circuit at the motor bus of the system of Figure 3.4.
Sample results for an analysis period of Tpa =3s. The short circuit is
applied at t=0.1s and removed 0.25s later at t=0.35s.

4.4 Start of an asynchronous motor

Given an initial steady state operating point of the system in Figure 3.4, with the asynchronous motor
disconnected from the network. The motor bus voltage is 1.0pu, and this value is also the target
voltage value set for the voltage regulator of the synchronous motor. Power supplied to the
synchronous motor is -0.8pu, implying generator mode of operation of the unit. The power control
system of the unit in generator mode, is set to respond to deviations from nominal value of system
frequency. Since the external infinite bus voltage sustains system frequency at all times, the power
output from the synchronous generator should eventually ( if remaining in synchronism) resume its
initial value, following the disturbance caused by starting of the asynchronous motor.

The dynamical study is run for two different settings of Tn.x to demonstrate 1) the detailed initial
impact of an AM-start, and 2) the overall system consequences of this type of disturbance to the
system. Time increment during integration: At = 0.0005s.
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Figure 4.19 — 4.27 give sample detailed results for a period of analysis of 0.5s. The asynchronous
motor — initially at standstill — is connected to the system at t=0.01s.

“SM stator current (pu)
Start-Max-fMinValue:0.80/3.25]0.46 :

' SynchronousMotur Vultage [pu]
Start-}Max-/MinValue:1.0041.00/0.42

o O S A N A N AR =0
Abserbed Synchronous Motor Power(p
Start-iMax-fMinValue: 0.8040.04f 2.06
b YWith Min. power as new ref:
Start-{Max-fMinValue:1.26/2.10}0.00

T o P kL e . - Al e e g E

;; Flgure 4.19 Absorbed. SM power Figure 4.20 SM terminal voltage F:Lgure 4.21 SM stator current

' fradt 1 AM stator current fpul )
Start-{Max-fMinValue:1.68/3.25/1.68 N Start-/Max-fMinValue: 0. ISUI [l 60f 0.80 4 4 Start-/Max-{MinValue:0.00/5.34/0. Dl]
With Min. current as new ref. With Min. anale as newr i 4

Start-{Max-fMinValue:0. 18!0 1 9}'0 oo

| Start/Max-MinValuer1 68/3.2501.68 14 - ;
Figure 4.22 SM field current Figure 4.23 SM rotor angle

i g o T

orbed Asvnchronous Motor Power lDu] 1) Asynchronous Motor Slip (96 — : ‘Electrical AM toraue [pul _
Start-}Max-/iMinValue:0.00/3. 18/ 0.03 h il Start{Max-{MinValue:100.08/100.00/95. 5: Start-JMax-#MinValue:0.00/1.77 1 (]
P With Min. power as new ref: 1 With Min. torgue as new ref:
: Start-Max-MinValue:0.03/3.22{0.001 ; ; Start-/Max-{MinValue:1.01/2.79/0. Ul]

t ; 4 A oA E

i OOt L

“Figure 4.25 Absorbed AN power - Figure 4.26 AM rotor siip Figure 4.27 Electrical AM torque]

Figure 4.19 — 4.27 Start of an asynchronous motor at the motor bus of the system of Figure 3.4.
Sample results for an analysis period Tmax = 0.5s. The motor - initially at stand-
still - is connected to the system at {=0.01s.

Figure 4.28 — 4.36 give sample results for a period of analysis of 7s. The asynchronous motor —
initially at standstill — is connected to the system at t = 0.3s. During start-up when the rotor speed
of the asynchronous motor is in the range Qayv = 0 - 0.97pu, the mechanical torque -then
reflecting the net effect of friction,- is setto 0.05 (Qa)°. When the motor speed (for the first time)
exceeds the here chosen 0.97pu ’limit', the mechanical rotor torque is suddenly increased to the
fixed vaiue 0.5pu, to model the desired loading Up of the asynchronous motor.
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Absorbed Synchronous Motor Power[pu] o
Start/Max-/MinValue: 0.80f 0. 157 1.21
With Min. power as new ref:
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Synchronouslvlotor Voltage [u] A
Start-fMax-{MinValue:1.00{1.06/0.56

SM stator current (pu)
Start-/Max-/MinValue:0.80f3.15/0.80

rt-fiax-{MinValue:0.4141.06/0.00

I e i e o e P s g o PP

icreiii o

j; . ‘Figure

: Machine Anale fradl | AM stator current fpu)
Start-IMax-/Min¥alue:1.68/3.80/1.68 IR Start-iMax-fMinValue: 0.61} 0.08/ 0.80 | Start-fMax-fMinValue:0.00/5.26{0. [ll]
With Min. current as new ref.. : With Min. angle as new ref: :

: Start T ax-, !Mm\falue 1 58!3 Bﬂﬂ 88

4.28 Absorbed SM power F:.gure 4.28 SM terminal voltage Figure 4.30 SM stator current

EEE

H StartMax-MinValue:0.18/0.71/0.00 |

. T N

it DRI T

Start

Figure 4.31 SM field current F:.gure 4.32 SM rotor angle F:Lgure 4:33 AM stator current

Absorbed Asynchronous

Electrical AM torque [pul

u 4 Asynchronous Motor Slip (%)

JMax-/MinValue:0. UU” 85!"0 00 Start-{Max~MinValue:100.0{100.0/1.42 ‘Start-Max-/MinValue:0.00/1.627 1 0
With Min. power as new ref: With Min. tomu&?i{nfw ,1,351 ” 6310, 00

Start-fMax-/MinValue:0.00/1.85f0.00: ) - Start-{Max-{MinValue: ! H

o

Figure

434 Absorbe;i AM pgwer F:.gure 4 35 AM rotor sl:Lp Figure 4.36 Electrical AM torque|

Figure 4.28 — 4.36 Start of an asynchronous motor at the motor bus of the system of Figure 3.4.
Sample results for an analysis period Tyax = 7s. The motor - initially at stand-
still - is connected to the system at t=0.3s. See text for the logic of handling of
the mechanical (i.e. load-) torque as function of motor speed.

4.5 Start of a synchronous motor

Given an initial steady state operating point of the system of Figure 3.4, with the synchronous motor
disconnected from the network. See Chapter 3.11.2 for other load flow specifications.The initial motor
bus voltage is computed to 0.891pu. After startup and synchronization of the motor, a target motor bus
voltage = 1.0pu is set for its voltage regulator system. The synchronous machine is started from
stillstand as an asynchronous motor; the rotor circuit being initially short-circuited over an additional
series resistance, to enhance the development of an accelerating torque. During start-up when the
rotor speed of the synchronous motor is in the range QSM 0 - 0.95pu, the mechanical torque -then
reflecting the net effect of friction, is set to 0.02 (Qsn)®. When the motor speed (for the first time)
exceeds the here chosen 0.95pu 'trigger’ value, the additional field circuit series resistance is short-

circuited and an ’initial’ field voltage of 1.0pu is applied. Immediately after this, the voltage control
system of the machine is activated.

In the present analyses we have chosen to demonstrate (hydro-)generator mode of operation of the
synchronous motor. When the synchronous motor’s rotor speed (for the first time) during the
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starting process exceeds the here chosen second 'trigger’ value 0.99pu, the power control system of
the unit is activated. Depending on the setting of a ‘task identifier’, one of two control modes is then
implemented:

Frequency control mode with excitation signal Ar=(Qgy —1) applied to the synchronous machine’s
power control system. l.e.: AQ. =0, see equations (1-120) of Chapter 1.7. This control mode will
in the present case lead to idle/no-load synchronous operation of the newly started machine.

Power control mode with 'reference setting’ AQut = 6 (Pearget — Psm) a@pplied to the synchronous
machine's power control system. See again equations (1-120). ¢ is a scaling factor (here set to 0.1).
Choosing target motor load Piget = -0.8, this control mode implies generator mode of operation,
and opening of the turbine gate to eventually sustain 0.8pu power production. The current example
study applies the power contol mode with the setting just described.

The dynamical study is made for three different time horizons in order to illustrate the detailed initial
impact of a SM start, as well as the ensuing overall system consequences of this type of disturbance
to the system.

Figure 4.37- 4.45 give sample detailed results for a period of analysis of 0.5s. The motor is connected
att = 0.05s. Time increment At = 0.0005s.

Absorbed Synchronous Motor Power([pu)
Start-fMax-/MinValue:0.00/1.81/ 0.93
YWith Min. power as new ref.
Start-{Max-/MinValue:0.93{2.75{0.00

Synchronous Motur Voltage {pu)
Start-fMax-{Min¥alue:0.00/0.88/0.00-

SM stator current [pu)
Start{Max-{MinValue:0.00/4.77/0.00
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N T S L L Ry BTN i O

Figure 4.37 Absorbed SM power Figure 4.38 SM terminal voltiage F:Lgure 4.39 SM stator current

Field Current [pul B : Electrical SM toruue foul - Synchronous machine speed [pu)
Start-iMax-{MinValue:0.00/0.85¢ 8.82 Start/Max-JMinValue:0.00{0.68; 0.39 ; Start-fMax-{MinValue:0.00/0.01/0.00
With Min. current as new ref.. ;; With Min. torque as new ref.

, Start-fMax-{MinValue:0.8211.6710.00 ‘Start-fMax-{Min¥alue:0.39/1.08/0.00 ;

g gy % g

Figure 4.40 SM field current Flgura 4 41 Electrlcal SM Lorque Figure 4.42 SM rotor speed

Electrical AM tarque [pul
Start-!Max-/MinValue:0. 49[1 16§ 0.6

YWith Min. torque as new ref;

Start-/Max-{MinValue:1.16{1.8370. UIJ

[ Absorbed Asynchronous Motor Power fpu) Asynchronous Motor Slip $6) ;

_ Start/Max-/MinValue:0.50/1.24/ 0.61" & Start-{Max-/MinValue:2.065/4.14}2.05 4

3 With Min. power as new ref: 19
Start-/Max-{MinValue:1.01}/1.75{0.00:

1

o] Dl e e e e e e e o ] B e

e - s o e

Figure 4.43 Absorbed AN power Figure 4.44 AM rotor slip Figure 4.45 Electrical AM torque

Figure 4.37 — 4.45 Start of a synchronous machine at the motor bus of the system of Figure 3.4.
Sample results for an analysis period Tnax = 0.5s. The motor — initially at stand-
still — is connected to the system at t = 0.05s.
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Figure 4.46 - 4.54 investigate start of the synchronous machine over a period of analysis of 5s. The

motor is connected at t = 0.5s. At t=T,,,=5s, the speed of the rotor has just passed the value
0.08pu. Time increment At =0.001s.

YNC rono Mo or Yo agu] 1 » M stator current [pu)
Start-{Max-/MinValue:0.00/1.82{ 0.69 Start-fMax-/iMinValue:0.00/0.88/0.00 : Start-{Max-{MinValue:0.00/4.73/0.00
Yith Min. power as new ref. =
Start-/Max-{MinValue:0.6912.51§0.00 (K

£ ey e - mmm s e b T 1 e v e
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F:Lqure 4.46 Absorbed SM powsr Flgure 4.47 SM termlnal volta.ge Flgure 4.4% SM stator current

Field Current fpul  _ A
Start-fMax-/MinValue:0.00/0.69f 0.69 1 Start{Max-{MinValue:0.00/0.561} 0.23°

With Min. current as new ref.: ; With Min. tnrm:le as new ref.
il Start/Max-fMinV¥alue:0.69/1.38/0.00 Start-fMax-fidin¥alue:0.23¢0.7 4{0.00 :
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Figure 4.49 SM field current Flgure 4 50 Electr:Lcal SM Lorque Flgure 4 51 SM rotor speed

Tt 0

synchronous Motor Power fpu] o Asynchronous Motor Slip {26] : Electrical AM torque fpul
Start J'Max .meValue 0.50/1.18/ 0.51 Start-/Max-{MinValue:2.0516.28{2.06 ; Start-/Max-IMinValue:0.49/1.15f 0.67

i

] : With Min. torque as new ref:
Stan—IMayf;:::nh:'::ugqlw;{ﬁsﬁgmv ﬂrgf Start-{Max-fMinValue:1.15/1.82/0.00
5 t] q &

i

. Afiaufeﬂl..ls‘é‘A‘l‘;;orbed AMpower Figure 4.53 AM rotor slip Figure 4.54 Electrical AM torque

Figure 4.46 —4.54 Start of a synchronous machine at the motor bus of the system of Figure 3.4.
Sample results for an analysis period Tmax = 5s. The motor — initially at
standstill — is connected to the system at t= 0.5s.

Figure 4.55 — 4.63 investigate start, synchronization and subsequent loading in generator mode
of operation, of the synchronous machine over a period of analysis of 60s. The motor - initially at
standstill - is connected to the system at t =1s. At t=57s the loaded generator is suddenly dis-
connected from the network. Time increment during integration: At = 0.001s.

A brief comment to main results in view of initial conditions and subsequent 'events’ over the period
of analysis:

Before start of the synchronous motor the voltage at the motor bus is 0.89pu. The asyn-
chronous motor is running and absorbes 0.5pu power from the motor bus at slip 2.05%.

After connection of the synchronous motor (at t=1s), acceleration takes place for about 40
seconds before rotor speed reaches 0.95pu. During this period the motor bus voltage
appears confined to the reduced level of about 0.55pu. To sustain its nearly constant
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mechanical load torque at reduced voltage, the asynchronous motor quickly attains its new
and higher slip level of about 6.29% during this acceleration period of time.

When the synchronous motor’s rotor speed (for the first time) passes 0.95pu, an 'initial’ field
voltage =1.0pu is applied, immediately followed by activation of the voltage control system.
It is observed from the diagrams that synchronization as well as successful voltage control
then is implemented in the course of very few seconds. When 99% of synchronous speed is
attained (for the first time), the power control mode of the power control system is activated,
and close to desired generator output of 0.8pu, is then reached within the ensuing (say) 8s.

bsorbed Synchronous Moter Power(pu)

Start-/Max-fMin¥alue:0.00/0.69; 0.73
With Min. power as new ref:
Start-/Max-/MinValue:0.7311.42/0.00

o Synchronous Motor Ita_ 4
Start-fiMax-/MinYalue:0.0041.12{0.00

SM stator current {pu
Start-jMax-IMinValue:0.00{2.4470.00

B N e e o A4 U N S
Figure 4.56 SM terminal voltage - Figure 4.57 SM stator current

Figure 4.55 Absorbed SM power

i
¢ Field Current fpul ) ‘Synchronous machine speed [pu)
i Start/Max-/MinValue:0.00/2.74f 2.20 Start-/Max-/MinValue:0.00/0.67/ 0.74 Start-/Max-JMinValue:0.0041.00/0.00
; With Min. current as new ref.. i With Min. toraue as new ref. { -

Start-/Max-JMinValue:2.20{4.95/0.00; ’ +  ‘Start{Max-{MinValue:0.74]1.4110.00

o inEaM b o ks

Figure 4.56 SM field current

S o S ien o gmeg oo cm

. Figure 4.60 SM rotor speed

4 Absorbed Asvnchronous Mator Power [pu) ; Asynchroneus Moter Slip 94 ' Electrical AM torque fpul
§ Start-Max-/MinValue:0.50/0.61/0.28 Start-{Max-fMinValue:2.05{6.29/1.561 i B Start-iIMax-IMinValue:0.43/0.58/0.25
; With Min. power as new ref: 1 With Min. torgue as new ref.

Start-fMax-/MinValue:0.50{0.6170.28 ; ; Start-fMax-fMinValue:0.49/0.58¢0.25

. I N I B

: k«';gu;:ma;Sl Absorbed ~AI~I power Figure 4.82 AM rotor slip

SR A s Ty

Figure 4.‘83 ]:'.-le”cturica..l AM tori'cﬁxu.éb

Figure 4.55 — 4.63 Start/loading up/disconnection of a synchronous generator at the motor bus
of the system of Figure 3.4. Sample results for an analysis period Tpmax = 60s.
The motor -initially at standstill- is connected to the system at t=1s. The generator
is abruptly disconnected from the system at t = 57s. See text.

During the just commented period of synchronous operation of the machine, the motor bus
voltage is by and large noticed to be close to its target value 1.0pu, thanks to the generator's
voltage control system. To sustain its nearly constant mechanical load torque at the elevated
and now = nominal voltage, the asynchronous motor quickly attains the new, reduced slip of
about 1.51% - a figure that naturally is lower than the initial slip value (2.05%) associated
with the early and low motor bus voltage of .89pu.
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At t=57s the synchronous machine is disconnected from the system while producing close
to target output. The abrupt disconnection is modelled by setting the field voltage to zero, de-
activate the machine’s control gear, and introducing a time-variable 'arc impedance’ in series
with the machine to be disconnected. The r-term of this impedance increases from zero to 150
pu via the formulation r = k- 150. The x-term of the impedance increases from 0 to 100pu via
the formulation x = k- 100. ky is a pu factor varying as a | - shaped time function from 0 to
1, over the here chosen time span of 0.02s, - i.e. the duration of one 50Hz cycle. Inthe

present case with At = 0.001s, the stated increase of r and x takes place in the course of
0.02/0.001=20 integration time steps.

4.6 Islanding
Given the system layout of Figure 3.4 with an initial power flow implying delivery of about 0.56pu
power from the main grid (i.e. infinite bus) to the local system. The generator of the local system

produces at the outset= 0.2pu power. The line terminating on the infinite bus is suddenly dis-
connected, and we seek the response of the local system to this event.

