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An exact decomposition approach for the real-time

train dispatching problem

Leonardo Lamorgese ∗ Carlo Mannino ∗

Abstract

Trains movement on a railway network are regulated by the o�cial timetables.

Deviations and delays occur quite often in practice, asking for fast rescheduling

and rerouting decisions in order to avoid con�icts and minimize overall delay. This

is the real-time train dispatching problem. In contrast with the classic "holistic"

approach, we show how to decompose the problem into smaller subproblems asso-

ciated with the line and the stations. This decomposition allows for the application

of suitable simpli�ed models, which in turn makes it possible to apply Mixed In-

teger Linear Programming to quickly �nd optimal or near-optimal solutions to a

number of real-life instances from single-track lines in Italy.

1 Introduction

In a �rst and gross picture, a rail network may be viewed as a set of stations connected
by tracks. Each train runs through an alternating sequence of stations and tracks. Each
route also includes the (possibly complicated) movements performed by the train within
each station. The trains run along their routes according to the production plan; the
latter speci�es the movements (routing) and the times when a train should enter and
leave the various segments of its route (schedule), including stations arrival and depar-
ture times which de�ne the o�cial timetable. The generation of the production plan is
typically decomposed into two successive phases. In the �rst phase a tentative o��cial
timetable is established and the arrival and departure times are �xed. In the second
phase, called train platforming or track allocation (see [7], [11]) the complete routes
(including station movements) for the trains are established, sometimes by allowing
moderate deviations from the tentative timetable.

In principle, the production plan ensures that no two trains will occupy simultane-
ously incompatible railway resources. In other words, a production plan is a con�ict
free schedule. The problem to design optimal production plans is of crucial relevance
for railway operators. As pointed out in [23] optimum resource allocation can make a
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di�erence between pro�t and loss for a railway transport company. Even though the of-
�cial timetable is con�ict free, one or more trains can actually be delayed when running
and potential con�icts in the use of resources may arise. As a consequence, re-routing
and re-scheduling decisions must be taken in real-time. These decisions are still, in
most cases, made by human operators (dispatchers), and implemented by re-orienting
switches and by controlling the signals status (i.e. setting signalling lights to green or
to red), or even by telephone communications with the drivers. The dispatchers take
their decisions trying to moderate delays, typically having in mind some ranking of the
trains or simply following prescribed operating rules. What the dispatchers are actually
doing without being aware of it is solving an optimization problem (and of a very tough
nature). Following [30], we call this problem the real-time Train Dispatching problem
(RTD).

In short, the RTD problem amounts to establish, for each controlled train and in real-
time, a route and a schedule so that no con�icts occur among trains and some measure
of the deviation from the o�cial timetable is minimized. As such, the RTD problem falls
into the class of job-shop scheduling problems where trains correspond to jobs and the
occupation of a railway resource is an operation. Two alternative classes of formulations
have been extensively studied in the literature for job-shop scheduling problems and
consequently also applied to train scheduling and routing problems, namely the time
indexed formulations [17] and the disjunctive formulations [4].

In time indexed formulations (TI) the time horizon is discretized, and a binary vari-
able is associated with every operation and every period in the time horizon. Con�icts
between operations are prevented by simple packing constraints. Examples of appli-
cations of (TI) to train optimization can be found in [7], [8], [10], [11], [20], [30], [34]:
actually the literature is much wider, and we refer to [14], [23] and [31] for extensive
surveys. To our knowledge, basically all these works deal with the track allocation
problem, which is solved o�-line and where the feasible time periods associated with
train routes are strongly limited by the tentative timetable. In contrast, in the RTD
problem the actual arrival and departure times may di�er substantially from the wanted
ones. Consequently, the number of feasible time periods grows too large to be handled
e�ectively by time-indexed formulations within the stringent times imposed by the ap-
plication, as extensively discussed in [26]. Another problem with (TI) formulations is
that, if the time step is not chosen carefully, they may easily lead to solutions which
are practically unrealizable (see [20]).

In disjunctive formulations, continuous variables are associated with the starting
times of the operations, whereas a con�ict is represented by a disjunctive precedence
constraint, namely, a pair of standard precedence constraints at least one of which
must be satis�ed by any feasible schedule. The disjunctive graph ([3]), where disjunc-
tions are represented by pairs of directed arcs, can be associated to any disjunctive
formulation and exploited in solution algorithms. This type of disjunctive formulations
can be easily transformed into mixed integer linear programs (MILPs) by associating a
binary variable with every pair of (potentially) con�icting operations and, for any such
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variables, a pair of big-M precedence constraints representing the original disjunction.
These constraints contain a very large coe�cient and they tend to weaken the overall
formulation, which is the main reason why (TI) formulations were introduced.