Main characteristics of the initial system load flow :

The infinite bus:  Voltage : 1.0pu (specified)

Active power : 0.5566pu (delivered to the study system)

Reactive power

1-0.0089pu ( the study system represents a capacitive load)

Load bus’1’ : Voltage : 0.9858pu

Active load '1’ : 0.2915pu

Reactive load '1’ : 0.1943pu (inductive)

Active power : 0.2558pu (delivered to the transformer)

Reactive power :-0.2342pu (the transformer represents a capacitive reactive load)
Motor bus Voltage : 1.0000pu (épecified)

Active SM power

. -0.1999pu (specified power supply to synchronous motor: —0.2pu)
Reactive SM power

: -0.5358pu (the synchr. motor acts reactively as capacitor bank)

Active AM power

: 0.2995pu (specified power supply to asynchronous motor: 0.3pu)
Reactive AM power

: 0.3953pu (the asynchronous motor acts as inductive load)
Capacitor load : -0.7049pu (capacitive) (xp=0.005pu is in series with the capacitor)

Active load "2’
Reactive load '2’

: 0.1500pu
: 0.6000pu (inductive)

Figure 4.64 — 4.72 investigate main electrical consequences to the local power system, of an abrupt disconnection
of it from the main grid. The disconnection is afforded by introducing a time-variable 'arc impedance’ in
series with the transmission line (of impedance r,+jx, ) to be opened ) The r-term of this impedance
increases from zero to 150pu via the formulation r = k.- 150. The x-term of the impedance increases
from 0 to 100pu via the formulation x = k- 100. k, isa pu factor varying as a | - shaped time function
from 0 to 1, over the here chosen time span of 0.02s, - i.e. the duration of one 50Hz cycle. In the

present case with At = 0.001s, the stated increase of r and x takes place in the course of 0.02/0.001=
20 integration time steps.

2 A topological matrix denoted system loop matrix B, is generally applied in this report to formally describe the way
components are tied together into a system. Among many prospective B-candidates, one was randomly chosen in
Chapter 2.2 for analysis of the complete system of Figure 2.1 (or equivalently Figure 3.4). For the special purpose
of our present study of islanding, we have to define a matrix B that in principle will allow us to increase (ry + jxy )
to infinity, without jeopardizing the precision with which the remaining local power system is being modelled. The
chosen graph description for our purpose of islanding analysis, is shown in Figure 4.73 and discussed thereafter.
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; Start-fMax-{Min¥alue: 0.20/ 0.20/ 0.30-

! With Min. power as new ref:
Start-iMax-{Min¥alue:0.70/0.7040.00
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We notice from Figure 4.64 that the & 0.56pu) power initially imported from the grid, is replaced by
local generation in the course of about 25s. The frequency however, recovers much more slowly ;
after 75s the synchronous machine’s rotor speed is still subsynchronous -and of the value= 0.8990
pu.This corresponds fo a slip of= 0.1%. The local motor bus voltage dips incrementally right after
disconnection of the line, but recovers in the course of the ensuing = 15s. The saw-tooth presen-
tation of the electrical motor angle follows from constraining its absolute value to being less or equal
to (2 ).

In sum Figure 4.64-4.72 exemplify that system control responses are slower and less damped in a
small local power system than in a (bigger) system that comprises a rigid voltage reference. See
foregoing studies of integrated system performance. This holds true even when control gear
settings are tailored to the system configuration at hand. In the present islanding case two parameter
adjustments are made relative to the settings given in Chapter 3.11.1: Transient droop time constant
T, is alteted from 17s to 25s, and transient droop & from 0.15pu to 0.04pu.

Further illustration of local vs. integrated system response is given in next Chapter 4.7.

Synchronous Motor Voltage fpu)
Start-{Max-{MinValue:1.0041.64/0.96

i o e e s T e e ey T b " o) 3 T, T

F

Flgure 4.64 Absorbed SM power Figure 4.65 SM terminal voltage Figure 4.66 SM stator current

Field Current [pul 4 Machin ale [radl _ !
Start-iMaxMin¥alue:2.1742.65/2.17 : Star-fMax-IMinValue: 0. 0316 25;' 0.03 § 4 Start/Max/MinValue:0. BUIS 6370.00 :
i With Min. current as new ref.. With Min. anale as new r 1 :

Start-IMax-JMinValue:0. 0036 3[].\‘1] 08

| StartyMax-{MinValue:2.17/2.85[2.17

Figure 4.67 SM field current Flgure 4 sa SM rotor angle

Start-Max-MinValue:0.56/0.56{0.00 Start-fMax-MinValue:0.95/6.43}0.95 ‘

Asynchronous Motor Slip [%6) Electrical AM t

[ e e Sl oo wm e o b

que [pul T

Start-‘Max-/MinValue:0.2940.40/0. [M
Yith Min. torque as new ref.

Start-{Max-/MinValue:0.2970.40{0.04:

Figure 4.70 Current in Line to Grid Flgure 4,71 AM rotor sl:.p quure 4 72 Electrlcal AM torque

Figure 4.64 - 4.72 Islanding into a local power system, of the system of Figure 3.4
Sample results for an analysis period Tyax = 75s. The local system-
Initially importing= 0.56pu power from the grid- is disconnected at t=1s.
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Element no -

a) Oriented system graph b) Loop matrix B

Figure 4.73 Graph description (of the system of Figure 3.4) adapted to 'Case Islanding’.

We see from Figure 4.73 that system loop ’5’ (which is defined by chord-element '5), is the only
loop that comprises the external emf E, to be removed. Sudden removal is here afforded

by quickly increasing the transmission line impedance (r, + x,) to a very large value. This will
eliminate the effect of loop '5’, without ruining the modelling of the remaining loop currents. ( In the
modelling of Chapter 2.2 the voltage E, became an emf of each and every one of the defined
system loops, and hence could not be disconnected in a simple way without destroying the
network model itself ).

4.7 Local vs. integrated system response to given disturbance.

We wish to investigate and compare main transient operational consequences of starting and loading
up of an asynchronous motor, given the following two alternative system configurations: 1) The local
system is ‘on its own’ , i.e. the infinite bus of the system of Figure 3.4 is permanently disconnected,
-and 2) the local system is tied to the grid, i.e. system configuration is 'integrated’ as given in Figure
3.4. The initial system power flow is established the same in both cases, and control system target
values are set so that final solutions also will be the same. Period of analysis: 45s. Integration time
step: 0.001s

Main characteristics of the established initial system load flow(s) :

The infinite bus:  Voltage : 0.9995pu

Active power : 0.0000pu (delivered to the local system)

Reactive power : 0.0000pu ( ? e )
Loadbus’1’ : Voitage 1 0.9995pu

Active load "1’ : 0.2997pu

Reactive load'1" : 0.1998pu (inductive)

Active power :-0.2997pu (delivered to the transformer from bus 1)

Reactive power :-0.1998pu ( " )
Motor bus . Voltage :1.017pu

Active SM power  :-0.4612pu
Reactive SM power :-0.1031pu ( The SM acts reactively as a capacitor)
Active AM power : 0.0000pu (AM not yet connected)

Reactive AM power : 0.0000pu ( " )

Capacitor load :-0.7286pu (capacitive) (xo=0.005pu is in series with the
capacitor)

Active load '2’ : 0.1550pu

Reactive load 2"  : 0.6202pu (inductive)

The asynchronous motor — initially at standstill — is connected to the system at t = 1s. During startup
when the rotor speed of the asynchronous motor is in the range Qay = 0 — 0.97pu, the mechanical
torque -then reflecting the net effect of friction,- is set to 0.05 (Quw)*. When the motor speed (for the
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first time) exceeds the here chosen 0.97pu 'limit’, the mechanical rotor torque is suddenly increased
to the fixed value 0.3pu, to model the desired loading up of the asynchronous motor.

Figure 4.74 — 4.82 display main operational consequences of the motor start when taking place in the
local/ isolated system *) To retain the frequency of the local network, the frequency control mode is
chosen for the power control system of the local generator. Thus the generator will pick up whatever
increase in power demand is incurred by commissioning of the asynchronous motor. The voltage regu-
lator of the synchronous machine is set to retain the initial motor bus voltage of 1.017pu.

We notice that the asynchronous motor has picked up its load about 22s after being connected to the
system. The voltage is recovered after ca. 30s. The frequency needs long time for recovery; at t =
45s it has reached back to = 0.9965pu.

SM stator current [pu)

zgm Absorbed Synchronous Motor Power[pu] .
: Start-{Max-fMinValue:0.46/2.50/0.46

Start-/Max-/MinValue: 0.46/ 0.08/ 1.08
With Min. power as new ref.
Start-fMax-/MinValue:0.62{1.00{0.00

P, T e SR

! Figure 4.74 Absorbed SM power Figure 4.75 SM terminal voliage

Synchronous machine slip {26)
Start-iMax-MinValue:0. ﬂﬂiﬁ 1972.01
With Min. slip as new ref:
Start-/Max-fMinValue:2.01/8.20/0.00

: Field Current [pul B Machine Anale frad) _ ;
3 StartiMax-/MinValue:1.64/4.06/1.54 17 Start-iMax-MinValue: 0. 40}5 28;‘ 6.05 |

With Min. current as new ref.. i With Min. anale as new r
: Start{Max-{MinValue:5.65{1 2 3310.00

; Stan—,fMax-fMinValueﬂ.64!4.08{1.64" ALy o ] I W R
{ Figure 4.77 SM field current Figure 4.78 SM rotor angle Figure 4.79 SM rotor slip

Electrical AM torque [(pu]
Start-iMax-IMinValue:0.00£1.08/0. B

With Min. torque as new ref:

Start-{Max-/MinValue:0.64¢1.71/0. l]U

Absorbed Asynchronous ; ynchronou P
i Start-/Max-MinValue:0.00/0.87/0. 0[! Start-idav-IMinValue-100 B0/100.00f 0. 2¢
; With Min. power as new ref: ] “With min. slip as new ref:
Start-fMax-{MinValue:0.000.87;0.00 . \Start-fidax-fMinValue:100.29/100.29f0. 00/

e pwm e il o P— RN AT ENY. 2% S

F:Lgure 4.80 Absorbed AM power : quure 4 61 AM rotor sllp F:.gure 4 82 Electrlcal AM torque[

Figure 4.74 — 4.82 Local system respons to the start and loading up of an asynchronous motor.
The ’local system’ is the system of Figure 3.4 when disconnected from grid.
Analysis period: Tnax = 45s. The asynchronous motor - initially at standstill -
is connected to the network at t =1s.

*)"As the present study deals with analysing the local system disconnected from grid, system modelling
should (to enhance precision as well as efficiency of computation) confine itself to only the local system.
The chosen graph description for our present task of local system analysis, is given in Figure 4.83.
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6 (Trafo)

Element no —

Loo&no1 4 5 7
11000401 -1

0100401+
B=10010}01-1] =[B,B]
(SM) 40001111

a) Oriented system graph b) Loop matrix B

Figure 4.83 Graph description adapted to 'Case local system analysis’ .

Figure 4.84 — 4.93 display main operational consequences of the asynchronous motor start, when
taking place in the interconnected system of Figure 3.4. To converge on the same final solution as in

s__"_']-’f;mw k. i
i Absorbed Synchmnous Motor Power(pu)
Start-iMax-{Min¥alue:” 0.46/0. 03/ 0.78
With Min. power as new ref:
Start-{Max-fMinValue:0.32/0.8170.00

I SM stator current (pu) - B
Start-iMax-fMinValue:0.46§1.92/0.46

: : : i« j
: ‘IJ\( o ]

Y] — 5 R - e i ievoime el g o e mo - mara s Do g e iz

Figur'e 4.-34 Absorbed SM power Flgure 4.85 SM terminal voltage Figure 4.886 SM stator current

E Synchronous Motor Voltage (pu} »
Start{Max-/MinYalue:1.02{1.08{0.61

Field Current [pul Machine Anale (rad 4 Syncronous machine speed [pu}
Star/Max-{MinValue:1.63/3.86/1.63 Start-iMax-MinValue: 0.32/0.12f 0.43 1 StartyMax-MinValue:1.001.00{1.00
With Min. current as new ref.: 14 With Min. anale as new ref: 1

E Start-{Max-fiMinV¥alue:0.1170.55}0.00

4 Start-Max-{MinValue:l .6333.§Bi1 'qu ~
Figure 4‘.;") SM field current Flgure 4.88 SM rotor ang.l.e quure 4.83 SM rotor speed

L

pomeend A an o R G LY e i : e AL e a2 b

Asynchronous Motor Slip %) B Electrical AM torque [pul _
f Start-/Max-/MinVYalue:0.00/1.59} 8.9:

Start{Max-/MinV¥alue:180.0041060.00/0. 82 ‘ With Min. torque as new ref:
i Start-{Max-{MinValue:0.90/2.49{0.00

External Current [pu}
Start-{Max-{MinValue:0.00{2.35/0.00

R A e R

4
4
E

——= 3 —— n , -1 R apts N e . .
SR s ,

Figur'e 4‘.961Current to/from 'grr';ld T Figure 4.91 AM rotor slip Figure 4.92 Electrical AM torque

Figure 4.84 — 4.92 Integrated system respons to the start and loading up of an asynchronous motor.
The ’integrated’ system is the system of Figure 3.4. Analysis period: Tyax = 45s.
The asynchronous motor — initially at standstill — is connected to the network at t = 1s.
Power control mode of local generator, with target output=final gen.prod. in previous case
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the previous ’'local case’, the power control mode is chosen for the power control system of the local
generator, and as target production setting is applied the local power output converged on at the exit
of the previous motor start analysis. The voltage regulator of the local synchronous machine is again
set to retain the initial motor bus voltage of 1.017pu.

We observe from the last set of results that the asynchronous motor now has picked up its load about
6s after being connected to the system. The motor bus voltage is recovered after ca 12s. Thanks to
the stiff grid now prevailing, system frequency is retaineg throughout the analysis.

Initial load flow is the same in both the 'local’ and 'integrated’ study. Final load flow is also the same.
Transiently, however, there is - in the ‘integrated’ case - a strong supply support from the grid, as
evidenced from e.g. Figure 4.90. This transient support being the reason why the motor commission-
ing is much quicker and less detrimental to power supply quality, in case of infegrated than in cases
of local system operation.-
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APPENDIX 1
The formal basis of modelling of power network loop currents

The component model concept

Chapter 1 develops a stock of four component models to apply for modelling of the commonly used
power network components (like overhead lines, cables, capacitor banks, transformers, synchronous
machines, asynchronous machines) in power system analysis. The four component models are 'The

Lossy Inductor’, ‘'The Lossy Capacitor Bank’, 'The Synchronous Motor’, and 'The Asynchronous
Motor’:

'The Lossy Inductor’ models directly the three phase, inductive series impedance, and the three phase
inductive impedance load. Transformers, overhead lines and cables are modelled by suitably arranging
fogether component models of the type ‘Lossy Inductor’ and ’Lossy Capacitor Bank’, - see next.

'The Lossy Capacitor Bank’ models directly the three phase, lossy series capacitor, and the three phase,
lossy shunt capacitor. It also contributes to the modelling of other network components as stated above.

"The Synchronous Motor’ models the two main modes of operation of the synchronous machine; the
voltage controlled synchronous motor, and the voltage- and power controlled synchronous generator. For
conceptual clearness, motor mode of operation is the 'default’ modelling mode.

"The Asynchronous Motor’ models motor- as well as generator mode of operation of the asynchonous
machine. Motor mode of operation is the 'default’ modeliing mode.

The component model is made up of one or more sets of submodels, the configuration of which de-
pends on which state variables belong to the component at hand. The submodels that go into
respective component models, are developed in Chapters 1.2 ~ 1.6. One of these submodels is the
electrical circuit model. In terms of formal representation the electrical circuit model is made common
to all four component models. A structural description of the electrical circuit model is given in Figure
Al1.1.

The electrical circuit model is common to all four component models. The electrical circuit model is a
two-terminal model, where parameter interpretation depends upon type of component. The electrical
circuit models interlink to describe integrated power network performance. The electrical circuit model
comprises three main parts :

An oriented terminal graph showing positive direction of the circuit model variables (i,e) that connect

electrically with the external power network. For the stock of two-terminal power components, the ori-
ented terminal graph is an oriented line segment. An oriented terminal graph for a two-terminal com-
ponentis shown in a) below. This graph fronts the standardized d-q axis circuit model labelled b).

Impedance terms R and X, describing the 'passive’ properties of the circuit element. Index 'L’ denotes
inductive character of the reactance. If the component is the lossy capacitor, X =0. The effect of capaci-
tive reactances appear in terms of separate state variables, see below. For further info, see Chapter 1.3.
v is the voltage across the inductive impedance part of the electrical circuit model.

A voltage source vector e giving the defined source impact of the component. If the component is the
infinite bus voltage, R and X are zero, and the voitage source e is equal to eqqe given in (1-85). eyqo
reduces to eqq In cases of symmetrical analyses. If the component is a synchronous motor, or an asyn-
chronous motor, the voltage source e is respectively, AEsm or AEaw. See (1-106) and (1-124). If the
component is the (lossy) capacitor, the voltage source e is AE.. If the component is the (lossy) inductor,
the voltage source e = 0. u is the voltage across the terminals of the circuit model :

i
0‘———. L - m { e } >
R

» u
v=Ri+(1/w) X, di/dd & v-e=u

a) b)
Oriented terminal graph Content of circuit model fronted by a)

Figure A1.1 The electrical circuit model ; formal structure of submodel common to all component models
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For the sake of basic illustration: Given the task of modelling the performance of the small power
system to the left in Figure A1.2. The system comprises three power network components; the
infinite bus, a synchronous motor, and an impedance type inductive load. The electrical circuit
submodel of respective component models is given in Figure A1.2b. Moving from left to right in
Figure A1.2b, the oriented terminal graph of respective circuit submodels is first given , followed
by a description of the content of the circuit models fronted by the teminal graphs. For brevity of
notation the oriented terminal graphs - and in this case also the corresponding network compo-
nents - are identified by labels "1’ to '3’

Infinite bus i Rgu Xsm —
~ 10—<—» o—r_ZM—rn— (Synchr. motor)
i R X

J Ry

N -> 20—« o o—th (Ind. imp. load)
R X0 ol Re=Xe =0
3e—« o . ——4 (infinite bus)
a) Single line system diagram b) Formal description of electrical circuit models

Figure A1.2 Simple three-component power system

The aggregate of separate power network component models - that interconnected constitute the
network model -, may be said to form the primitive network of the system [2]. Once the primitive
network is given and it is specified how the network components are tied together, a general basis
for power network modelling is established.