The connection between railway tra�c control problems, job-shop scheduling and
corresponding disjunctive formulations was observed quite early in the literature. How-
ever, a systematic and comprehensive model able to capture all the relevant aspects of
the RTD was described and studied only in the late 90s ([25]) and further developed
in [27]. In these works, the authors also introduce a generalization of the disjunctive
graph that they call alternative graph, which we refer to here simply as disjunctive
graph. After these early works there has been a �ourishing of papers representing the
RTD by means of disjunctive formulations and exploiting the associated disjunctive
graph. Recent examples can be found in [13], [14], [15], [32]. A comprehensive list
of bibliographic references is out of our scope and again we refer to the above men-
tioned surveys. The great majority of these papers, however, only use the disjunctive
formulation as a descriptive tool and resort to purely combinatorial heuristics to solve
the corresponding RTD problems. The explicit use of the disjunctive formulation or
their reformulations to compute bounds is quite rare, and typically limited to small or
simpli�ed instances. Examples are [26], which handles small-scale metro instances, and
[32], which introduces several major simpli�cations, drastically reducing the instances
size.

So, methods based on mathematical programming techniques are rarely applied
to solve real-life instances of the RTD problem: time-indexed formulations tend to
be too large and often cannot even generate a solution within the time limit; big-
M formulations tend to be too weak and they can fail to produce feasible solutions
within the time limit. Actually, the lack of real-life implementations of theoretical
studies regards all known approaches, exact or approximated, as recently observed
in [20]. However, in the same paper the author conjectures that the application of
optimization to regular dispatching activities is imminent: in this paper we somehow
con�rm his conjecture. We introduce a new modeling approach to the RTD and a
solution methodology which allow to overcome some of the limitations of the standard
big-M formulations and solve to optimality (or near) a number of real-life instances in
single-track railways within the stringent time limits imposed by the application. The
methodology is based on a structured decomposition of the RTD into two sub-problems:
the Line Tra�c Control Problem (LTC) and the Station Tra�c Control Problem (STC).
The LTC amounts to establishing a timetable so that trains never occupy incompatible
railway resources. The STC problem is the problem of routing and scheduling trains
in a station according to a given timetable. The LTC problem and the STC problem
give raise to distinct sets of variables and constraints, which are then solved jointly by
using row and column generation.

The decomposition has two major advantages. First, the number of variables and
big-M constraints is drastically reduced with respect to the standard big-M formula-
tions. Second, depending on the speci�c infrastructure, we may choose di�erent models
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to represent stations in the STC problem. How we will show in Section 4, the (general)
STC problem is NP-hard. However, in some cases of practical impact, simpler models
can be considered, leading to polynomial cases. One such case is described in Section
4 along with two di�erent solution approaches. Actually, since the lines may contain
quite di�erent station layouts, di�erent models can be applied simultaneously. Also,
one can start using the simpli�ed models in every station of the line, and re�ne it only
if constraints violation occur (in a row generation fashion).

Interestingly, this decomposition resembles the normal practice of railway engineers
to distinguish between station tracks and line tracks (see, e.g. [13]) and of actually
tackling the two problems separately.

The decomposition principle presented in this paper has been already applied to
design a semi-automated tra�c control system operating a number of single and double
tracks line in Italy. The corresponding solution algorithms have been incorporated
into a commercial software developed by Bombardier Transportation, one of the largest
multinational companies in the sector. However, the current implementation only makes
use of simple greedy heuristics to solve the subproblems. Also, the �nal decisions are
still in the hands of the dispatchers, which may accept or refuse the solutions proposed
by the system. On the other hand, the exact algorithm presented in this paper has
already been successfully tested on the above mentioned lines.

Summarizing the major contribution of this paper to the current practice:

• We introduce an exact decomposition approach to the real-time Train Dispatching
problem.

• We give some complexity results on some variants of the subproblems in the
decomposition which are relevant in the practice.

• We show how to e�ectively model the subproblems by mixed integer programs
and how to apply delayed row generation to couple them.

• The new approach is able to solve real-life instances of single-track lines from
various regions of Italy within the stringent time limits imposed by the application.

2 Problem description

In this section we introduce the main ingredients of the RTD problem. For seek of
brevity, we omit here and in the subsequent modeling sections a number of details
which are necessary in a practical implementation but irrelevant to describe the crucial
modeling and algorithmic issues.

A Railway Network is a set S of stations and a set B of tracks (called blocks)
connecting pairs of stations. Blocks are often partitioned into sections, and, for safety
reasons, trains running in a same direction on the same block will be separated by
(at least) a �xed number of such sections. We neglect sections in the remainder of
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the paper but extending the model to handle such case is immediate. We also neglect
other railway infrastructures, such as sidings and cross-overs, but again the extension
is straightforward. Next, we examine the elements of the railway network.

Stations. A station can be viewed as a set of track segments, the minimal controllable
rail units, which in turn may be distinguished into stopping points and interlocking-
routes. A stopping point is a track segment in which a train can stop to execute a
service. Two special stopping points are those associated with the entrance and the
exit to the station. An interlocking-route is the rail track between two stopping points,
and is actually formed by a sequence of track segments. For our purposes, a station
s ∈ S is represented by means of a directed graph G(s) = (Ns, Es) where Ns is the set
of stopping nodes (corresponding to points) and Es ⊆ Ns×Ns is the set of interlocking
arcs (corresponding to routes). A train going through a station s is running a directed
path in the station graph. The path usually contains a platform node, where a train
can, if required, embark or alight passengers. Also, if the train enters (exits) the station,
the path will contain an entrance (exit) node.

1 

2 

3 

4 

0 

Figure 1: From the station scheme to the oriented graph. Nodes 2, 3, and 4 correspond to

platforms

Trains and routes. Our purpose is to model the real-time movements of the trains
T along the line. Part of the trains will still be out of the line, while the others will be
in stations or running on tracks between stations. A train i ∈ T running through the
line from an initial position to the destination station will traverse all the intermediate
stations and blocks. We represent this movement by a graph R(i) = (V i, Ai) called train
route. The nodes of R(i) are associated with the blocks, with the (station) stopping
nodes and with the (station) interlocking arcs traversed by train i. The graph R(i) is a
directed simple path. Every arc (u, v) ∈ Ai has a weight Wuv, and represents a simple
precedence constrain, i.e. v is encountered by train i right after u, with Wuv being the
minimum time to move from u to v. So, if u is block connecting station A to station B

5



then v is the entrance node of station B and Wuv is the minimum running time. If u is
a platform in a station then v is interlocking arc going out from u and Wuv is the time
spent to embark and alight passengers, etc. Since R(i) is a directed path, its nodes
are naturally ordered and we let V i = {vi1, vi2, . . . }. Every route will also include an
arti�cial node (the last) representing the out-of-line state.

i 

9 1 2 3 4 5 6 7 8 

Station 1  

exit node 

Track 1 -  2 

Station 2 

entrance node 

Station 2 

interlocking 

Station 2 

platform 

Station 2 

interlocking 

Station 2 

exit node 

Track 2 -  3 

Station 3 

entrance node 

W12 W23 

Figure 2: A train route (for train A). Circle nodes correspond to tracks preceded by signals,

whereas diamond nodes are interlocking routes or tracks between stations.

The real-time schedule. We now consider a new graph R = (V,A) which is the
union of all route graphs R(i), i ∈ T plus an additional vertex O (the Origin) and a
directed arc from O to the �rst node vi1 of each route i ∈ T . The weight WOvi1

of these
arcs equals the expected time for the train i to start its route for trains still outside the
line, and WOvi1

= 0 for trains in line.
Every node v in graph R (except the origin) represents the occupation of a rail

resource by some train. With every node v we associate a non-negative continuous
variable tv. For v ∈ V \{O} and v = vik, the quantity tv represents the (earliest) time in
which train i can enter the k−th node in its route, i.e. the time when the corresponding
rail resource can be occupied by train i. Also, we let tO = 0: in other words, node O
represents the planning starting time. The vector t ∈ IRV

+ is called real-time schedule.
Clearly, every feasible schedule must satisfy the following set of precedence constraints:

tv − tu ≥ Wuv (u, v) ∈ A (1)

Also, any feasible scheduling is such that no two trains occupy simultaneously the
same rail resource or incompatible ones. So let i, j ∈ T be distinct trains, and let
vik, v

j
l ∈ V represent the occupation of incompatible (or same) rail resources. So, either

train i enters next rail resource vik+1 on its route before j enters v
j
l , or train j enters next

rail resource vjl+1 before i enters v
i
k. This can be expressed by the following disjunctive

constraint:

(ti,k+1 − tj,l ≥ 0)
∨

(tj,l+1 − ti,k ≥ 0) (2)
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where, to simplify the notation, we let tx,y = tvxy . There is one such constraint for every
pair of incompatible rail resources visited by any two distinct trains. Disjunctions of
precedence constraints can be visualized on the graph R by pairs of dotted arcs.

j 

i 1 2 3 4 5 

tA1 tA2 tA3 tA4 tA5 

1 2 3 4 5 

tB1 tB2 tB3 tB4 tB5 

0 

Station 1  

exit node Track 1 -  2 

Station 2 

entrance node 

Figure 3: The graph R with disjunctive constraints. Train A cannot enter the track between

station 1 and 2 before the train B has entered Station 2, or viceversa

Objective Function The quality of the real time schedule t depends on its conformity
to the o�cial timetable. With engineers from Bombardier Transportation and from the
Italian railway network operator we have considered here a convex, piece-wise linear
function. Let ais be the arrival time of train i ∈ T in station s ∈ S. We associate
with ais a convex piece-wise linear function cis as depicted in Picture 4. The overall cost
will be the sum of the costs associated with all trains. Of course, more complicated
measures can be considered. The cost for a train is obtained by summing up the delay
costs in every station of its route and the overall cost c(t) is the sum of the costs of all
trains. Consequently, the cost function c(t) is also convex and piece-wise linear.

The railway tra�c optimal real-time tra�c control problem We are now able
to state the RTD problem:

Problem 2.1 Given a railway infrastructure and its current status, a set of trains
and their current position, �nd a route for every train and an associated real-time
schedule satisfying all of the (simple) precedence constraints (1) and all of the disjunctive
precedence constraints (2) so that the cost function c(t) is minimized.