The methodology of modelling of power network loop currents is next summarized. It is inherently
a three-stage process to which the following subheadings may apply: 'The primitive network’,
‘Network topology’ and ’Network modelling’ :

The primitive network

The content of the primitive network is readily illustrated for the example system of Figure A1.2 : With
the labelling "1’ to '3’ chosen, only a suitable re-arrangement of the given data is required to pro-
duce its primitive network shown in Figure A1.3.

. ;\(———o 1 2 3 1 2 3
/2 Rsm 1 Xsu AEsy |1
*——=o Rprimitive = Ry 2 Xorimitive = Xu € primitive =| AE|=0 | 2
3 =0|3 Xe= €4q |3
L(———O
Oriented terminal Impedance terms of primitive network Source impact of primi-
graph of primitive tive network
network
a) b) c)

Figure A1.3 The primitive network of the three-component power system of Figure A1.2

Inherently, the primitive network comprises three main parts in the same way each of its contributing
circuit models does:
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- An oriented terminal graph showing defined positive direction of the primitive system
variables (ipimitives @primitve) that will interconnect to form the appropriate power network
variables. By convention, each of the graph’s line segments fronts a standardized d-q
axis circuit element as defined in Figure A1.1b.

-Impedance terms Rpimitve and Xiprimitive describing the ’passive’ properties of the
circuit elements that are contained in the network. Rprimitive IS diagonal. Index 'L’
denotes that Xy gimitive always is of inductive character. See comment on previous page
and Chapter 1.1 for further details, concerning handling of capacitive reactances. If
there is electromagnetic coupling between system components -as e.g. may be the case
for parallell overhead lines close to each other -, X\ yimive May contain off-diagonal
terms. Otherwise, Xiprimitive Will be diagonal as exemplified above.

- A voltage source vector eyimive giving the source impact of the defined set of voltage
sources contained in the network.

For the primitive network described in terms of own variables, the following equations hold true,
see definitions in Figure A1.1b :

Voprimitive =Rprimitive Tprimitive * (1/6%) Xiprimitive Qiprimitive/dt (A1-1)
Vprimitive - eprimitive = uprimitive (A1 -2)

Network topology

Graphwise the topology of a network is established by connecting together the graph elements of
its primitive system, as directed by the single line diagram of the network at hand. The oriented
graph of the small system in Figure A1.2a is formed by inteconnecting the primitive network
graph elements of Figure A1.3a, as advised by the single line diagram of Figure A1.2a. The
system graph is shown in Figure A1.4 :

1: Synchronous motor
2 . Inductive impedance load
2 3 : Infinite bus

b = no. of nework graph elements = 3
Nnode = No. of nodes of network graph = 2
Niree = NO. of network tree elements = (Npoge —1) = (2-1)

=1
Nicop = 0. of cotree elements (chords) = (b -Nyree) =(3 -1) =

2

Figure A1.4 Oriented graph of the three-component power
system of Figure A1.2a.

The formal modelling of interconnection of components may be afforded by different topological
matrices comprising plus/minus '1’, or 0’ as matrix elements. In the present outline a system
loop matrix B is used to formally describe how the power network components are tied together.

The system loop matrix B is conveniantly defined on the basis of a chosen tree and cotree of the
oriented network graph:

The tree is a set of Niee graph elements that connects all nodes of the connected network graph
without closing any circuit. Nyee = (Nnoge-1), Where Nyoge is the total number of nodes in the
network graph.

For the network graph of Figure A1.4, Nyee = (2-1) = 1. The chosen tree of this graph is shown in
thick line in Figure A1.5a.
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The remaining Nigop =(b —Niee) graph elements constitute the corresponding cofree of the oriented
network graph. b is the number of elements of the network graph. Each cotree element - or chord -
identifies a unique loop of the network graph. Thus the collection of chosen cotree elements identifies
a necessary and sufficient set of independent system loaps for evaluation of network flow solutions.
When deciding on the sequence (numbering) of elements of the primitive network graph, the elements
that are being defined as members of the cotree should conveniently be numbered first.

For the network graph of Figure A1.4 the number of cotree elements is Niop = (3 —1) = 2. The chords
are identified by thin lines in Figure A.5a.

The system loop matrix B gives the incidence of independent network loops as defined by the set of
cotree elements, and the set of all graph elements of the network. See Figure A1.5b for illustration.

Elementno —
Loopno 1_2 _3

L1 1| 0f -1
B= = [Bchord Brreel (A1-3)
3 2 200 1] -1
a) Oriented network graph b) Loop matrix B

Figure A1.5 Graph description in terms of free, cofree (chords) and B-matrix.

The labels (read numbers) attatched to the cotree elements can conveniently identify also the
associated set of independent network loops. Furthermore, the chosen orientation of the cotree
elements can suitably define positive direction of the network loop currents.

B can be partitioned into a submatrix Behorg that describes the incidence of loops and cotree
elements or chords, and submatrix Bye. that gives the incidence of loops and tree elements. Given
the con-ventions above, Buog Will always be a unit matrix. Figure A1.5 illustrates the definition of
submatrices in our simple network case.

To prepare for the upcoming elaborations on ‘Network modelling’, three fundamental transformations
associated with the loop matrix B are briefly pointed to:

Network loop currents = f(Primitive network currents)

B (of dimension Nigpxb) postmultiplied by a vector i (of dimension bx1) associated with respective
elements of the network graph, produces a vector I (of dimension Nixpx1 ) associated with
respective defined loops of the network. Mathematically :

| = 1\3- ' (A1-4)
(Nioopx 1) (Nioopxb) (bex1)

In application directed terms: The network loop currents I are produced from the primitive system
element currents i via the linear transformation B.

Resulting network loop voltages = f(Primitive network component voltages u) =0

B (of dimension Niggpxb) postmultiplied by a vector u (of dimension bx1) associated with respective
elements of the network graph, produces a vector U (of dimension NieopX1) connected to respective
defined loops of the network. Mathematically :

=B u =0 (A1-5)
(Nioopx1)  (Nioopxb) (bx1)

In application directed terms: The resulting network loop voltages U are produced from the primitive
system element voltages u via the linear transformation B. According to Kirchoff's second law (the
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Voltage Law), the voltage must add up to zero when traversing any loop in any circuit at any instant of

time.

Primitive network currents = F(Network loop currents)

B' (of dimension bxNiop ) postmultiplied by a vector | (of dimension Niepx1) associated with respective
loops of the network graph, produces a vector i (of dimension bx1) connected to respective elements of

the network. Mathematically :
i =B (A1-6)
/] I\
(bx1)  (bXNiop) (Nigepx1)

In application directed terms: The primitive system element currents i are produced from the network
loop currents I via the linear transformation B'.

Elaborating on (A1-6):

: Behord: 1 1 (cotree elements)
i =B'1= o= N =|— (A1.7)
Btreet Bires' Brree' | (tree elements)

With Joop currents | given it is noticed that the tree element currents iyee are given as Byee' |. The
cotree element currents ichora are (per def.) equal to the network loop currents 1.

Network modelling
For the primitive network described in terms of own variables, the following equations have been
established earlier under the heading 'The primitive network’ :

Vprimitive =Rprimitivé iprimitive + (1/(00) XLpn'mitivé diprimitive/dt (A1'1)
Voprimitive = €primitive = Uprimitive (A1 ’2)

With (A1-1) as the basis for further development, the following 3 substitutions/transformations
are introduced:

1. Vprimitive 1S SOlved from (A1-2), and inserted on the left side of (A1-1)

2. From (A1-6): ipimitive = B'1. The right hand side is introduced in (A1-1) instead of iprimitve’
3. Equation (A1-1)is finally premultiplied by B.

Following these actions, (A1-1) takes on this form:
B @pimitve + B Uprimitive = B Ryminve B' 1+ (1/@,) B X primitive B' dl/dt (A1-8)
From (A1-5). B Ugrimitive =0. Setting Ejgop = B €piminve, the following network model emerges:

EIoop = Rloo]:i I+ (1/%) XUoop di/dt (A1 '9)

By choice, the orientation of the loop currents | coincides with the orientation of the cotree ele-
ments of the network graph. For each graph element , arrow direction is by convention the
direction in which the elements e.m.f ( if present) will contribute to driving ‘its own’ current.
Thus component currents will inherently be positive for components that act as sources. This
contradicts our premise set earlier in the motor modelling part of analysis, where power (and
current) supplied to a motor per definition was assumed positive. To retain and generalize this
earlier premise, new loop currents

IIoop =-1 (A1-10)

are defined. In summary the power network loop current model then becomes as follows:



-AJB-

E|oop = Rloop‘ Iloop + (1/(‘1)) xLIoop' dlloop/dt (A1'11

where;

Eioop = - B euximitve = (Nioopx1) loop voltage vector comprising the net
driving voltage of resp. Niop loops of the network graph.

eprimitive = (bX1) voltage source vector. Comprises a specified value for
each of the b elements (components) of the network graph.

hoop = (Nioepx1) loop current vector comprising the current of resp. Nioop
cotree elements of the network graph. Orientation of the currents
is opposite the orientation of the cotree elements. Power from a
source is negative. Power to a load is positive. See previous page.

Rioop = B Ryrimitive B = {NioopXNicop) Network loop resistance (A1-12)
Xvioop = B Xiprimitive B'= (NioopXNioop) Network loop inductive reactance

Reprimitve = (bxb) primitive network resistance matrix. Rprimitive is the
collection of resistances associated with resp. b elements
(components) of the network graph. Rprimitve is diagonal.

Xiprimitive = (bxb) primitive network inductive reactance matrix. X;primitve iS
the collection of inductive reactances associated with resp. b
elements of the network graph. Xiprimitve is normally diagonal.
See text following Figure A1.3.

B = (Niopxb) system loop matrix giving the incidence of network
loops and elements of the network graph.

Figure A1.6 Modelling of power network loop currents.

Applying the algorithm of Figure A1.6, the power network loop currents of the simple system
of Figure A1.2a is elaborated as follows:

From Figure A1.3 which presents the primitive network of the three component power system,

! '
E 12 3 1 2 3 :
! Rsm 1 Xsm AEsm | 1 i
! Rprimitive = Ru 2 Xprimitive = XL eprimiive =| AEL=0] 2 (A1-13)
' Re=013 Xo=0 €dq {3 !
! 1
H 1

Element no — |

loopno 1 2 3 E
1

1

AT T
B= = [Benora:Brres] (A1-14)!
3 1 2 2 1 _1 1

a) Oriented network graph b) Loop matrix B

_________________________________________________________________________
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The sought loop current model is given by (A1 -11). Inserting into the algorithms of (A1-12) from
above:

1 -1 (I AEsm €dq - AEsm
Eicop = -B eprimitive = A AE=0| = f—u—— (A1-15)
11| eaq €dg
t 1 -1 Rsm 1 Rsm
Rivop = B Rprimitve B = - Ry 1] = (A1-186)
1] 1 Re=(d | -1 |-1 RL
1 | -11 | Xsm 1 Xsm
Xiioop = B Xiprimitve B'= XL - 1= (A1-17)
| 1) -1 Re=0| | -1] -1 XL

The network loop model:

Eloop = Rloop IIoop + (1/(11)) XLloap' dlloop/dt

€dg - AEsm RSM| hoop(1) Xsm dlioop(ry/dt
. + (1 ap) . (A1-18)
€dq | Ry | lioopi2 Xe | [ dlioopzydt

Or conveniently for each loop, - which here also means for respective two system components :

€dq = Rsm ism + (1/@) Xem dism/dt + AEsm where  ism = hoop(ty
(A1-19)
edq = Ry i+ (1/wp) X di/dt where it = loop2)

Equations (A1-19) could intuively have been set up directly. Then however, the main point of
illustrating the general process of network loop current modelling, would have been lost.-

[2] Gabriel Kron: 'Tensors for Circuits’. Dover Publications, Inc. New York, New York, 1959.
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APPENDIX 2
The Adjustable Speed Synchronous Motor
The concept of the ’extended’ synchronous motor model
The basic scheme of development in this appendix is identical to that of Chapter 1.4 which deals
with modeliing of the traditional synchronous machine. In fact, a copy of Chapter 1.4 has been
adjusted and extended to cover the marginally more complex task of modelling the performance
of the adjustable speed synchronous machine. The extended model retains all saliency aspects,
and thus can be applied also as a potentially more accurate description of the traditional machine.
With proper parameter setting the extended model reduces to the model developed in Chapter 1.4.

The adjustable speed synchronous motor is in principle an asynchronous motor extended with a
power electronic converter that supplies ac current to a three phase rotor winding, - in contrast to
the traditional supply of dc current to a rotor field winding.

Formal basis for the ensuing model deveiopment is again the d-q diagram of a generalised machine
as presented by B.Adkins [1]. To deal with the extended rotor circuitry it is deemed appropriate to
specify a six-coil, salient pole generalised machine as main basis for analysis. See Figure A2.1.The
three phase stator winding is assumed to be the rotating part, while the d-q axes with associated
windings 'f’, 'fq’, ’kd’ and 'kq’ are considered fixed.

The 'pseudo-stationary’ d- and g coils equivalence in a conveniant way the electromagnetic effects of the stator
windings of the physical three phase machine. The currents, voltages and fluxes associated with these coils, are
definitionwise related to their corresponding physical phase variables via their Park transformation, see
equations (1-1) and (1-2) for illustration of formal definitions.

The 'pseudo-stationary’ f- and fq coils equivalence in a conveniant way the electromagnetic effects of the three
phase rotor winding of the machine. The currents, voltages and fluxes associated with these coils, are definiton-
wise related to their corresponding physical phase variables via their Park transformation, see above comment.

The fixed coils denoted 'kd’ and ’kq’, aim at equivalencing the effects of all damper circuits in the machine.

The six-coil representation implies 6 state variables to describe the electrical performance of the syn-
chronous machine. As such variables we choose to apply the stator current - represented by the two
components (ig,ig), - and the flux linkages associated with respectively the f-, fg-, kd- and kg- coil.

€a=0
Lonre ] g
TRt

d f kd

Figure A2.1 Diagram of six-coil salient pole generalised machine.

The elaboration of a practical synchronous motor model that — in the context of power network
modelling — takes the form of a standardized d-q axis circuit element, is presented in four steps:
Step 1 develops the basic mofor equations that form the platform for the ensuing algorithmic
development. Step 2 generates the rotorflux model, step 3 the electrical circuit model, and step
4 the elecrfomechanical model. Summary description of the extended synchronous motor
model is given at the end of this appendix. Hlustrations of mode! application are also included.
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Basic 'extended’ synchronous motor model equations

The main, basic premises for the voltage- and flux equations to be developed, are given in Chapter
1.4, p.1/7, and are not repeated here.

In consistency with the premises referred to, the following inductivities are now defined for the model

machine:
For the d-axis: L4 = Lagtlad Forthe g-axis: Lgq = lagtlag
Lt = Ligtlad Ltq = LigstLaq (A2-1)
La = LidotLlad Lkq = Lkgotlag

Between flux linkages and currents within respective axes we have these defining relationships:

d g f fqg ki kg

Yy = L4 igtlad irtlad ke Wy Ly Lad Lad i
¥g = Lq lgtlaq ik ¥y Lq Lag  Lag| |
¥ = Lsitlag igtlad ks —In matrix form:| ¥ | =| Lag L¢ Lag i - ¥=Li (A2-2)
Wiq = Liq ig*laq ikgtLaq i W Laq Lt Laq] | ifq
Ys = Lid ikatlag irtlad b o Laa  Lad Lka ika
Weq = Lig ka*+Laq ig +Lag i W Lag  leg  Ligl |ikg

For the d- and g-coil the sought voltage balance is readily established by starting from the 3-phase
frame of reference (as also done previously,- see Chapter 1.1 and 1.2) : In the physical three phase
(RST) reference frame we can for (say) phase 'R’ of the motor, express the voltage balance as:

er = ir ra + d'IR/dt (A2-3)
where eg, ir ¥k and r, is - respectively - impressed voltage, current, flux linkages and resistance of

motor phase 'R’. The per phase variables eg , ir and Wr are related to their respective d — g axis
components in the following way, see (1-4):

ER = €4 COSH -eq SiNd + e,
iR = ig00sB -iqsin® +io (A2-4)
YR = ¥4 cosO - ¥ sind+ o

0 is the angular displacement of the axes of the (RST) reference frame relative to the axes of the (d-q)
reference frame. Inserting expressions from (A2-4) into (A2-3), and observing that

d¥:/dt = cos6 d¥/dt - sind d\¥y/dt + d¥o/dt - ® Py snd - ® By coso (A2-5)
we get the following 'd-g-o version’ of (A2-3 ), where wis angular speed of the rotating winding :
0= [-eq+raig+d¥u/dt- o Y] cosd
+[ eq-Taig-d¥/di- ® %] sind (A2-6)
+[-e+ Iy ip+ d¥o/dt]
For general validity of (A2-6), the following d-q conditions must be observed to equivalence (A2-3):
€9 =ra iy + d¥y/dt - ® ¥
€q=Ta g+ d¥/dt + ® Fy (A2-7)
€0 = I o + d¥,/dt

We assume in the present outline that zero sequence phenomena are inconsequential. Hence the last
equation of (A2-7) can be disregarded. In conclusion at this stage, we get the the following equations
describing the voltage balance of the d- and g-coil of the synchronous motor:

€9 =Ty id + d‘{’d/dt -® \Pq
€q =l g + d¥/dt + o ¥ (A2-8)

For the f- and fg-coil representing the three phase field winding, the voltage balance is readily estab-
lished via a transformation process similar to the one described above by equations (A2-3) — (A2-8).
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Thus, -analogous to (1-9) -, we get the following equations describing the voltage balance of the

presumed fixed f-and fg-coils :
er = rrif + d¥ddt - wro- Vg
€iq = figifq + dW¥ig/dt +oro- Py (A2-9)

where oy, is the reference angular speed associated with the 3-phase field winding. o, = 27fotor,
where f.o is the frequency of the impressed three phase field voltage.