Remark that in order to solve the RTD problem we need to solve jointly a routing and
a scheduling problem. The RTD problem can be easily modeled by Mixed Integer Linear
Programming (as in [26]) or some other techniques to tackle disjunctive programs.
However, the RTD instances of some practical interests are typically so large that
the corresponding MILP programs cannot be solved by the direct application of some
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ci
s 

Wi
s 

ai
s 

Figure 4: Cost function agreed with practitioners. For train i and station s, W i
s is the o�cial

arrival time, whereas ais is the actual arrival time.

commercial solver or of standard solution techniques. For this reason most authors
resort to heuristic approaches or to simpli�ed versions of the problem.

We have followed a di�erent path, namely we developed a decomposition technique
which makes it possible to apply classical MILP techniques and solve to optimality
instances of the RTD problem of practical interest. In what follows, also driven by
our real-life application, we focus our attention on single-track lines. Nevertheless, the
decomposition here discussed can be applied to any instance of the RTD problem and
constitute a valid scheme for any solution technique.

Single-Track lines We will consider here the case of single-line, single-track railways.
"Single-track" means that there is only one track between any two stations; single-line
means that the infrastructure graph, with vertices corresponding to stations and edges
to the tracks between stations, is a simple undirected path. This choice is motivated as
follows:

• The generalization to multi-track railways is straightforward and does not in-
crease signi�cantly the computational burden. In contrast, the presentation of
the models and of the algorithms is substantially simpli�ed.

• Also the generalization to multi-line railways is straightforward. However, in this
case the computational e�ort increases (depending on the number of lines). Still,
exact or approximated decompositions may be applied (see, e.g., [16]).

• A large share of the railway system is still single-track. For example, in December
2011 in Italy there were 9.218 km of single-track lines against 16723 km in total
([29]): there are more single-track lines than any other type of lines. In Norway in
2009 this ratio is even more extreme ([22]): 3919 km of single-track lines against
4170 in total!
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• The methodology here presented will be actually implemented to manage single-
track lines of the Italian railway system.

In single-track lines the stations in S = {1, . . . , q} are connected by single tracks
(blocks), with block i joining station i− 1 and station i. Observe that in this situation
the routing problem is only limited within the stations as there is only one way to go
from a station to another. Also, if two trains meet somewhere on the line, this must be
in a station (or some similar facility).

We decompose the RTD problem into two sub-problems. The �rst is the real time
Line Tra�c Control (LTC) problem and amounts to establishing a schedule for the
trains so that they only meet in stations (or they do not meet at all), minimizing a
given cost function. The second problem, namely the real time Station Tra�c Control
(STC) problem, is a feasibility problem and amounts to �nding suitable routes in the
station according to a given schedule. Again driven by the application, we will consider
only small sized stations, with some important consequences on the adopted models.
The two problems must be solved jointly. In fact, a solution to the LTC problem may
result in an inadmissible con�guration for the STC problem, as we may not be able
to assign routes to trains as scheduled by the LTC (for example when the number of
trains simultaneously in the station exceeds the number of platforms available).

3 The real-time Line Tra�c Control problem.

The �rst problem we discuss is the real time Line Tra�c Control problem (LTC). We
conventionally extend the line with two additional �ctitious stations, one for each side,
able to accommodate any number of trains. Trains meeting in one of these stations
are actually meeting outside the line, or, equivalently, not meeting on the line. As in
this subproblem we are neglecting (for the moment) everything that happens in the
stations, we may consider simpli�ed routes for the trains. In particular, we assume
that for each train i, its route is an alternating sequence of stations and blocks and can
be represented by the simple directed path R(i) = {vi1, (vi1, vi2) . . . , (vil(i)−1, vil(i)), vil(i)}
where node vik ∈ R for 1 ≤ k ≤ l(i) is either a station or a block. In particular, the last
node vil(i) is always the destination station, whereas the �rst node vi1 may be a station

or a block, depending on the initial position of the train in the line. If vik is a station
then vik+1 is the next block on the route of train i, and the weight of the arc (vik, v

i
k+1)

is the minimum time the train is supposed to stay in the station. If vik is a block then
vik+1 is the next station on the route of train i, and the weight of the arc (vik, v

i
k+1) is

the minimum running time of the train through the block. A particular care must be
taken for the �rst arc (v1k, v

i
2), where the weight represents a residual time.

Once again we can consider a set of trains T running through the line, the corre-
sponding graph of the routes R = (V,A) obtained as described in Section 2 and the
associated schedule t ∈ IRV

+. The schedule t approximates the behaviour of the trains
along the line. In this simpli�ed setting, if v is the node representing station s on the
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route of train i, then tv is the (predicted) arrival time of train i in station s. Similarly,
if v is the node representing the block outgoing a station s on the route of train i,
then tv is the (predicted) exit time of train i from station s. Since we are dealing with
small stations, this time closely approximates the departure time of the train from the
station1. O�cial departure times are of course lower bounds on actual departure times,
and can be immediately represented by weighted arcs from the origin to the nodes
representing the stations.