For the remaining two ’ordinary’ coils 'kd’ and ’kq’ of the generalised machine, the respective
voltage balances can readily be defined in this way:

ekd = 0 = I'kg-ikg + dPrq/dt (A2-10)
€kq = 0 = rig-ikg + dWig/dt

Equations (A2-8), (A2-9) and (A2-10) are put together in (A2-11). They form as a set the voltage
equations of the model synchronous machine.

€q = ra-id + d‘Pd/dt - (1)~‘Pq
€q = lyig + d¥q/dt + @ ¥y
er = rri + d¥ddt - oo Prg (A2-11)
€fq = rfq'ifq + d\Pfq/dt +ofo- Vs
€k =0 = rkd'ikd + dqjkd/dt
€kq =0 = rkq'ikq + dqjkq/dt

An exogenously specified, symmetrical three phase ac voltage Ewrst 0f given frequency f;, is applied
to the field winding for excitation. How this voltage transforms into the d-q axis voltage variables (e,
eq) of (A2-11), is dealt with later under the heading 'Modelling of special voltages in the d-q axis
frame of reference’ , see pages A2/12-13.

The defining flux equations of the machine are given by (A2-2). In summary fashion, the voltage
and flux equations are shown in Figure A2-2. They form the platform for the ensuing algorithmic
development.

d q f fqg kd kq d q f fg kd kq
eq ra iq dW¥q/dt - Yy Voltage equations
e fa Iq d¥,/dt ® ¥, | of the model syn-
e |= re i | +|dWPddt | + - (g 'RT chronous ma-
efq i ifq d¥y/dt Wfo Yiq chine.
€kd Ikd id d\Pkd/dt Wid (Eqgn (A2-11) on
€kq Mg | ikg dW¥/dt Wiq| matrix form)
)
ew| [ra o dWy/dt Ha, (A2-12)
—|= - |+ +
€k rac] | in Hg |
where;
d q 4
ra ed id -1
ra = €dq = idq = qu = (A2-13)
L2 e i 1 q
f fq kd kg i fg kd kg
I's ef -1
Ifq €fq 1
r = Mkd ex ew=0| ix=]i Ha=oro (A2-14)
Mg €kq=0
Figure continues...

Figure A2-2 (start of) Basic synchronous motor equations. The platform for the ensuing
algorithmic development. Vector e comprises impressed voltages.
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continuation of Figure A2-2..

where;

Lq Lag Lad g
Lq Laq Lad | Ig
= Lag Ls Lad i - W =L.i
Laq qu Laq ifq
Las  Lag Lkd ikd
Laq Laq qu ikq
J
Faq Lag  |bwaieo | | fag
Wi Lag | L [
d q f fq kd kq
Ld Lad Lad
Lgg = Ligaxm =
L Lag Laq
Lag L¢ Lad
Lo = Lag L = Lq Laq
Lad Lad Lid
Laq Laq Lkg

d

q

f

fq
kd

kq

(Equations copied
from (A2-2) )

(A2-15)

(A2-16)

(A2-17)

Figure A2-2 (end of) Basic synchronous machine equations: The platform for the ensuing
algorithmic development.

The rotor flux model

We seek the description of the flux variables ¥y = [¥ Wiq Pia Fiq ] t (and - if desired - also their
implied currents i ) . For brevity of expression, we denote the algorithms that are developed in
this context, 'the rotor flux model'.

Two sets of equations from Figure A2-2 provide the appropriate basis of this analysis; the lower
set of equations from respectively (A2-12) and (A2-15):

e = Pl + d¥p/dt+ He- Wi
Wik = Liydaylaq + Laclin

(A2-18)
(A2-19)

We wish to retain the flux variables ¥y as state variables, while eliminating the currents iz from
the 'surface’ of analysis. Thus we eliminate iy from (A2-19) and insert the expression of it into

(A2-18), yielding:

d¥p/dt = e + (- Hy - Lo )Wy + (rfk'Lfk-1'L(fk)(dq) )-ddq

(A2-20)

The currents iy, are referred to the model machine’s local d-q axes. We want generally to refer
them to the chosen global system reference phasor. The shift from global to local description is
given by the following transformation:

idq = T'iDQ

where;

T

cosf

-sinB

sinf

cosp

(A2-21)

Here small letters (dq) signal locally referred currents, and capital letters (DQ) globally referred.
B is the angular displacement of the local reference axis relative to the global axis.

We insert iyg from (A2-21) into (A2-20) and define for convenience new flux variables ¢g=wo ¥
We then get the following sought form of the equations for modelling of the fluxes ¢ :
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donddt = = wo-en + (-Hac - Frela " )dnc + ((Do'rfk'l-fk-1'L(fk)(dq)'T)'iDQ (A2-22)

(A2-22) is inconvenient to apply. By setting in the appropriate matrices from Figure A2-2, and
doing some further reductions and definitions, we arrive at the following practical version of
(A2-22), see Figure A2-3. For further on how machine parameters relate to basic model para-
meters, see later on page A2/11.

8t1>1ﬂ)</dt = o (e + Friina +Fry ) (A2-23)
where:

Ks -Es | ¢ Er = V2-(Eremo) + AEr)-cosps =voltage of field coil f. See page A2/14 - 15 Xad = Xd Xag

e = |KigEfq|q Efq = V2-(Ereto) + AE¢)-sinfs = voltage of field coil 'fq’. See page A2/14 -15 Xad = Xd Xag
0 K Ki = [(N2/ (00 T o)) Xaa /(Xa - X'a)] 1 For the adjustable speed SM  X"aq = X" -Xaq

0 kq Krq = [(V2/(00 T qo-1q))- Xaq /(Xq - X'q )] t  (ie. the symmetrical machine): Xag = Xq -Xag
(n,rq) = factors =1, unless adjusted speed SM.)  Ki=Kq & & = &g, see p. A2/15.  X'aq = X'q -Xag
A Eq = voltage control response. (Voltage phase not a control variable here). X’ag = X’q -Xao

D Q

(1/(COO'T‘do))'(Xad/X‘ad)'X”ad'COSﬁ -(1/(0)0~T‘do))'(xad/X’ad)'X”ad-Sinﬁ f
Fii = | (1/(00: T q0))-(Xag/ X ag)-X"ag-SIiNP (1/(®0° T’ g0))-(Kag/X aq)-X"ag-cosp | fq

(1/(00°T"do))-X ag-COSP - (M@ T do))-X'ad-sinP kd
(1/(0%°T"q0))-X'ag'sinp (1/(0o"T"q0))-X'aq-cOSP kq
f fq kd kq
kad)(fsf) (O] 'frotor(pu) (Xad/X,adz)‘( Xq— X”d)/T‘do
- 0o “frotor(pu) Fi(fa.fq) (Xag/X'aq”)-( X'q = X"q)/T'qo
Fricy=(1/00)] (1/T"g0)-(1/Xag)-( Xa — X'g - 1M 4
(1/T” 40)-(1/Xag)-( Xg — X'q - 1T g0

ka¢(f:f)
ka¢(fq !fq)

- (1 [(T'ao- X ad))-[(Xad/ X ad)-( X'a — X"d) + X"ad ]
- (1 [(T'q0-Xaq))[(Xag/X'ag)-( X'q = X"q) + X"aq]

B = angular displacement of the local machine reference axes relative to the global axes
Br= specified phase shift (relative to local axes) of applied three phase field voltage.
frotorpuy = PU frequency of applied 3-phase rotor voltage. ( Base frequency : 50Hz. Not subject to sign shift ).

X4, X4, Xg : direct-axis synchronous, transient and subtransient reactance (pu)

Xg X'q,X"q 1 quadrature-axis synchronous, transient and subtransient reactance (pu)
a : stator leakage reactance (pu)

T4, T’do : direct axis open stator transient and subtransient time constant (s)

Tw T’ : quadrature axis open stator transient and subtransient time constant (s)

Model application alternatives:

- If adjustable speed SM: Symmetrical machine; X;=X,, X'¢=Xq, X"¢=X"q, T'ao=T'q0, T a0o=T 0, Ki=Ksq. B to be set.
- If "traditional’ SM . Individual parameter setting. pr = 0. ff =0 (i.e. dc to the field circuit)

- If ’traditional’ AM : Symmetrical machine. No field voltage excitation : E=E=0. fi =0. No P&U-control.

Figure A2-3 Rotor flux model of the extended synchronous motor (incl. the adjustable speed version). Model
part describing synchronous motor state variables ¢u=[dr dsq Pxq q)kq]t

At any time during integration the rotor- and damper currents iz may be derived from equation (A2-19),
after introducing ¢x = 0o and igq = T-ipg- See algorithm in Figure A2-4.

In the elaboration of equations (A2-23) and (A2-24), letter combinations like 'fk’, ’dq’ and 'DQ’
have been used for indexing to (hopefully) ease understanding of the algorithmic development.
From a systems analysis point of view (once the component models have been established), better
notations should be applied. See end of this appendix for summary model description that aim at
being user-oriented.
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ine= (Xn) (¢ - Xoarina) (A2-24)
where:
f fq kd Kq
XoadlKg = X')| Xag f

Xﬂ( = X ag (Xq - X,q> Xaq fq
Xad Xag+X'ag X" ag /(X'a — X"g) kd

Xaq XaqtX'aq X" ag /(X'q = X ") | kq

D Q

Xad-COSB | -Xaa-sinp | f
Xag'sinB | XagcosB |fq
Xoar = Xkydgy T = | Xag-cosB | -Xaa-sinB Jkd
Xaq'SinB Xaq'COSB kq

Figure A2-4 Rotor flux model. Model part describing (locally referred) currents ig =[i irq fka |kq]
given (locally referred) machine fluxes ¢y and (globally referred) stator currents i ing.

The electrical circuit model

In the context of power network analysis the task at hand is that of equivalencing the synchronous
motor model of Figure A2-2, by a standardized d-q axis series element comprising an R-term, an
inductive X-term, and an emf. AE. See Figure 1.1 of Chapter 1, and associated text.

Three sets of equations from Figure A2-2 form the basis for the ensuing analysis, namely the
upper set from (A2-12), and both sets contained in (A2-15) :

€4q = ra-idq + d"qu /dt + qu'\qu (A2-25)
lI’dq = qu'idq + L(dq)(fk)'ifk (A2-26)
Wi = Liydgyiag + baclin (A2-27)

i solved from (A2-27) is inserted into (A2-26), which then describes Wy, as a function of iy,
and Wy . The expression thus found for W, is inserted into (A2-25), yielding finally the applied
stator voltage eqq as a function of the machine’s state variables iy, and ¥ . Introducing also
the new flux variables ¢x = 0o ¥ and ¢qq = 0o Faq, We find as a result from this process:

€yq = Iy ldq + ( qu - L(dq)(fk) Lfk L(fk)(dq) ) dldq/dt + (1/(00) L(dq)(fk) Lfk d(l)fk /dt (A2-28)
+ Hag( Laq - LaymorLac Loiog) )iaq + (1/06) Hag: LigayorLac -ne

By introducing the appropriate submatrices from Figure A2-2 into (A2-28), and then elaborating
some further on the equation, we find the following 'intermediate’ state of it, see Figure A2-5. The
state is termed intermediate since stator voltage eq; and stator current iy, still are referred to the
machine’s own d-g axes. It remains to replace these variables by their globally referred counter-
parts epq and ipq, respectively. The machine fluxes ¢x are locally referred, and will conveniently
be kept so throughout all modelling processes.



€dq = Falgg ¥ (1/@o) X' digg/dt + Q-X"-igq + By-ddg/dt + Q-Bo-y (A2-29)
where;

Q = (o/wo) = pu rotor speed

X"g X
X" = — and X' = ——

X’q X4

f fq kd kq
B1=(1/wo)-
(X"ag/(Xag -X'aq))-(Xq - X'a) (X'q = X")/X'aq| Q
5 -(X"a/(Xaq X'aq))-(Xq -X'q) -(X'q = X"9)/X'aq
2 =
(X" aa/(Xad -X'ad))-(Xa - X'q) (X'a = X" )X ad

From Figure A2-3 ;
déa/dt = 0o (ex + Fr i +Fag -Orc) (A2-23)

Figure A2-5 ’'Intermediate state 1’ of equation (A2-28): It remains to replace locally referred stator
voltage ey, and stator current iyq by their globally referred counterparts epq and ipq

As part of the basis for finalizing (A2-29), we point to a few premises and rules that are crucial to
the process of shifting from local to global reference (or vice versa):

For applied stator voltage and corresponding impressed current the following holds true:

edq = T-epq cosB | -sinp cosP | sinp
igq = T-iva where; T= and T = (A2-30)
sinf | cosB -sinB icosP |
Definitionwise we have for electrical rotor angle and angular rotor speed, see p. A2/11 :
B=wet—(6+0) — dp/dt = (wo-© - 0 = wo -(1-Q-) (A2-31)
From mathematics: dige/dt = d(T-ipq )/dt = (dT/dt)-ipq + T-dipq/dt (A2-32)
From mathematics and (A2-31):  dT/dt = (dB/dt)-(dT/dB) = wo-(1 - Q2 - Qg)-dT/dB (A2-33)

ntroducing the global variables epq and ipg into (A2-29), and processing the set of equations in

accordance with premises and rules above, we arrive at 'Intermediate state 2’ of equation (A2-28).
See Figure A2-6. It remains to develop more userfriendly expressions for the terms Rpq, Xpa
and AEpq, while abiding with the adopted definitions associated with an electrical circuit model.
See Figure 1.1 of Chapter 1 for summary of definitions.

(X" ad/(Xad -X'ad))-(Xa - X'a) K'a~X"a)/ X ad D !

_________________________________________________________________________________________

€pq = RDQ-iDQ + (1/(00)’XDQ‘diDQ/dt + AEDQ (A2-34)

where;
Roa = ra+ (1-Q - Q) T-X"dT/dB + (@ T"-X"T) + (06T B1-Fra)
Xpa = TX"T

AEpq = [0o T Bilex + [(0oT " B1-Fup) + (QT"-Bo)]dn

Figure A2-6 'Intermediate state 2' of equation (A2-28). It remains to laborate more userfriendly
expressions for Rpq, Xpg and AEpq, abiding with adopted model conventions.
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After some straightforward but tedious laborations, we arrive at the electrical circuit model shown in
Figure A2-7. At the end of the finalizing process sign conventions and terminology in line with that
adopted for the formal electrical circuit model of Figure 1.1, are observed.

«ipq Rba Xpa AEpq =( Vi + Hacdx ) = motor emf.
@_

XDQ
l - p 00
J
Vo = Rpaiipg + (1/0)-Xpo-dipa/dt & Vpg - AEpq = Upq (A2-35)
X

Electrical circuit model of the synchronous motor in d-q axis frame of reference

AEpq = (Vi + Hacdn ) = synchronous motor emf.

(Ra+X"1) + (Qsmrer+2-AQsm)- X-siN2B + Xr -c082P | -Qsurer X' +(Qsmrer+2-AQsm)-X-cos2p — X; -sin2p
Rpao = N _ _ N _ _
Qsmrer X+ (Qsmrert2:AQsm)-X-c0s2B — X't -sin2B | (Ra+ X)) - (Qsmrert2:AQsm)-X"-sin2p - X' -cos2B
Qsmret =(1-Qs ), where Qr = pu angular speed of
rotor mmf relative to rotor. See p. A2/11.
A — — = _ AQsnm =(Qsm-Qsmref). Qsm = pu rotor speed.
X’ + X”.cos2 -X"-sin2p3 CrErcos(B-Br ) Er = (N2-Erer+AE; ) = peak field excitation.
Xpa = — —— Vi = — AE; = voltage regulator response. See p.1/29.
- X”-sin23 X" - X’-cos2B -Ct-EssinB(B-Bs Ct = (V2/( 00 Tdoer))-(X aa/Xad). See *)
B = synchronous motor angle, see Fig.A2-3.
Bs = phase shift of magnetizing ac voltage.
See Figure A2-3.
f fq kd kq
(Qsm-f1 -frotor(puy-f7)-sinB+f2-cosP | (Qsm-f7 - Frotorpu)-f1)-cosP + fa-sinB | Qsm-fa-sinp +fs-cosf | Qsm-fs-cosp + fs-sinf | D
Hi =

(Qsm-f1 -frotor(puy-f7)-cOSP - f2-sinP| -(Qsm-f7 - frotor(pu)-f1)-sinP+ fg-cosP | Qsm-f3-cosP - fa-sinf | -Qswm-fs-sinf + fe-cosP |Q

X" =0.5(X"g+X’q) X" =0.5X" + X’rq) — X' = (U0 Tao))-(XadlX aa)>(Xa — X'a) + (1/(000T"g0))-(X'a = X”a)
X =05(X"g-X")  X'r=05(X"d-X'rq) — X' = (U0 Ta)) (X ag/X aq)>(Xg = X'q) + (1000 T"q0))-(X'q = X"q)

frotorpuy = (frotor /50) = pu frequency of 3-phase voltage applied to field winding. fiotoreu) is N0t subject to sign shift.

f1 = (Xa - X'4)-(X"ad/(Xag- X ad)) — Xad =Xd¢-Xag

fo =f1-[(X'a = X"a) [ (1/(@0:T"d0))-(1/X"aq) - (1/(wo-T'do))~(Xad/X'ad2) 1- (M@0 T do))(X’ad/X’ad) ] «— Xad =X4-Xag
f = (Xg = X"a)/X'ag « X'ag = X'g-Xao
fs = fo[ (1/(00 T'g0))- (X ad/ X ad)-( Xa = X'a) - (1/(@0T"q0) ]
fs = - (X'q— X"q)/X'aq Xaq = Xq-Xao

fo = - o[ (1/(00 T'q0))-(X"aq/X'ag”)( Xq = X'q) = (1/(00T"q0) ] Xaq = Xq-Xag

f7 = - (Xq - Xq)-(X"aq/(Xag-X'aq)) — X'aq=X"q-Xas
fg = - f7[(X'qg = X"q) [ (1/(00"T"q0))-(1/X"aq) - (1/(@O'T'qo»'(xaq/x‘aqz) 1 - (1/(@0 T'q0))(X"aa/Xaq) ]

ol

Figure A2-7 Electrical circuit model of the ’extended’ synchronous motor (incl. the adjustable speed version)

*) In the general, salient pole development we find that C:= (V2/( 0o T a0 €r))-(X"a¢/X'aa) @Nd  Ctq= (V2/( 06 T'q0°Efq))-(X"a¢/X aq)-
Also: Vg = [ (Cr-EfcosP+Cig-Efg-sinB) , ( -CrErsinp+Ciq-Esg-cosB)]. See pages 12-16 of this appendix. Since the
adjustable speed synchronous machine is symmetrical of design, parameter symmetry prevails, leading to the more
convenient description of Vi given in Figure A2-7.
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In the elaboration of equation (A2-35), letter combinations like 'fk’ and 'DQ’ have been applied for
indexing to (hopefully) enhance understanding of the algorithmic development. From an ensuing
application point of view, better notations could be devised. See end of this appendix for summary
model description that aims at being more useroriented.

The rofor flux model of Figure A2-3 & A2-4, and the electrical circuit model of Figure A2-7, are
based on the six-coil generalised machine. By specifying premises/data in such a way that the fg-
coil is eliminated, these models reduce to those of Chapter 1.4 which were based on the five-coil
generalised machine. The following specific assumptions provide the stated reduction:

» Time constant Ty, is set to a very large value — as a consequence of presuming that the
resistance of the fg-circuit is zero and thus of no ’torque-providing’ influence.

s Xq is set equal to Xq to observe the assumption that the seif-reactance of the fq-circuit is
set infinitely large and thus of no ’'current-providing’ effect. See Addendum on p. A2-11.

« Matrix rows and columns associated with the fg-coil are deleted.

The electromechanical model

We seek here the description of the final two synchronous motor state variables, - namely pu rotor
speed Q, and rotor’s electrical angle P relative to some chosen synchronous reference. For brevity of
characterization, the algorithms developed in this context is denoted ’the electromechanical model’.

The algorithm that governs motor speed performance is the torque equation of the machine unit. A
brief elaboration of this equation on pu form referred to common system base, is given in Chapter 1.4.
We fetch from that chapter this practical pu form of the motor torque equation :

((SMotor/SBas ) Té COS(PMotor) doydt = (T(el)'~ T(maC)) [pu] (A2‘36>

Part of electromechanical model: The description of synchronous motor
rotor speed Q.  Acceleration time T, used for characterizing total moment of
inertia of rotating masses.

Another widely used normalized inertia figure is the H-constant. H is defined as stored kinetic energy
at synchronous speed divided by machine voltampere rating, -i.e.. H=05J %C(O)ZISMMM. This
implies the following relationship between T, and H: H = 0.5 T; coS@uotor -

The electrical motor torque T is developed next. Per definition we have the following expression
for power supplied to the synchronous motor, see Figure A2-2 and comments on basic premises in

Chapter 1.4 : t
Py = 0.5 eyy iy (A2-37)

Setting in for eqq and igq from (A2-12) and (A2-13), and observing that duq = s Wiq . We find that;
Py = 0.5 15 (ia® +ig2) + 0.5 Qigt 1ty + (0.5/ ) g’ g /it (A2-38)

1 is defined earlier, see Figure 1.4 and also below. Replacing the locally referenced current igq by
its globally referenced counterpart inq according to the transformation T of (A2-21), we find:

Py = 0.5 13 (ib> +ig?) + 0.5 Qing' T duq *+ (0.5/@,) ipg' T dag/it (A2-39)
LLosses in stator Airgap power Osciliating power
resistance (zero power over time)

The electrical torque is found by dividing the expression for airgap power by Q. T4 = (1 T)t. The flux
vector ¢uq is determined as a function of ipq and ¢y from equations (A2-26), (A2-27), (A2-21).
After some elaborations the following practical algorithm emerges for determining the electrical
motor torque T, :
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T(eg) = 0.5 iDQt' T qu (A2-40)
where;
q)jq =X'T ipgtf Onc
and
io Synchronous motor |
ipg= | — = current, global |
ia reference. | Synchronous motor
b state variables
o Field- and damper |
&= | Org = flux linkages, local |
Ok reference. |
e J
cosp | -sinf Transformation that shifts stator
T= = current from global to local refe-
sinf cospB rence axis : isq =T ing See (A2-21).
_ 1 cosP | -sinf sinf | -cosf
Ti= (4 T)= : 11t =
-1 sinf | cosB cosp | sinf
X”d
Xll =
Xllq
fi fs f1 = (Xa = X'g) X'ad/(Xad X'aa)
f= where;  fa= (X'a — X"a}/(X'ag)
-f7 -fs fs = - (X'qg = X"g)/(X'aq)
fr = - (Xq— X'q) X"a/(Xaq Xaq)

Figure A2-8 Practical algorithm for bomputing synchronous motor electrical torque T in (A2-36)

The mechanical torque Tme) Will take on different forms, depending on the operational regime;
whether motor or generator mode of operation :

For motor operation (which per definition implies a positive sign of the mechanical torque),
the following premises may in many cases prevail:
Times) = Tmec(o)y . where Tmecioy and exponent x depend on the 'rotational status’ of (A2-41)
the motor at t = - 0 ; whether already up and running, or to be started from Q= 0:

If the motor is up and running ;
Timecto) = T(elioy = electrical motor torque at t=-0. The proper value is found by
applying equation (1-60) to data from the initial power system load flow.
k = exponent that depends on the load torque’s sensitivity to rotational
speed for Qclose to 1.0 . In many cases: k= (say) 1.5-3.5.
If the motor is to be started from stillstand (as e.g. an asynchronous motor) ;
Timec(o)) = coefficient that contributes to modelling the effect of mechanical friction, air
resistance, etc, during the startup phase. Expected range: (say) 0.02 — 0.05
k = exponent reflecting speed dependency of Timec). Prospective area of variation:
k = (say) 1-5. x as well as Timeco)) May change over the range Q=0 1.

For generator operation (which per definition implies a neg. sign of the mechanical torque):
Timec) = (TeetontAT(mecy), Where Teoy is initial electrical motor torque, and AT(mec) is given by the re-
spons of the power control system. For details, see 'model stock’ of Chapter 1.7.  (A2-42)

Figure A2-9 Example algorithms for computing synchronous motor load torque Tiyecy in (1-57)
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The algorithm that governs the variation of the rotating part's electrical angle B relative to some
chosen global synchronous reference phasor, can definitionwise be given as follows :

B= wot—(0+6) (A2-43)

where interpretation of defined and derived terms are summarized next to finalizing of current labo-
ration on (A2-43). Taking the derivative of this equation we arrive at the sought differential equation
governing the electrical positioning of the motor’s rotating part relative to the synchronous reference
phasor :

dp/dt = @,- © - @ = e (1 - O/, - W®)

dp/dt = @e(1- ¢ - Q)
or equivalently; (A2-44)
dp/dt = wo-(Qsmrer - Qsm) = - ©'AQgy

Part of electromechanical model. The description
of synchronous motor electrical angle B in radians
Interpretations:
oot = angular electrical displacement of global synchronous reference phasor.
8= ot = agnt = angular electrical displacement of rotating part. © = ogy is angular electrical
speed of rotating part. & = Qgy = pu angular speed of rotating part.

8 = ot = 2nfo0= @angular electrical displacement of rotating mmf set up by the three phase
voltage of frequency for, applied to the distributed three phase field winding. See additional
comment below. 6 is measured relative to the field winding. Whether the field winding is on
the rotating or fixed part of the motor, (6 + 6;) will - with suitable choice of sign conventions -
describe the electrical displacement of the rotating mmf relative to the global electrical system

Q= ofw,=pu angular speed of field winding mmf, relative to the field winding. € is subject to +/-

Qsmret = (1-€) = 'target’ pu speed of rotating winding when 3-phase voltage of frequency fioor is
applied to the field winding.
AQsy = (Qsm - Qswrer) = rotating winding's pu speed deviation from previously stated 'target’ value.

As additional comment to the interpretation of terms, it is noted that a three phase, symmetrical voltage applied to
an appropriately distributed three phase winding located to a machine’s rotor or stator, will create an m.m.f. that is
fixed in space and rotates with an angular speed of or=2-n-foer relative to the field winding itself.

Summary synchronous motor model description is presented at the end of this appendix. lllustrations
of model application are also presented.

Addendum

To enlighten the laborations towards compact motor model descriptions, the interrelationship between
‘commercial’ machine parameters like (Xq,X'4,X"4,Xq, X'q, X"4.T'd0: T "dos T q0.1 q0) @nd basic mode/
parameters like (Las,Lad,Laq, Liss LtgorLkdo: Lkqos Tailkds T TrqiTkq), @re briefly summed up:

Xg = Xag + Xad
Xi = Xig + Xad
Xid = Xkds *+ Xad
Xq = Xag *+ Xaq
Xiq = Xiqs + Xaq
Xkq = Xkgo + Xag
Xg = Xag+Xag Where 1/X'ag = (1/Xad) + (1/Xss)
X'q= Xag+ X'ag  where 1/X7ag = (1/Xag) + (17 Xs) + (1 Xkde) = (1K aq) + (1/Xkdg)
X = Xog+ Xaq  Where 1/X'aq = (1Xaq) + (11Xige)
X'q= Xag+ X'aq  Where 1/X"aq = (1/Xaq) + (1/Xqq) + (1/Xkas) = (1/Xaq) + (1/Xkqo)
T'do= Lifre = X(wors) (Open stator. 'Seen’ from the f- circuit)
T’ = UUrka =X wolka) where X =Xygs+ 1/((1/Xag) + (1/Xs5))  (Open stator. 'Seen' from the kd-circuit)
To = Lig/fiq = Xig/ (@0 T1q) (Open stator. 'Seen’ from the fg- circuit)

T’ = g =X(wolkg) where X=Xigs + 1/((1/Xaq) + (1/X1q5))  (Open stator. *Seen’ from the kg-circuit)
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Modelling of specal voltages in the d-q axis frame of reference
Four voltage aspects will be deait with under this heading; the transformation of the three phase
voltage at some reference/infinite system bus, the transformation of the three phase volitage applied
to the three phase field winding, the voltage excitation of the Rofor Flux Model, and the voltage
excitation of the Electrical Circuit Model of the extended synchronous machine.

The infinite bus voltage of nominal system frequency

Depending on the type and scope of task at hand the three phase, symmetrical voltage across the
terminals of e.g. a motor or a load, may (at the outset of analysis) be a specified phasor quantity.
Alternatively, a remote 'infinite bus’ may be declared, and the voltage phasor specified at that bus.
In specific terms : Given the symmetrical three phase voltages

cos(o)
Erst = V2-Eenr{ cOS(0t-271/3) (A2-45)
cos(a-4n/3)

at some specified bus of the system. E. is the root mean square (r.m.s.) value of the three phase
voltage. o =(wyt+y ), where o, = 2-n-f, = 2.7-50. y accounts for an arbitrary phase shift of the
voltages relative to zero time. For convenience of final expressions — see (A2-47) — we further
define v = (yrer + m/2). The transition of Ergr in (A2-45) to ey, Of the d-g-0 axis frame of reference,
is afforded by the Park transformation — see equation (1-1):

€dqo = P-ErsT (A2-46)
where; R s T
cos0 | cos(0-2n/3)j cos(6-4=/3)| d
P =2/3{-sinb| -sin(6-2n/3)| -sin(6-4n/3)| q (1-2)
Yo Ya Y o}

In the present 'synchronous reference phasor’ context, 6=w,t. Evaluating the product in (A2-46),
the sought source voltage description in the d-g-o frame of reference is established:

€4 -SiNYrer
€dqo = |€q | = V2-Eer | COSYrer (A2-47)
€ 0

d-q axis model of given symmetrical system voltage Egst Of the three phase
frame of reference. See given voltage in (A2-45). Ee¢s=r.m.s. value of given
voltage. vrer= arbitrary chosen phase shift. Often conveniant choice: et =0.

Simple examples of a specified voltage eqqo in analysis, are given in Chapter 1.7. The treatment
of eqqo in arbitrary complex power networks, is covered in systems modelling Chapter 2.

The three phase voltage of frequency f; applied to the field winding
The symmetrical three phase voltage Errsr Of frequency f; Hz applied to the field winding, is given

by (A2-48):

cos(oy)
ErrsT = V2-Etet{ COS(otr -27/3) (A2-48)
cos(ay -47/3)

Subscript 'f-' signals association with the field winding. Ere is the root mean square (r.m.s.) value
of the three phase field voltage. oy = (wrt+ys ), where of= 2.n-fr. v accounts for an arbitrary phase
shift of the voltages relative to zero time.
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The transition of Eirsr in (A2-48) to Epqaqe Of the d-g-0 axis frame of reference, is afforded by
the Park transformation :

Et.dq = PrErrst (A2-49)
where; R s T
cosbs cos(0s -2n/3)| cos(B¢-4n/3)| d
Ps =2/3, _-sinBs | -sin(6s - 2n/3)| -sin(B8-47/3)| q (A2-50)
Ya Ya P o)

The angular displacement 6; of the axes of the m.m.f set up by the field winding- relative to the
displacement (wrt) of the axes of a 'local’ field related reference phasor, - can be expressed as

Bt = art - 6. *) (A2-51)
See p. A2/11 for description of the angular displacement of the rotating electrical axes relative to

the global system. Applying the matrices (A2-48) and (A2-50) into (A2-49), the field voltage
description in the d-g-o frame of reference is established:

E: cos{ 6 -ar)
Ef.dqo =E = V2-Eret | - sin( 6 -0y ) (A2-52)
= 0

From the definition following equation (A2-48), and from equation (A2-51), we have ;

of = ( opttyr)
—»  (Br-ap) =Bt yr) (A2-53)
6 = (ort- By

Inserting these expressions into (A2-52) and choosing =0 **), we arrive at the sought d-q
axis description of the exogenously applied three phase field voltage :

E cospy
Eraqo =|Etq| = V2-Ererr|_sinB; (A2-54)
E 0

d-q axis model of given symmetrical field voltage Eirst in the three phase

frame of reference. See given voltage in (A2-48). Egerr =r.m.s. value of

given voltage. Py is an exogenously specified field voltage phase shift,
relative to the local field reference phasor.

"} Taking the derivative of (A2-51) we get; dfddt= o - d8/dt = of-ax = 0, since the field m.m.f.
rotates synchronous with the defined field related reference phasor. There may however be a
steady state displacement between the two local axis systems, reflected by the angle B .

**) As defined at the bottom of page A2/12, the y; accounts for an arbitrary phase shift of the im-
pressed field voltage relative to zero time. Choosing y:= 0 is convenient ; we then conceptually
have a 'smooth’ transition from the adjustable speed synchronous machine model description
of Figure (A2-54), to the traditional synchronous machine model description of Chapter 1.4,
where e=E; is the applied dc field voltage. To excitation-wise 'reduce’ the 3-phase field winding
into the dc field winding, we specify B;=0 in (A2-54). The algorithm then yields; e~ V2Bt
and eq=0. The latter equation eliminates the excitation of the fg-winding. In addition the fqg-
winding itself has to be eliminated. See page A2/9 for model settings that will afford that.
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Excitation (e, ery) to the Rotor Flux Model expressed in tems of excitation variable (E;Es)
scaled to the machine’s pu phasor diagram
For the linear machine it is reasonable to expect a proportional relationship between the rotor
flux model's field voltage excitations (er,er) and the d-q components of the applied three
phase field voltage as given in (A2-54). Thus the task at hand is to seek to determine the
factors (K, Kyq) displayed in (A2-55) :

e K¢ (V2-Eges-cOSBs )

ex ={€q g = |[Kig(V2-Erersings) (A2-55)
€ko=0 |«d 0
€xq=0 |kq 0

The following line of reasoning forms a basis for determining the two factors:

In idle, steady state operation with zero stator current flowing, the machine’s phasor dia-
gram reduces to a single voltage phasor representing pu r.m.s. machine bus voltage
Ums. At the same time it would seem convenient also to interpret this phasor as the pu
r.m.s. magnetizing or field voltage e.ms, yielding in this particular operational case the
pu condition Ums = €xrms.