Consider now two distinct trains i and j and let R(i) and R(j) be their respective
routes. Assume that the trains meet in station s ∈ S and let vik and vjm the vertices
representing station s on route R(i) and R(j), respectively. To simplify the following
discussion, we may assume neither of these nodes is the last on its route.

Now, since the two trains meet in s then train i exits station s after train j arrives
in s and viceversa, i.e. train j exits station s after train i arrives in s. In other words,
the schedule t must satisfy the following (conjunctive) pair of constraints:

ti,k+1 − tj,m ≥ 0 (3)

tj,m+1 − ti,k ≥ 0 (4)

Observe that the above precedence constraints correspond to adding to graph R the
arcs (vik+1, v

j
m) and (vjm+1, v

i
k), with 0 weight. This is depicted in Figure ??, where we

consider the case of two trains running in opposite directions and meeting in station s5;
the two precedence constraints are represented by oriented arcs.

j 

i s4 b4 s5 b5 s6 

w4 m4 

s6 b5 s5 b4 s4 

ri 

rj 

Figure 5: Two trains running in opposite direction and meeting in station s5 may satisfy two

additional precedence constraints, represented on the graph by two directed arcs.

In the following, trains i and j running in the same direction are followers, otherwise
they are crossing trains. To simplify the discussion we assume now that trains will meet
at most once on the line. This is obvious for crossing trains, but not true in general for

1By slightly complicating the model these times can be made more exact
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a pair of followers, even though in almost all practical cases it is respected. However,
the assumption can be easily dropped by a straightforward extension of the model.
Another assumption we make for followers is that when the following train catches up
with the other train, it becomes the leading train after the meeting (the so called pass
event). This is what typically happens in practice, where the catching up train is a
faster one; again this assumption can be easily dropped in a slightly extended model.

Consider now a pair of followers i and j and assume that i precedes j before they
meet in s and j precedes i after the meet. Since we are considering single section tracks,
the following train cannot enter a given block before the leading train has left it, i.e. it
has entered the next station on the block. This can be trivially expressed by a family of
precedence constraints, which, in turn, corresponds to adding to R a family of directed
arcs of 0 weight.

j 

i 
s4 b4 s5 b5 s6 

s4 b4 s5 b5 s6 b3 

b6 

b6 

b3 

Figure 6: Precedence constraints for two followers meeting in s5.

So, in general, the meeting condition of train i and train j in station s translates into
a family precedence constraints on the schedule variables, which, in turn, corresponds
to a family Aijs of arcs in R.

The LTC problem amounts to �nding a minimum cost schedule t such that all pair
of trains only meet in stations. For every {i, j} ⊆ T , and every s ∈ S, we introduce a
binary variable yijs and we let yijs = 1 if i and j meet in s, and 0 otherwise.

Then the LTC can be immediately formulated as follows:

min c(t)

s.t.
(i) tv − tu ≥ Wuv, (u, v) ∈ A

(ii) tv − tu ≥ −M(1− yijs ), (u, v) ∈ Aijs , s ∈ S, {i, j} ⊆ T

(iii)
∑

s∈S y
ij
s = 1, {i, j} ⊆ T

t ∈ IRV
+, y binary

(5)
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where M is a large suitable constant. Also, since c(t) is convex and piece-wise linear,
it can be easily linearized by adding suitable variables and constraints, and (5) can be
turned into a MILP.

Let (t̄, ȳ) be a feasible solution to (5). Then the binary vector ȳ is called a meeting.
We discuss now a property of meetings with crucial consequences on the solution

algorithms. We recall here that an undirected graph G = (V,E) is called aninterval
graph if it is the intersection graph of intervals of the real line, i.e. the nodes of G
correspond to intervals and there is an edge between two nodes if and only if the
corresponding intervals overlap.

Lemma 3.1 Let ȳ be a meeting and let ȳs ∈ {0, 1}(
|T |
2 ) be the subvector of y associated

with station s. Then ȳs is the incidence vector of the edges of an interval graph.

Proof. Since ȳ is a meeting, there exists t̄ ∈ IRV
+ such that (t̄, ȳ) is feasible to (5). For a

train i ∈ T , let Qi
s be the time interval (possibly empty) in which the train is in station

s according to the schedule t̄. Let Gs = (T,Es) be the interval graph associated with

the time intervals {Q1
s, . . . , Q

|T |
s }. Now, ȳijs = 1 if and only if Qi

s ∩ Qj
s 6= ∅, that is if

and only if {i, j} ∈ Es. �

In what follows we let G(y) be the interval graph associated with the meeting y
(recall that the union of interval graphs is an interval graph). It is also not di�cult to
see that, given an interval graph H = (V,E) it is possible to build an instance of the
LTC problem with a single station and a solution (t, y) (so that G(y) = H, i.e. y is the
incidence vector of the edges of H.

A solution (t, y) to the LTC problem cannot in general be extended to a solution
to the RTD problem. Indeed, it may be impossible to accommodate the trains in the
stations according to the schedule t (which establishes when trains enter and leave the
station). The corresponding feasibility problem is discussed in the next section.

4 Modeling the real-time Station Tra�c Control prob-

lem.

We focus now our attention on a station s. A solution to the LTC problem provides a
timetable for s, that is the time in which each train enters and leaves s. In its more
general version, the real-time Station Tra�c Control (STC) asks for �nding, for each
train entering or leaving s, a route in s and a scheduling of the movements of the
train along its route so that input and exit times from the station agree with a given
timetable. This general STC problem closely resembles its o�-line version (the Train
Platforming Problem, see [9]). However, in most practical contexts and in particular in
our speci�c setting we can make reasonable assumptions that make the problem a lot
simpler.
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First, in most single-track lines and in particular in those considered in our test-bed,
the stations are very small, like the one in Figure 1. Basically, for a given platform,
there is only one route going through it (two, if you consider the di�erent directions).
In other words, there is a one-to-one correspondence between platforms and routes for
a given train, and if we choose a platform for train i, then we also establish the station
route for i. 2 A second assumption is that the running time from the entrance stopping
point to the platform is (approximatively) the same for all trains and all platforms. So,
we do not add further delay to a train by selecting, say, platform b instead of platform
a. Dropping these assumptions, however, does not complicate the model too much.

Thanks to the above assumptions, the STC problem reduces to decide whether the
platforms in the station su�ce to accommodate all the trains that arrive at the station,
which, in turn, only depends on the meeting vector y.

We state now more formally the (no routing) STC problem.

Problem 4.1 (STC) Let P be the set of platforms, let T be the set of controlled trains
and let ys be a feasible meeting in the station. For every train i ∈ T denote by P (i) ⊆ P
the set of platforms that can accommodate train i. Then the STC problem is the problem
to assign to each i ∈ T a platform in P (i) so that if yijs = 1 then i and j receive a
di�erent platform.

Given a undirected graph G = (V,E), a coloring is a function c : V → N such
that c(i) 6= c(j) for all ij ∈ E. A k-coloring is a coloring such that c(i) ≤ k for all
i ∈ V . Given sets L(i) ⊆ {1, . . . , k} for i ∈ V , a list coloring of G is a coloring c
with c(i) ∈ L(i). Consider a function µ : V → N . A µ-coloring is a coloring c of G
with c(i) ≤ µ(i) for every i ∈ V . The coloring, k-coloring, list-coloring and µ-coloring
problem amount to establish if a graph G admits a coloring, a k-coloring, a list coloring
and a µ-coloring, respectively. The following complexity results are surveyed in [5]:
on interval graphs, the coloring problem and the k-coloring problems are easy, the list
coloring and the µ-coloring problems are NP-complete.

It is not di�cult to see that the STC problem amounts to �nding a list coloring of
G(ys), with L(i) = P (i) for every node i. In the previous section we have seen that
G(ys) can actually be any interval graph. It immediately follows the next

Theorem 4.2 The STC problem is NP-hard.

Proof. Reduction from list-coloring in interval graphs.

However, for most stations in a single-track line, a more treatable situation occurs,
namely P (i) = P for all i and every train can be accommodated in any of the platforms
of the station. We call this case the all good STC problem.

Lemma 4.3 The all good STC problem is easy.

2Clearly, this does not hold for larger stations, where several routes go through the same platform.
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Proof. When all color lists are equal, the list coloring problem is the standard graph
coloring problem. The graph coloring problem is easy for interval graphs.

Finally, there is an intermediate case which occurs in practice. Namely, when plat-
forms have di�erent lengths as well as trains and a train can only be accommodated
on a platform which is at least as long. We call this the progressive STC problem. We
have that:

Lemma 4.4 The progressive STC problem is NP-complete.

Proof. Reduction from µ-coloring on unit interval-graphs. A unit interval graph
is the intersection graph of unit length intervals. Observe that every µ-coloring uses
at most kµ = maxi∈V µ(i) colors. So, given the function µ, and a unit interval graph
H = (V,E) we construct an instance of the progressive STC problem in the following
way. We consider a single station line. We let the set of trains T = V , the platforms
P = {1, . . . , kµ} and the meeting y be the incidence vector of the edges of H (i.e.
G(y) = H). Next, for each train i ∈ T , we de�ne its length as lT (i) = M − µ(i),
where M is a large real number; similarly, for each platform p ∈ P we let its length be
lP (p) = M − p. Suppose that the associated progressive STC problem is feasible, and
let c : T → P be an assignment of platforms to trains. Then c is also a µ-coloring of
H. In fact, since c(i) 6= c(j) for all ij ∈ E, c is a coloring of H. Also, for each i ∈ T we
have lP (c(i)) ≥ lT (i), which implies M − c(i) ≥ M − µ(i), which becomes c(i) ≤ µ(i),
and c is a µ-coloring of H.