This simple operating state provides a convenient basis for identifying Kr and Ky : The
electrical circuit model of the motor as given by (A2-35), is applied in describing the
particular idle operating state of the machine. From the two equations (one for the d-
and one for the g-axis) that arise, Kr and K are solved so as to fulfill the required pu
equality conditions.

In the following the process of determining the content of K; and Ky, is outlined in some detail:
Starting point is modelling of the motor connected to (say) an 'infinite bus’ where the voltage eqq
is as given by (A2-45). The electrical circuit model of the motor is given in (A2-35). The simple
loop equation comprising the serial effect of the infinite bus voltage and the synchronous motor,
is shown in (A2-56).The equation could be set up directly by intuition, or developed in accordance
with the full machinery of system analysis, as demonstrated at the end of Appendix 1. See text
leading up to equation (A1-19) there.

€dq = Remism + (1/00)-Xom-dism/dt + AEgm (A2-56)

Assuming idle, steady state operation with isy = 0, we get the following set of two equations for
further reduction and application, observing -from Figure A2-7 - that AEpg= AEsm =(Vi *+ Hac o );

€dqq = Vix + Hiedr (A2-57)
Here,
"Sin’Yref
eqq = V2-Eer Copied from (A2-47) (A2-58)
COSYret
Vi = ((DQ‘T1'B1)'efk See Figure A2-6. T~ is copied from equation
(A2-30), and B; from Fig. A2-5. Noting that
ism=0 implies B=0, we find after some laboring:
B(D,f)-cosp-er + B(Q,fq)-sinP-exq B(D.f)-er
= ®o = Qo (A2-59)
-B(D,f)-sinf-e¢ + B(Q,fq)-cosp-eq B(Q,fa)-erq

if- (F2-XHa-Xad) + itq(Qem-(Fr-Xeq+fs-Xaq) - frotor(puyf1-Xtq) Hu is taken from Figure A2-7,
Hac o = with B=0. ¢x =0V is de- (A2-80)
itq- (fa-Xtq+a-Xag)+ Ir- (Qsm-(f1- Xe+fa-Xaa) ~FrotortpuyT7-Xr) veloped from equation (A2-2)
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Inserting expressions (A2-58) — (A2-60) into (A2-57), we get;

=0 < X
- \jZEeerinYref (1)Q~B(D,f)'ef if'(f2‘Xf+f4'Xad) + ifq'(QSM'(f7'qu"'f5'xaq) 'frotor(pu)'f1'qu)
: : + (A2-61)
\I2-Eeff~COS’Yref CDO'B(Q,fQ)-efq ifq'(fB'qu+f8'Xaq) + if'(QSM'(f1 'Xf +f3'xad) 'frotor(pu)'f7xf)
5 <Xad>

In steady state operation we generally have, see equations (A2-12) and Addendum, p. A2/11 ;

if=edrr = erooT go(Xa— X'd)/xzzad (A2-62)
itq = €1q/Tiq = €rq o' T qo"(Xq — X'g} X aq (A2-63)

From Addendum on page A2/11, and Figure A2-7 we deduct ;

f1-Xeq = [(Ka— X o) (Xq— X'q)]~(X”ad-Xzaq)//(X’aand) (A2-64)
f7~Xf = '[(Xq - x,q)/(Xd - X,d)]‘(X”aq'xzad)//(xlaq'Xaq) (A2-65)

The above expressions for iy, irq , (f1-Xrq) and (f-Xs) are applied to (A2-61), resulting in the
following equations for describing the specified, idle operating state, observing that in steady
state operation Qsw= (1- Q) ;

Eeﬁ-sim/ref =[(1/\/2)-mo-T’qo~(Xq-X’q)/Xaq]-(1 -Qr*‘ frotor(pu)‘[(Xd -X’d)/(Xq -X'q)]'( "ad'Xaq)/(X'ad‘Xad)efq (A2-66)
Eef-COSYref =[(1/ Vz)‘mo'T'do'(xd‘X’d)/ Xad]'(1 'Qf'*' frotor(pu)'[(xtrl “X’q)/ (Xa 'X’d)]‘(xnaq‘xad)/ (X,aq‘xaq)'ef (A2‘67)

Solved with respect to e; and ey we finally arrive at the sought 'equations of scaling’

60 = (V200 T qorE1g)) Xag/ (X X'a)-(EarSinpeer) = Kige(EarrSinyer) (A2-68)
e = (\lzl(mo'T’do'ef))'Xad/(xd‘x'd)‘(Eeff'COSYref) = K¢ (Eef-COSYref ) (A2-69)

The terms (Een-sinyer) and (Eercosyer) On the right hand side of the latter equations, are pu field
excitations referred to the machine’s pu phasor diagram. Qualitatively, these excitations that are
fetched from the machine’s initial condition phasor diagram, are the initial values of field circuit ex-
citation to apply in analysis. Via the factors Ky and K they transform into appropriate ‘process
variables’ ey, and ey that go into the rotor flux model. From (A2-68) and (A2-69) the factors
are found to be as follows:

Kf =("IZ/ ((Do'T,do'ef))’xad/ (Xd'x’d) where g =1-Qrt frotor(pu)‘[(xq =X )/ (X 'X'd)]‘(xnaq'xad)/ (X' ag-Xaq)

(A2-70
Kfqz(‘IZ/ (@o'T,qo'gfq))'Xaq/ (xq'x’q) where ggq =1-Ot frolor(pu)‘[(xd X' a)(Xq X' )] (X a6 Xaq)/ (X"ad-Xad)

Factors that relate pu phasor diagram excitations to excitation variables in the rotor flux model.

For the adjustable speed synchronous machine symmetry prevails. For this practical case the K-
factor description to apply can be summarized as follows :

er =KrE;r =K (V2-Exesr-COSBy) K = (V2000 Tao€0))-Xaa (Xa-X'g) = Kig = (V2/(@0 T'qo'81)) Xae/ (Xg-X'a)  (A2-71)
where &
efq =Kfq"Efq=Kfq'(\/2'Ef.eff'Sian) E = 1-Qri' f,o.o,(puy(X”aq/X’aq) =Eq = 1-Qr|‘ fmw,(puy(X"ad/X’ad) (A2~72)

For the symmetrical synchronous motor with a 3-phase field winding: Excitation (er.erq) to the
Rotor Flux Model given in terms of excitation variables (E;Ey) scaled to the machine’s pu
phasor diagram. For definition of terms, see p. A2/8.
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Comment re. model application : To sustain generality in machine modelling the field coils '’
and 'fq' have been defined as separate coils with individual excitations, - which results in
separate factors K¢ and Kg. From the point of view of practical utilization, three main
synchronous machine cases would seem to be met with :

The adjustable speed synchronous machine: The three phase rotor winding means symmetrical
conditions, leading to K¢ =Kzq, see (A2-70). Equations (A2-71) and (A2-72) apply, with B«
exogenously given. See the Rotor Flux Model of Figure A2-3 into which the equations are applied.

The ordinary synchronous machine, modelled on the basis of a 6-coil generalised machine (for en-
hanced precision in modelling): K¢ applies as given by (A2-70). Ky is not of interest, since the fg-

coil is not excited. With BEQ=foorpuy=0 in this 'dc-case’, the voltage peak E=V2-Eter in (A2-71)
is interpreted as the dc field voltage. See consistency with the '5-coil model’ of Chapter 1.4.

The ordinary synchronous machine, modelled on the basis of a 5-coil generalised machine : K¢
applies as given by (A2-70). Ky is not defined as no fq-coil is present. With Bi= Q¢ = frmo,(pu)=0
in this 'dc-case’ , the voltage peak E=V2.Ererr in (A2-71) is interpreted as the dc field voltage.
See consistency with the '5-coil model' of Chapter 1.4.

Excitation contribution Vg to the electrical circuit model
The electrical circuit model of the synchronous motor is given in Figure A2-7. Part of this model

is the motor's e.m.f. AEpq:
AEpq = (Vi He ) (A2-73)

it is the task of the current section to develop a compact/useful expression for the contribution Vi
to this e.m.f. The term Hg-¢r , is conveniently processed directly as the matrix product it is.

On page A2/14 we have already started processing of the expression for Vg : From (A2-59) we
copy that ;

B(D,f)-cosB-es + B(Q,fq)-sinB-erq | o
Vi= (00T "Br)ex = oo (A2-74)
-B(D,f)-sinp-er + B(Q,fq)-cosp-erq| a

From the definition of B4 which is given in Figure A2-5, we fetch;

B(D,) = (X"ae/(Xad -X'ad)):(Xa - X'a) (A2-75)
B(Q.fg) = (X"aq/(Xaq -X'aq))-(Xq - X'a) (A2-76)

Applying the two latter equations together with equation (A2-71) and (A2-72) into (A2-74), we
can summarize as follows for the extended non-symmetric synchronous motor model ;

CrErcos + CigEfqsinB | b _ cos(B - 8){p
ka = = CfEfP. _—] (A2-77)
-C¢ErsinB + CrqEigcosB | a -sin(B - 3)| a
where;
Ce = (\IZ/(mo-T'do-Sf))-(X"ad/X'ad) Ef = ‘JZ-Ef.eff-COSBf
and (A2-78)
Crq = (V2/(00-T'qo€10))-(X"aa/X"aq) Efq = V2 Erefrsinps

= (cos?Br+ sin’pr(Cra/Ci* )*° _
and Er = V2-Epen (A2-79)

tg8 = tgPr( Cr/Cr)

The e.m.f. Vi contributing to the voltage source AEpq = (VictHucdn) of the
electrical circuit model of the extended non-symmetric synchronous motor
model. For further parameter definitions, see Fig. A2-7 and p. A2/13 & -/15
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Again it should be noted that separate field coils 'f and 'fq' - for maximum flexibility reasons,
have been presumed in the modelling processes. From a practical model application viewpoint
we once more point to three main synchronous machine modelling cases, - plus a fourth which
is the asynchronous machine ‘coming for free’.:

The adjustable speed synchronous machine: The three phase rotor winding means symmetrical con-
ditions, leading to C; =Cyy, see (A2-78). Equations (A2-77) to (A2-79) take on the form given by
(A2-80) - (A2-81), with B; exogenously given. See the Electrical Circuit Model of Figure A2-7 into
which the equations are applied.

_1cos(B-Br)|o
Vi = CrEr{———— (A2-80)
-sin(B - Br)| a
where;
Ci=Cg = (‘JQ/((OO-T'do-Ef))-(X"ad/X’ad) and Ef = \2.Erepr (A2-81)

The e.m.f. Vi contributing to the voltage source AEpq = (VactHucdn) of
the electrical circuit model of the adjustable speed synchronous motor.

The ordinary synchronous machine, modelled on the basis of a 6-coil generalised machine: C¢
applies as given by (A2-78). Cyq is not of interest, since the fq-coil is not excited. With 8; =
% = froorpyy = 0 in this 'dc-case’ , the equations (A2-77) to (A2-79) take on the form given by
(A2-82) - (A2-83). Thus the formal description of Vi reduces to that developed in Chapter
1.4 for the traditional synchronous motor, when the voltage peak Er=v2.Erer in (A2-83) is
interpreted as the dc field voltage. See the synchronous motor model on p.1/31.

_ | cosB{p
Vi = CrE¢ (A2-82)
-sinB | a
where;
Cr = (V2/(@o T do))-(X"ad/X aq) and Er = V2-Erer (A2-83)

The e.m.f. Vi contributing to the voltage source AEpq = (VatHacdm) of
the electrical circuit model of the fraditional synchronous motor.

The ordinary synchronous machine, modelled on the basis of a 5-coil generalised machine : C¢
applies as given by (A2-78). Cy is not defined since no fg-coil is present. . With ;= O =
fooreuy = O N this 'dc-case’, the equations (A2-77) to (A2-79) take on the form given by
(A2-82) - (A2-83). Thus the formal description of Vi reduces to that developed in Chapter
1.4 for the tradititional synchronous motor, when the voltage peak E;=V2.Erer in (A2-83)
is interpreted as the dc field voltage. See the synchronous motor model on p.1/31.

The ordinary asynchronous machine, modelled on the basis of a 6-coil generalised machine: Mo-
dellingwise, this implies using the full model of the 'extended’ synchronous motor, while observing

the following when specifying data input :
Symmetry in machine parameter setting, since the rotor winding is 3-phase on a round rotor.
Zero rotor voltage Erer ( and thus elimination of field voltages (ey, er), as well as voltage
contributions Vi to the electrical circuit model ), since the three phase field winding is short-
circuited. Also zero value of the frequency fi associated with the applied rotor voltage.

Setting of parameters so that power- and voltage control no longer is operative.

In terms of computertime this modelling of the asynchronous motor is less efficient, since the model
retains the machine angle - being only a dummy variable in this case - as one of the state variables.
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The extended synchronous motor model applied in example analyses

Introduction
As basis for analysis is applied the 'extended’ synchronous motor model founded on the d-q dia-
gram of the six-coil generalised machine. The d- and g-coils equivalence the three phase stator
winding. The kd-and kg-coils describe the net effect of damping circuits. Two distinct coils, namely
coil ' of the d-axis and coil 'fq’ of the g-axis, equivalence the effect of the magnetizing circuitry.
Depending first of all on the interpretation and settings for the latter two coils, different types of
rotating machines may be dealt with. lllustrations:

If the model accounts for an ordinary synchronous machine, the f-coil is excited with dc, while the
fg-coil is without excitation. Whether the fg-coil as such should be eliminated alltogether (as de-
scribed on p. A2/9), may depend on considerations related to modelling precision and availability
of data. In the example analyses to follow, the full 6-coil description is used throughout for
modelling of the ordinary synchronous machine. In all of the examples the ordinary synchronous
machine is applied as ’initial machinery’ for establishing the desired initial power flow balance.

If the model accounts for an adjustable speed synchronous machine, the 'f’- and 'fq’-coils are

interpreted as the axis-equivalent coils of a three phase rotor winding. The 'f -and 'fq’ -coils are
excited by respective components of the Park-transformed three phase voltage of frequency f
(=0.05x50=2.5Hz in our case study) applied fo the field winding.

if the model accounts for an ordinary asynchronous machine, the 'f’- and 'fg’-coils are inter-
preted as the axis-equivalent coils of a three phase rotor winding. The 'f -and ’fq’ -coils are
shortcircuited. In addition parameters are set so as to eliminate voltage- and power control.

Three example analyses are conducted in the following, - all having the same initial power balance :

First, the steady state operation of an adjustable speed synchronous machine is settled and de-
scribed. It is based on suddenly (at t=0.3s) modellingwise changing interpretation and excitation of
the rotating unit from being an ordinary synchronous generator running in steady state operation, to
being an adjustable synchronous generator running at a non-synchronous speed (here at slip 5%),
retaining power output as well as terminal voltage. The only disturbance involved is the one caused
by replacing the dc field voltage by a 3-phase ac voltage of 2.5Hz (while assuming for convenience
that pu machine reactances and time constants are the same before and after the 'switch’ ).

Next, the up and running adjustable speed synchronous generator is exposed to a temporary three
phase short circuit, to illustrate rotor-, voltage- as well as other dynamics associated with this type of
machine. Both field voltage magnitude, -phase and -frequency are conceivable control variables for
effectively contributing to retaining system stability as well as desired machine voltage. However, only
the field voltage magnitude is used for this purpose in the current basic study. in fact, both 'initial
control systems are for simplicity reasons retained unaltered after the abrupt shift of machine type.

Finally, the ordinary synchronous generator operated in a steady state mode, is switched into being

an asynchronous machine in generator mode of operation. System transients are pursued until new
steady state conditions are reached for the asynchronous machine. The turbine torque is throughout
retained constant, and there is no longer local control of the machine’s bus voltage.

System data/ Initial load flow
The single-line diagram of the simple power system is shown in Figure A2-10. All pu data given
are referred to common system basis. 'SM' stands at the outset for an ordinary synchronous motor.

External system : An infinite bus of per phase r.m.s. voltage Eygen=1.0pu. Angle v, arbitrarely
set to zero, see p.A2/12.

Load flow constraints: As operational conditions for the system we specify the following:
Power supplied to the synchronous motor Pgmargey = - 0.8pu. |.€. generator mode
of operation.
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Synchronous motor voltage Esmuargey = 1.0pu.

Series impedance (r, + jx,): ry =0.03pu Xy =0.1pu

Transformer (r; + j-x;) : = 0.01pu Xt = 0.07pu

lrtxt

Figure A2-10 Example power system under study

The extended synchronous motor model ( here in generator mode of operation) :
Xae=0.10pu X4 =0.35pu R, =0.008pu T"4=0.04s Cosoy = 0.9pu
Xq =1.40pu X"3=0.22pu T4 =1.0s T4 =1.0s Ta =10s
Xq =1.40pu X"q=022pu T3 =0.04s X, =0.35pu Cp=12pu

Synchronous motor voltage control system:

Ts =0.1s ; field circuit time constant

Kr = 40pu ; resulting forward amplification V..