Basically all the instances considered in our (real-life) test-bed belong to the all-good
STC problem, with exceptions which can be handled easily. In what follows we discuss
two di�erent approaches to the solution of the all good STC problem. The �rst leads
to a compact formulation whereas the second to a non-compact one, with a number of
constraints which can grow exponentially with the number of trains and the number
of platforms. Nevertheless, the non-compact approach has proven to be more e�ective
in practice, as we will show in Section 6. In the sequel the number cs of platforms of
station s will be called the station capacity.

A compact, �ow based representation of the all good STC problem. Let
(t, y) be a solution to the LTC problem, and let s ∈ S be a station and i, j ∈ T be
two distinct trains going through s. We say that j is a successor of i in s (according
to (t, y)) if i leaves s before j enters s. We now introduce for every ordered pair (i, j)
of distinct trains and every station s ∈ {1, . . . , |S|}, the quantity xijs which is 1 if and
only if j is a successor of i in station s. It is not di�cult to see that x can be easily
obtained from y. For instance, if i runs from station 1 to station |S| and j from |S| to
1 (so they run in opposite directions), and they meet in station 1 ≤ k ≤ |S|, then i is a
successor of j in every station s > k and j follows i in every station s < k. Assuming
i < j, the above conditions can be expressed by the following constraints:
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xjis =
∑
q<s

yijq , s ∈ S

. and
xijs = 1−

∑
q<=s

yijq , s ∈ S

Similar transformations may be derived for pair of followers. In general, there exists
an a�ne transformation from y to x, i.e.

x = Qy + q (6)

with Q and q are suitable matrices.
So let Su(i, s, x) be the set of successors of i in station s. Now, we can think at

station platforms as unit resources that can be supplied to trains. Then a train j
receives the platform either "directly" from the station s, or from a train i such that
j ∈ Su(i, s, x), which in turn received its platform at an earlier stage. Following this
interpretation, we can represent the STC as a network �ow problem. Informally, the
station s can be represented by a supply node (it supplies up to cs units of resource)
and every train i can act both as a demand node and a supply node, since it can supply
1 unit of resource to successive trains.

u1 

r 

u2 
uT 

w1 w2 
wT 

u3 

w3 

p 

N(s,y) 

(1,1) 

…………… 

…………… 

(0,1) 

(0,1) 

(0,cs) 

(0,x2T) 

Er 

EU 

Ep 

EW (0,x21) 
(1,1) 

Figure 7: The support network. Lower and upper bounds are shown between brackets for

some representative arcs

We consider now a given station s and a meeting ȳ, along with the corresponding
successors vector x̄. For sake of simplicity, we assume that every train in T goes
through s. Since both s and x̄ are �xed, we simply denote Su(j, s, x̄) as Su(j). Also,
we assume that trains are ordered by their arrival times in station s. So, i ∈ Su(j)
implies i > j. Let us introduce a support graph N(s, x̄) = ({r, p} ∪ U ∪W,E), where
U = {u1, . . . , u|T |},W = {w1, . . . , w|T |}. Let the arc set E = Er∪EU∪EW∪Ep∪{(p, r)},
where Er = {(r, u) : u ∈ U}, EU = {(uj, wj) : j ∈ T}, EW = {(wi, uj) : i, j ∈ T, i 6= j},
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Ep = {(w, p) : w ∈ W}. With each arc e ∈ E we associate lower bound le and upper
bound fe. In particular, le = 1 for e ∈ EU and le = 0 for e ∈ E \ EU . Also, fe = 1 for
e ∈ Er ∪ EU ∪ Ep, f(wi,uj) = x̄ijs for (wi, uj) ∈ EW and fpr = cs.

We have the following

Theorem 4.5 The all good STC problem has a solution if and only if the graph N(s, x̄)
has a circulation satisfying all lower and upper bounds.

We give the necessity proof of this theorem in the Appendix. The su�ciency proof
is simpler and is omitted.

Since circulation problems can be expressed as linear programs ([1]), the above result
shows that the (all good) STC problem for a station s ∈ S can also be formulated as
a linear program. Coupling this linear program with the MILP associated with (5)
immediately provides us a MILP formulation for the RTD problem. However, as we
will show in the computational section, the approach discussed next has proven to be
more e�ective in �nding optimal solutions to the instance of the RTD problem in our
test-bed.

A non-compact formulation for station capacity constraints. Consider a sta-
tion s ∈ S with capacity cs and let (t, y) be a solution to the LTC problem. The station
capacity will be violated if and only if there exists a set of trains K ⊆ T such that
|K| = cs + 1 and all pairs of trains in C meet in s. If this last condition is veri�ed, then
yijs = 1 for all {i, j} ⊆ K. Since there are

(
cs+1
2

)
= (cs + 1)cs/2 pairs of distinct trains

in K, the condition is equivalent to
∑
{i,j}⊆K y

ij
s = 1

2
(cs + 1)cs.