Tr =0.1s ; regulator time constant

Kb = (0.25pu ; transient feedback amplification ( See equations (1-108)- (1-121)
To =0.25s ; transient feedback time constant for full parameter interpretation)
Ka =1.0pu ; power stabilizer amplification

Eqfmax = 3.0pu ; ceiling field voltage

Eqtminy = -2.0pu ; floor field voltage >

Ta =2s ; power stabilizer time constant

Synchronous motor power control system (when in hydro generator mode of operation):

T =03s ; Time constant for hydraulic system

T. = 0.5s ; Time constant for main servo ( eg 0.08s)

T, = 17s ; Transient droop time constant

& = 0.15pu ; Transient droop

8 = 0.00pu ; Permanent droop. (0-0.04) (The value 0.0 apply if the
frequency is to be sustained by this unit alone)

Ptarget = -0.8 , Target value of of absorbed motor power. (Applicable
when loading up automatically, following synchroni-
zation)

With initial conditions specified as stated above, the iterative solution process described in section 2.4
of systems chapter 2, is called upon for targeting the given operating point to required accuracy. As
arbitrary starting values for the present set of Joad flow control variables' (Bsw, Eoy ) discussed in
section 2.4, we choose Bswpe =0 and Eg =1.2pu. Applying the three-step logic that comprises
equations (2-36) to (2-39), and using the default value 1.0 of the factor k of (2-39), - we arrive at a
feasible solution after 8 iterations. Exit from the iterative process is made when

Res < 0.0001pu ('Res' is abbreviation for 'Residual’) (A2-84)
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where Res = (ResVgy + ResPgy). The contributions in parenthesis are the deviations in absolute

(pu) terms from target value, of respectively synchronous motor voltage and power supplied to
the synchronous motor.

The iteratively determined Joad flow control variables’ contributing to giving a valid initial load flow,
are
BSM(O)

-1.077808rad.
Ef(o) 1

.392082pu (A2-85)

Main characteristics of the established initial load flow for the system in Figure A2-10 are as follows:

The infinite bus: Voltage - 1.0000pu (specified)
Active power - 0.7737pu (received from the local study system)
Reactive power : 0.2410pu ( the study system acts reactively as an inductuctor)

Generator bus : Voltage - 1.0000pu (specified)

Active SM power : -0.8000pu ( = specified power to motor)
Reactive SM power : 0.1293pu (the SM acts reactively as an inductive load)

Study 1:
The adjustable speed synchronous generator in steady state operation at 5% reduced rotor speed
Sample study results are shown in Figure A2-11 — A2-19. The period of analysis Tmya is 10s.
Time increment during integration; At=0.005s.

In the initial stage of operation, - i.e. for t less or equal to 0.3s, - an ordinary synchronous
machine with a dc field voltage computed to 1.3921pu, contributes to sustaining the required initial
power system balance described above.

From t=0 to t=0.3s, steady state conditions prevail and all state- as well as other variables re-
main at initial value.

At t=0.3s the ordinary synchronous machine is instantaneously switched into being an adjustable
speed synchronous machine, desired to contribute to sustaining the same load flow balance as
before, - but now at 5% reduced rotor speed. Q= fi/f,=0.05 means impressed rotor frequency
f; = 50-0.05 = 2.5Hz. For reasons just of convenience, all machine reactances and time constants
are kept unaitered throughout the analysis. The following four model changes are introduced at
t=0.3s, to adapt to the new version of the machine:

« The Rotor Flux Model requires new excitation: For the ordinary synchronous machine, the
e.m.f.-vector exciting the flux model in initial/steady state operation, was as directed by
equation (1-114);

KeEgo | f
0 |fg

©SMr(ordinary) = 0 |k (A2-86)
0_ |kq

where the initial load flow analysis gave dc voltage Ey, » 1.3921pu. For the adjustable
speed unit the corresponding e.m.f. vector is generally given by equations (A2-71)-
(A2-72), while observing d-q axis symmetry. In the present case the equations may
at the outset purposely be expressed as follows, when applying the more useroriented
machine model terminology from the model summary description on p. A2-26 — A2-28;

K¢ (V2-Erefiio) *AEr)-cOSB¢ |
K (‘12 Etero) TAE)-cOsBs | fq
€SMr(adjustable) = 0 kd (A2-87)
0 kg

Here \JZ.Ef.eff(o) is the amplitude of an ac voltage of r.m.s. value Einc) applied to the 3-
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phase field winding. It would seem reasonable to set pu starting value of this ac amplitude
equal to the value of the dc field voitage Eg (~ 1.3921pu), and then let the ‘residual’
voltage AE; -which is provided by the voltage control system-, assure that target machine
voltage is accurately retained. Applying the foregoing special premises to equation (A2-87),
we get the following new e.m.f. vector to the Rotor Flux Model:

Ke(Efo) +AEf)-cosBs |f Efoy = 1.3921pu
Kt (Eqo) +AEs)-cosBs [fq Br =0 (by choice)
©sMr(adjustable)™ 0 kd where; AE; = AVR-response (A2-88)
0 kq

The em.f. esme for t 2 0.3s (ie. for the adjustable speed SM)

Bt is a potential control parameter which here arbitrarely is set to zero. See p.A2/13 for
special comment on Bs.

» The electrical circuit model requires new contribution Vs to its e.m.f. AEgy =(Vsut+Hsmdsm).
For the ordinary synchronous machine the contribution Vgy in initial/steady state operation
was, as directed by equation (1-109);

' CrEfoycosPsm | p
VSM(ordinary) = (A2-89)
-CrEqoysinBsm | a

where Bgy is initial rotor angle of the ordinary synchronous machine, relative to the global
synchronous reference phasor. For the adjustable speed unit the corresponding e.m.f.
vector is generally given by equations (A2-80)-(A2-81), when d-q axis symmetry is pre-
sumed._ In the present case the equations may suitably be expressed as follows, when
setting Er = (‘j2~Ef_eff(o) +AEf) = (Ef(o) +AEf) ;

CrErcos(Bsm -Br ) Er = (Eqo) +AEr)
Vsi(adjustable) = — where;  Ego = 1.3921pu (A2-90)
-CrErsin(Bsm -Br ) Br=0 (by choice)

The e.m.f. Vgu for t 20.3s (ie. for the adjustable speed SM)

« The machines electrical angle Bsy is governed by a new differential equation: For the
ordinary synchronous machine, equation (1-119) was the valid one;
dBsm/dt = 0o (1- Qsm) (A2-91)
For the adjustable speed machine, the variation of Bgy is governed by (A2-44),

dBsm/dt = wo-(1- O - Qsm) (A2-92)

where;
Qsm = pu rotor speed
Q¢ = fiffo = /50 = pu speed of field
winding m.m.f. relative to rotor. Positive
value of Qs implies reduced rotor speed

Equation governing machine angle fsm for t 20.3s.

« The power control system’s reference signal A< must change . Relative to the presumed still
valid model description on p. 1/29, the reference signal applied for t 20.3s is as follows;

AQref = C-(Ptarget — Psm) + O (A2-93)

A few comments to the results follow next. For interpretation of diagram variables, see p.4/2-3.
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Figure A2-12 shows r.m.s. machine bus voltage which appears to recover in about 3.5s, following
the 'shift' in machine type. The residual voltage AE; approaches ~13.9pu as the bus voltage closes
in on target value 1.0pu. (AE;-which is a state variable -is not shown explicitly in the diagram). The

high AE; -value illustrates the "trouble’ caused by inductances when fieldwise replacing dc with ac.

Figure A2-15 shows rotor slip relative to synchronous speed : The slip changes from its initial
value (0.0) to its new, desired value (5%) in less than 6s.

Figures A2-14 and A2-17 relate to the three phase field winding; the first shows the actual 2.5Hz
current of the winding, while the second depicts the current i that reside in the equivalent g-
axis coil ('fq’) of the field winding.

Figures A2-19 and A2-20 show the current of damper coil 'kd’ , respectively damper coil ’kq’. The
transients incurred by the simulated shift from synchronous to subsynchronous rotor speed, im-
pacts in the present case relatively little on the damping circuitry ; the currents are zero up to t=
0.3s, and settle quickly to zero again, after some initial, diminutive ripple following the 'switch’ in
field excitation ; from dc voltage fed to coil 'f' of the motor model, to three phase ac voltage
coils 'f and 'fq’ of the model.

parktransformed and fed to

. Absorbed Synchronous Motor Po

Start-fMax-{MinValue: 0.8/1.17{ 2.22
With Min. power as new ref:
Start-/Max-/MinValue:1.42}3.4040.00

ronous noVoltae (pu}
Start{Max-{MinValue:1.00{1.02/0.34

SM stator current (pu)
Start/Max-/MinValue:0.81/3.810.03

Figure 42-11 Absorbed SM power

Field Current if/iR [pu)

Start-/Max-/MinValue:1.51/5.04f 5.23
With Min. current as new ref.:

Start-/Max-/MinValue:6.74410.27{0.0

1 Al

p
Start-/Max-fMinValue:0.00{8.50/{3.00

Figure A2-~13 SM stator current

ectrical SM torque fpu]l
Start-/Max-MinValue: 0.81/1.12/ 2.34
With Min. toraue as new ref:
Start-{Max-fMinValue:1.53/3.46/0.00

Figure 42-14 Field current-phase R

il j
SM g-axis field current [pul  _
Start-/Max-/MinValue:0.00/5.25f 1.67
With Min. current as new ref:
Start-{Max-/MinValue:1.67/6.91/0.00

Figure A2-15 SM rotor slip

-axis damper coil current{pu}
Start-/Max-{MinValue:0.0041.23/ 1.27
With min. current as new ref.
Start-{Max-{MinValue:1.27/2.51/0.00

Figure A2-1§¢ ectrical motor torque

a-axis damper cail current(pul
Start-/Max-fMinValue:0.00/0.85/ 1.27
With Min. current as new ref:
Start-/Max-fMinValue:1.27/2.12{8.00

AN SN

Figure 32-17 g-axis field current

Fiéure A2-18 d-axis damper cufréx{f

Figure A2-19 g-axis damper current

Figure A2-11 to A2-19 The adjustable speed synchronous generator at 5% reduced rotor speed
An ordinary synchronous motor set to absorb —0.8pu power at machine
bus voltage 1.0pu, is suddenly, - at t=0.3s, - redefined to be an adjust-
able speed unit, retaining power output as well as machine bus voltage.

Period of analysis: 10s.

Integration time step: 0.005s.
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Study 2:
The adjustable speed synchronous generator exposed to a temporary short circuit
Sample study results are shown in Figure A2-20 - A2-28. Period of analysis: 10s. Time increment
during integration: 0.005s.

The ‘early history’ of the process is as in the previous study: For t < 0.3s steady state conditions
prevail for an ordinary synchronous motor working in generator mode of operation. Throughout the
study the unit's control gear is set to keep bus voltage at 1.0pu and absorbed motor power = -0.8pu.
At t=0.3s the machine is 'switched’ into an adjustable speed synchronous motor, and before
another (say) 3.5s has passed, the 'new’ adjustable speed unit is in steady state operation at 5%
reduced rotor speed, see Figure A2-24.

At t = 6.0s the adjustable speed synchronous machine is exposed to a three phase short circuit at
its terminals. Fault duration: 0.25s. Fort > 6.25s, normal network conditions again prevail.

It is observed from the figures below that normal operation at 5% reduced rotor speed, is restored
in the course of about 3.5s after removing the short circuit. The voltage control system is the same
as for the 'old'/ordinary synchronous generator. Additional local variables (such as rotor frequency
and rotor phase shift) could potentially be utilized to enhance the restoring of power system control.

St e > [E[=1E3] N

Absorbed Synchronous Motor Power(pu]

Start-iMax-iMinValue: 0.80/1.171 2.65
With Min. power as new ref:
Start-fMax-/MinValue:1.85/3.82/0.00

SM stator current (pu)
Start-{Max-fMinValue:0.81/8.13/0.03

Synchronous Motor Voltage [pu]
Start-/Max-{MinValue:1.0041.07{0.00

LA 1

quure A2-20 Absorbed SM power Figure A2-21 SM bus voltiage Figure A2-22 SM stator current

: ElmOmegal e o &= irTgen’: 2
urren |ﬁ nhase R[nu] 4 Synchronous machlne slip 6] Electrlcal SM toruue {pul

With Min. current as new ref.: i, With Min. torque as new ref:

ur | .
Starthax /MinValue:1.51/5.04f 5.26 1] Start/Max-/MinValue:0.00/8.5070.00 1 Start-/Max-fMinValue: 0.81/1.12/72.87
Start-{Max-/MinValue:6.78{10.3070.00 ! Start-{Max-/MinValue:2.06{3.99/0.00

Figure A2-23 Field current-phase R Figure A2-24 SM rotor slip Figure A2-25 Electrical motor torque

[ Sifmikd

g-axis fie current [Dul d-axis damper corl current[pu] 1 g-axis damper coil currentpu)
Starthax -IMinValue:0.00/6.22/ 1.67 4 | Start-Max-/MinValue:0.00/1.30{ 2.60 ! Start-[Max:}MinValue:U.I]DIS.dDI 4.03 I
With Min. current as new ref. With Min. current as new ref.: i With Min. current as new ref.
Start-fMax-MinValue:1.67{7.8870.00 Start{Max-MinValue:2.60{3.90/0.00 ] Start-{Max-{MinValue:4.03/3.43/0.00 ;

! .E;igure q axis field current Figure A2-27 d-3axis damper current rﬁ'lgure A2-28 g-axis da.mper current.

Figure A2-20 to A2-28 The adjustable speed synchronous generator exposed to 3-phase fault
The motor operated at 95% of synchronous rotor speed, is set to absorb -0.8
pu power at machine bus voltage 1.0pu. A three phase short circuit applied at
t=6s.Fault duration:0.25s. Period of analysis:10s. Integration time step:0.005s
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Study 3 :

Switch from ordinary synchronous generator operation to asynchronous generator operation
Sample study results are shown in Figure A2-29 — A2-37. Period of analysis:10s. Time increment
during integration: 0.005s. Scope of analysis: To ilustrate adaptability of component modelling

concept.-

At the outset the stated synchronous machine is modelled using the extended synchronous motor
model, - which is based on the 6-coil generalised machine. See p. A2/17 for comments on the
limited, but special parameter settings required, to adapt the extended model also for detailed
asynchronous machine simulations.

The 'early history’ of the process is identical to that of the previous two studies: For t<0.3s steady

state conditions prevail for an ordinary synchronous motor working in generator mode of operation:

absorbed motor power is ~0.8pu, and the machine is keeping the bus voltage at 1.0pu.

At t=0.3 the synchronous generator is instantly *switched' into being an asynchronous generator
by resetting parameters as referred to above. Initial shaft torque corresponding to absorbed motor
power of —0.8pu, is retained throughout the analysis. It appears that new, asynchronous generator
operation is established in about 4s after the 'machine shift' is initiated. Other observations to

notice:

Absorbed Synchronous Motoer Power(pu)
Start/Max-{MinValue: 0.80{ 0.58/ 0.85
With Min. power as new ref:
Start-/Max-fMinValue:0.05/0.26/0.00

j—\\\w~‘_

N\~

Synchronous Motor Voltage [pu)
Start-{Max-{MinValue:1.00£1.00/0.83

SM stator current {pu)
Start-fMax-/MinValue:0.81/1.47/0.68

Figure A2-29 Absorbed AM power

Field Current iff phase Ripul

Start-{Max-/MinValue:1.51/1.51/ 1.36
With Min. current as new ref.:
Start-{Max-/MinValue:2.88/2.88{0.00

Figure A2-30 AM bus voltage

Synchronous machine slip ' _
Start-Max-/MinValue:0.00/0.00; 0.74

imTgent o

: ;
; i
: i
: :

Electrical SM torque {pu}_ _ L
Start-fMax-fMinValue: 0.81/ 0.59/ 0.86 i

With Min. torque as new ref: 4
Start-{Max-fMinValue:0.05{0.2770.00

5 Figure A2-32 Field current-phase 'R’

SM g-axis field current (pul _
Start-/Max-/MinValue:0.00/1.36f 1.36
With Min. current as new ref:

Start/Max-/MinVYalue:1.36{2.73/0.00

d-axis darnpr coi current(pu]
Start-/Max-/MinValue:0.0040.32f 0.32
With Min. current as new ref.:

! Start-Max-/MinValue:0.32/0.64/0.00

i

Figure A2-34 Electrical AM torque

q-axis damper coil current{pu) R

Start-IMax-{MinValue:0.00/0.32/ 0.32
With Min. current as new ref:

Start-fMax-MinValue:0.32/0.6470.00

Flgure“Aﬁ-:!S g-axis field current

”Figure Az—ﬁs d-axis damper current

'I.::i..—gﬁre A2-37 g-axis damper current

Figure A2-29 to A2-37 Switch from synchronous generator- to asynchronous generator operation
An ordinary synchronous motor (described by the extended SM model) set to
absorb —0.8pu power at 1.0pu voltage, is suddenly, - at t=0.3s, - redefined to
to be an asynchronous motor, retaining the torque implied by Papsormes= -0.8pU.
Period of analysis:10s. Integration time step: 0.005s.
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Since local voltage control now is absent, and the asynchronous machine reactively acts as an
inductive load, machine bus voltage drops from the initial 1.0pu setting, to a level of 0.83pu. See
Figure A2-30 for qualitative confirmation.

Rotor slip reduces from 0.0 at initial synchronous operating state, to its new value of - 0.74272%
to sustain the constant generator torque implied by Papsomes= -0.8pu in the initial load flow balance.
See Figure A2-33.

Figure A2-32 and A2-35 show that an ac current of low frequency reside in the rotor field winding.
Figure A2-36 and A2-37 show that a similar, but smailer current reside in the damper coils. Some
reflections and observations related to these appearances, follow:

For the synchronous- as well as the asynchronous machine it is a prerequisite for useful power
transfer over the machine airgap, that the rotating m.m.f. set up by the stator winding, respec-
tively the rotor winding, are synchronous.

For the adjustable speed synchronous machine an applied (d-q axis-attached) 3-phase field
voltage of given frequency f;, provided a rotor m.m.f. that rotated at pu angular speed ;=

flfo = /50 vis-a-vis rotor. With pu rotor speed Q, the following equation was then to be fulfilled
in order to secure synchronism between the two stated fields: (Q +C) = Q,=1. See presen-
tation on page A2/11. With specified frequency f;, the rotor of the adjustable speed synchro-
nous machine then attains the speed directed by the just given equation.

For the asynchronous machine, rotor currents are not produced from an impressed/external
voltage source, but from electromagnetic coupling to the stator winding. The frequency of the
currents thus induced in the field winding, is such that rotor angular speed plus the angular
speed of the m.m.f. produced by the rotor currents relative to rotor, add up to synchronous
speed. In our example we register that Q= fi/f, = /50 = - 0.0074272. l.e. f; = - 0.0074272.50~
-0.37Hz. This is the settled frequency that can be observed from Figure A2-32. (lIl.: From the
diagrams we measure that a simulation period of 10s is 'covered’ by a paper length of ~6.15
cm. From Figure A2-32 we observe that the 'last’ period of the current trace measure ~ 1.65
cm. From these registrations we get the estimate f;= 6.15/(1.65x10) ~ 0.373Hz). Generator
operation means supersynchronous rotor speed which implies a negative f;in order to comply
with the above binding condition (Q +Qr) =1. What is qualitatively commented on above for
the field circuitry also holds true for the damper circuits: The machine’s data input implies
special but equal parameter setting for the two symmetrical damper circuits. This governs
the special damper circuitry response which will be characterized by a size-wise similarity of
the two damper currents.
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The ’Extended’ Synchronous Motor
(based on the d-q diagram of a 6-coil generalised machine)
Synchronous motor/generator behaviour is described in terms of 8 state variables :
2 stator current components isw = [iswe) ism I’ ( where ’t’ stands for ‘transpose ’)

4 rotor flux components dsm = [¢r drg Pka Piq I' (fieldw.f fieldw.'q damperw.’kd’ damperw. ’kq’ )
1 speed variable Qsy = sy /w0

1 rotor angle variable Bsm
To handle voltage control 4 state variables are introduced. Power control in (hydro) generator mode of operation
is afforded via 3 additional state variables. Altogether (8+7) =15 state variables to model generator mode of
operation:

Synchronous Motor parameters to be specified (with example adjustable speed machine data in parenthesis) :

Xas  (0.1pu) Xq (0.35pu) Ra (0.008pu) T’ (0.04s) Coson  (0.9pu)
X¢  (1.4pu) X’y (0.22pu) T4 (1.0s)) T'q (1.0s)) Ta  (10.0s)
Xq (1.4pu) X"q (0.22pu) Xq (0.35pu) T’4 (0.04s) Co (12pu)

Electrical Circuit Model

<«ism Rsm Xsm AEsm =( Vsm + Hs|\/|-¢sm) = motor emf.
;‘ —(er—
Vou R
" Usm
\
(\ég‘ll\{l = RSM’iSM + (1/(,00)’Xs|v|'dis|v|/dt & Vsm - AESM = Usm (A2-35)

Electrical circuit model of the extended synchronous motor in d-q axis frame of reference

AEsyw = (Vsm + Hsw¢sm ) = synchronous motor emf.

(Ra+ X" )+ (Qsmres +2-AQsm)-X-SiN2Psu+ X' -C0S2Bsm | -Qsrrer- X'+ Qswrer +2-AQsm)-X-c052Bsm -Xr-Sin2Pswm
RSM = A _ _ A — —
Qsmref- X +(Qsmref +2:AQsm)-X-c0s2PBsm -X"r-sin2Psm |  (RatX"r) - (Qsmrer +2:-AQsm)-X"-sin2Psm -X-cOS2Psm
Qswmref =(1-Q) , where Q¢ = pu angular speed of rotor
mmf relative to rotor. See p.A2/11
AQsm =(Qsm - Qsmrer), Where Qsw =pu rotor speed
X"+)Z"A0052[33M -)_("AsinZBSM Cf'Ef‘COS(BSM-Bf) = =(V2-Ereft +AE; ) = peak field excitation.
Xsu = — ~ Vsu= — AE¢= voltage regulator response. See p.1/29.
-X"-sin2fsm X”-X"-c0s2Bsm -CrEfsin(Bsw-Bs Ci = (V2/(o Tdo-€7))-(X"ad/X'ad). See p.A2/8.
Bsm = synchronous motor angle, see Fig.A2-3.
Br = phase shift of magnetizing ac voltage.
See Figure A2-3.
f fq kd kq
(Qsm-f1 fpu-f7)-sinBsm+f2-cosPsm|(Qsm-f7 - fou-f1)-cosPsmtfe-sinBsm | Qsm-fa-sinBsu+fs-cosPsm| Qsm-f5-cosPsmtfs-sinBsm |D
Hsm 3

(Q sm-f1-fpu-f7)-cosPsm-fo-sinBsm [-(Qsm-f7 -fpu-f1)-sinBsm+fs-cosPsm| Qsm-fa-cosPsm-fa-sinBsm | -Qsm-fs-sinBsu+fs-cosfsm |Q

X' = 05X+ X)X’ = 0.5(X"g + X'rq) X' = (M@0 Ta0)) (X ad/X aa)>(Xa = Xa) + (1/(00 T d0))-(X'a — X"a)

X" = 0.5(X"q-X"q) X' =0.5X"g - X"rq) «— X'g= (1/((ncyT’qO))-(X"aq/X’aq)2~(Xq —X'q) + (1/(@0:T"q0))-(X'q — X"q)

fou = shortened notation for frotwrpuy = pu frequency of 3-phase voltage applied to field winding. Not subject to sign shift.
f1 = (Xa - X'q)-(X"ad/(Xag-X'ad)) — Xad =Xg-Xas
fo = f1[(Xa = X"0) [ (1/(00 T 40))(1/X"aq) = (1/(00'T'd0))-(Xad/X'ac?) 1 - (1/(00 T'g0))-(X"ac/X'ad) ] <« Xad = Xq-Xag
fa = (X'qg = X’a)/X ag — X'ag = X4 -Xag
fs = o[ (1/(0o Tdo)) (X ad/X'ad”)-( Xa = X'a) - (1/(00T"d0) 1
fs = - (X'q — X"q)/X'aq

«— Xaqg = Xq-Xao
fo = - o (1/(0 T0))(X"a/X'ag" )} Xq = X'o) = (1(@0T") ] & Xag = XqXa
fr = - (Xq - Xoh(Xsq/ Xaq-X')  X'aq=X'q-Xao

fo = - f[(X'q = X")- [ (1/(0'T"q0))-(1/X"aq) - (1/(020-T'q0))-(Xaq/X'ag") 1 = (1/(@0-T'g0))-(X"ac/X'aq) |
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The ’Extended’ Synchronous Motor, cont...
Rotor Flux Model

d%%dt = oo (esmrtFsuirismtFsmyPsm) (A2-94)
where:
Ks -Es | Er = (V2-Etero) + AE;)-cosB =voltage of field coil . See page A2/14 - 15 Xad = Xd “Xag
eswr = |Kiq-Efg frq Efq = (V2-Ereno) + AEy)-sinf; = voltage of field coil 'fq’. See page A2/14 -15 Xad = X'q Xag
0 d K = [(N2H(00 T gor8r))-Xaa/(Xa - Xa)] 1 For the adjustable speed SM X’ad = X4 -Xag
0 kq Krq = [(V2/(00 T go81))-Xaq /(Xq - Xg )] t (ie. the symmetrical machine): Xag = Xq Xag
(1, &) = factors =1, unless adjusted speed SM. | Ki=Ki, & & =&, see p. A2/15. Xag = Xg -Xao
A E; = voltage control response. (Voltage phase not a control variable here). X’aq= X"q “Xao
D Q
(/@0 T'do))- (Kad/X'ad)- X ag:COSP | -(1/(®0:T'do)):(Xad/X'ag)- X" ag-sinB | f
FSMi = (1/(Q)o'T‘qo))'(Xaqlx‘aq)'xuaq'sinﬁ (1/((Do'T‘qo))'(Xaq/X’aq)'X”aq'COSB fq
(1/(®o T do))-X ad-cOSP - (M@ T g0))-X ad-SiNB kd
(1/(@o-T"q0))-X'ag-sinp (1/(@oT"q0))-X'aq-COSP kq
f fq kd kq
kad)(fsf) o ’frotor(pu) (Xad/X‘adz)‘( X‘d - X”d)/T, o
- @ ~frotor(pu) Frs(fg,fq) (Xaq/x’aqz)'( Xq=X"g)T'q0
Famy=(1/00)§(1/T" do)-(1/Xad)-(Xd - X'a) - 1/T g0
(1/T” g0)-(1/Xaq)-( Xg — X'q - 1T g0
Fuo(f,f) = - (1/ /(Tdo- X ad))-[(Xad/X'ad)-( X'a = X’d) + X"ad |
Fio(fa,fa) = - (1/ /(T'qo-X aq))- [(Xao/Xaq)( X'q = X"q) + X"aq ]

B = angular displacement of the local machine reference axes relative to the global axes
= specified phase shift (relative to local axes) of applied three phase field voltage.
frotorpuy = PU frequency of applied 3-phase rotor voltage. (Base frequency: 50Hz. Not subject to sign change)

X4, X4, Xg : direct-axis synchronous, transient and subtransient reactance (pu)
Xg X'q,X"q 1 quadrature-axis synchronous, transient and subtransient reactance (pu)

Xas . stator leakage reactance (pu)
T4, T"d40 : direct axis open stator transient and subtransient time constant (s)
T T’  : quadrature axis open stator transient and subtransient time constant (s)

Model application alternatives:

- If adjustable speed SM: Symmetrical machine; X;=X,, X'¢=Xgq, X"¢=X"q, T'ao=T'q0, T ao=T g0, Ki=Ksq. PBr to be set.
- If “traditional’ SM . Individual parameter setting. pr = 0. ff =0 (i.e. dc to the field circuit)

- If ’traditional’ AM : Symmetrical machine. No field voltage excitation : E=E=0. fi =0. No P&U-control.

At any time during integration the rotor currents may be derived from (A2-19):

isvr = (Xir) "-(dsm - Xarism) (A2-95)
where:
f fq kd kq
XadXa=Xa)| Xag f

X = Xag (Xg = X'g) Xagq fq
Xad Xad+X'ad -X"ad [(X'd = X"4) kd

xaq Xaq+x’aq 'X”aq /(X'q - X”q) kq

D Q

Xag'COSP [ -Xag-SinB | f
Xag'SinB | Xag-cosP | fq
Xoar = Xtkydg)' T = |_Xad-COSP | -Xad-sinp | kd
Xag-SinB | Xaq-cosP | kq
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The ’Extended’ Sybchronous Motor, cont...
Electromechanical Model

d(f%(%?n/dt =(SBas/SSM)'(1/(Ta'COSCPN))'( TSMeI - TSMmec ) (A2‘96)
Here:
Tsmet = O.5-i'SM-TSM1~¢dq = electrical motor torque , - where ¢aq = X"sm -Tsmrism + fsm-dsm (A2-97)

Tsmmee = Tsmmeco)Qsm® = mechanical torque in motor mode of operation. (Motor operation implies pos. sign of mech.
torque)

If the motor is up and running at t=-0: Tsummeco) = Tsmelio) = electrical motor torque at t = -0. This is found from
equation (1-117) applied to the initial power system load flow. x= (say) 1.5-3.5

If the motor is to be started from stillstand (as e.g. an asynchronous motor) : Tsmmec(o) = coefficient to model
mechanical friction, air resistance, etc. during startup. Probable range: 0.02-0.05

Tsmmee = (Tsmeloy +ATmec) = mechanical torque in generator mode of operation. ATmec is the response from the
power control system. See below for a sample hydro generator power control system.
Spas, Ssm = Chosen VA system power base, and rated VA motor capacity, respectively
Ta, cosen = Dynamical system'’s inertia constant, and motor’s rated power factor, respectively

sinPsm |-cosPsm cosPsm | - sinBsm X'y fq f3 f1=(Xg-X g} X" ad/ (Kag-X ad)
Tsmt = Tsm= X'sm= fsm = fa=(X'g-X"g)/X ad
cosBsml sinBsm sinBsu | cosBsm X"q -f fs]  f5=- (XX )X 'aq

f7=-(Kg-X'q)- X" ag/ (Xag-X aq)
(A2-98)

The electrical angle of the rotor is defined as, see equation (A2-43);
Bsm = (0ot —( Osm +6¢)
giving rise to the following differential equation describing the angular movement of the 'Extended’ Synchronous Motor:

d[3§|\4/dt = o (1 - Q- Qs ) where:; Qsu= pu angular speed of rotor (A2-99)

(Tx1) - =

¢ = f/f, =pu angular speed of rotor m.m.f.
relative to rotor. See p. A2/11.

Power Control System Model for generator mode of operation ( here: hydro generator as illustration. )

Ai% A (1+ Te8)
ref0 r > * 4

2 - > l-‘ao- nI:).s
+? - (TeT)s” + (Tc+Te(8i+3p))s+dy Aa 1+(0.5-2,Tr)s

control : AQrer = Q.
For 'P-control’ :

— 9 ,—ATwmec——p For 'normal’ frequency

\ > 8o AQrer=C+(Ptarget -Pm)+ Q¢
|/AQ =(Q-1) AQ

dA&/dt = Ki-{ AQrer - (1 - Qsm) + AW) — Kx A2 Regulator system

dAw/dt = Ks-Ad — Kg-Aw Regulator system

dAg/dt = (3Ko/Qsm)-Ad — Ko-Ag Hydraulic system (A2-100)

)
ATmee = AQ — 8o-(1 - Q¢ -Qsm) — (2/Qsu)-AG Net change of mechanical torque
Control system parameters:
Ko = 2/(30:Tr) T, : Time constant for hydraulic system (eg 0.3s)
Ki=1/Te Tc : Time constant for main servo ( eg 0.08s)
Ko = (8p + 8t)/Te <« T, : Transient droop time constant (eg 17s)
Ks =8/t & . Transient droop (eg 0.15pu)
Ks = 1T 8p : Permanent droop (eg 0.0 — 0.03. The value 0.0
Pm = absorbed motor power =0.5-igm"Usm if frequency sustained by a single unit)
Pm is negative in generator mode. &, : Initial pu turbine opening (ta). (if ty <0.3 then 4,=0.3)

Piarget = target value of P
c = per unit scaling factor (eg.: ¢=0.1)

Voltage Control System Model — See chosen example system on p. 1/29



APPENDIX 3

The Park transformation P



-A3/1-

APPENDIX 3
The Park transformation P
Formal basis for the ensuing development is again the d-q diagram of a generalised mode/
machine. Figure A3-1 shows the main structure of the generalised machine that we apply,
where the three phase stator winding is assumed to be the rotating part, while the d-q axes
with associated windings related to field- and damper circuits, are considered fixed. The
phasors 'R’,'S' and 'T’ symbolize the m.m.f.-axes of respective phase windings.

.ﬂ

Figure A3.1 Main structure of salient pole generalised machine.

We wish to transform currents, fluxes and voltages associated with the rotating 3-phase winding
to equivalent d- and g axis quantities that are fixed in space. By inspection of the diagram of
Figure A3-1, we readily see that; '

ig = k (ir cOSO + is cOS(6 - 21/3) + iy cos(B - 41/3))
(A3-1)
iqg = - k (ir SN + is sin(8 - 21/3) + it sin(@ - 41/3))

where k is a constant to be determined. To make the transformation reversible it is necessary

to define a third variable that relates to the phase currents. To this end the zero sequence
current i, does suitably;

i = 1/3) (ir +is + i7) (A3-2)

Equations (A3-1) and (A3-2) are put together to produce the following tentative form of the
Park transformation;

cos® | cos(6 - 2n/3) | cos( - 4n/3) | |ir |
=k |-sin@ |-sin(6 - 2m/3) | - sin(B - 47/3)} | is (A3-3)
1/(3k) 1/(3k) 1/(3k) it
On compact form:
idqo =P iRST (A3'4)

Before turning to determining the coefficient k, it is practical to already be in possession of
the inverse of (A3-3). We find that;
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iR cosO -sin@ 3k/2
is| = (2/(3Kk))| cos(B - 2a/3) -sin(® - 2n/3)| 3k/2 i (A3-5)
i cos(8 - 4n/3)| -sin(0 - 4n/3) | 3k/2
or compactly;
irsT = P ggo (A3-6)

Final task is determining k: We require that the voltages transform in the same way as the

currents. It is also logical that pu power is 1 (or close to 1) when voltage and current of the

main circuits are 1pu. Thus in the phase frame of reference pu power supplied to the motor
is in principle to be expressed as;

p=(1/3) (er R+ €s s+ er it) = (1/3) €ror irst (A3-7)
= (1/3) (P! eugo)’ (P™ lago)
= (1/3) €'ags (P™)'P™") o (A3-8)

while the expression in the d-q frame of reference becomes;

P=(1/2) (ala* €l +€sio = (1/2) €4q lg+ &5 b (A3-9)

These constraints that 'boil down’ to the equations (A3-8) and (A3-9), set the value of k :
Using the matrix expression for P from (A3-5) into (A3-8), this latter equation takes on
this form,

p = (2/(9K%)) €\ laq * €6 o (A3-10)
which - according to the premises - should be the same as (A3-9). Equality requires that
Y, = 2/(9k%), from which is found that k=2/3.
Setting k =2/3 in (A3-3) and (A3-5), we finally arrive at the sought Park transformation
and its inverse:
cosO | cos(6 - 2n/3) | cos(6 - 4n/3)
P =(2/3)| -sinB | - sin(0 - 2/3)] - sin(d - 41/3) (A3-11)
1/2 112 1/2
cos6 -sind 1
P' = [cos(6-2n/3)|-sin(6-2r/3)| 1 (A3-5)
cos(8 - 4n/3)| -sin(6 - 4n/3) 1

The Park transformation P and its inverse, with present
modelling premises .
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