In other words, the meeting y does not violate any station capacity constraint if and
only if, for all s ∈ S, we have:∑

{i,j}⊆K

yijs <=
1

2
(cs + 1)cs − 1 (7)

for all K ⊆ T with |K| = cs + 1.

5 Solution Algorithm

We are �nally able to formulate the RTD problem as a Mixed Integer Linear Program
by coupling constraints (7) and program (5) and linearizing the objective function:
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min c(t)

s.t.
(i) tv − tu ≥ Wuv, (u, v) ∈ A

(ii) tv − tu ≥M(yijs − 1), (u, v) ∈ Aijs , s ∈ S, {i, j} ⊆ T

(iii)
∑
{i,j}⊆K y

ij
s <= 1

2
(cs + 1)cs − 1, s ∈ S,K ⊆ T, |K| = cs + 1

(iv)
∑

s∈S y
ij
s = 1, {i, j} ⊆ T

t ∈ IRV
+, y binary

(8)

An alternative (compact) formulation is obtained by replacing constraints (8.iii)
with the inequalities de�ning the circulation problem on the network N(s, x) for all s
(plus the transformation (6)).

One major drawback of the above formulation is that the number of constraints
(8).iii can grow exponentially with the number of trains and the capacity of the sta-
tions. Also the number of constraints (8).ii can grow very large in practice, even in
our instances with small stations and a relative small number of trains. For this reason
we resort to the delayed row generation approach ([2]) which we summarize next. We
start by selecting a initial subset of constraints. Then, in each node of the branching
tree, we (i) solve the current linear relaxation (ii) check if the current fractional solution
violates any of the neglected constraints (separation) (iii) add the violated constraints
to the current program and iterate. Following this scheme, our initial formulation con-
tains only (all) constraints (8.i) and (8.iv). A major variant of the standard scheme
has proven to be more e�ective in our application. Namely, rather than looking for
violated inequalities in every node of the branching tree, we do it only when the asso-
ciated solution is integral. This approach tends to generate larger branching trees, but
this negative e�ect is more than counterbalanced by the saving in computing times.
Another related advantage is that the separation becomes easy. Indeed, whereas the
separation of a violated inequality (8.ii) can be done by inspection and is easy, we do
not have at hand a polynomial time algorithm for separating inequalities (8.iii) when y
is fractional. Actually, if y can assume any fractional value, then the separation prob-
lem for (8.iii) reduces to the Maximum Edge-Weighted Clique problem in undirected
graphs. The latter is known to be an NP-hard problem (see [24]), leaving very little
hope to solve the separation e�ciently. When y is binary and no constraints of type
(8).ii are violated, the situation changes drastically. Indeed, thanks to Lemma 3.1, we
know that in this case the graph G(ys) is interval. Then �nding an inequality of type
(8.iii) violated by y amounts to �nding, for each s, a maximum cardinality clique in the
interval graph G(ys), which can be done in |T | log |T | (see [19]).

A �nal interesting remark is that our row generation approach mimics, in some sense,
the actual behavior of human dispatchers. A violated constraint (8.ii) corresponds to
a so called line con�ict, that is a situation in which two trains occupy simultaneously
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incompatible track sections. Line con�icts are detected by dispatchers and prevented
by establishing a correct meeting station for the con�icting trains. The dispatchers
then force drivers to follow their decisions by switching suitable tra�c signals to red
light. Adding a constraint of type (8.ii) is the mathematical equivalent to activating a
red signal.

6 Computational Results

As already mentioned, an implementation of our decomposition approach equipped with
very simple local optimization heuristics has been already developed in cooperation with
Bombardier Transportation and placed into service on several single-track lines in Italy.
Besides being unable to certify the quality of the solutions found, a major drawback
of the current heuristic implementation is that in some practical situations it may be
unable to �nd feasible solutions even when detectable by expert dispatchers. This is
not a big issue in the current practice, as the system is only designed to support the
dispatchers by presenting possible solutions, but the operative decisions are still taken
by them. On the other hand, this faults would not be acceptable by a fully automated
con�ict resolution and route setting system.

The major purpose of our test campaign was to demonstrate that an exact algorithm
can indeed be implemented in practice, and that optimal solutions can be found within
the stringent time limits imposed by the application. Our experiments con�rm that an
optimal solution can be found very quickly in almost all instances of our real-life test
bed.

The real-life instances of our test-bed are from railways in North-Eastern Italy and
Sicily, regions with considerably di�erent topography and network status quo.

Namely these railways were:

1. Trento - Bassano del Grappa (T-BG): 22 stations

2. Gela - Siracusa (G-S): 22 stations

3. Lentini - Canicattì (L-C): 19 stations

4. Roccapalumba - Agrigento (R-A): 14 stations

5. Piraineto - Trapani (P-T): 12 stations

6. Alcamo - Trapani (A-T): 14 stations

A second purpose was to compare the �ow-based formulation with the non-compact
formulation for the all-good STC problem. Our experiments show that the non-compact
formulation clearly outperforms the compact one.
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Implementation details. All tests were run using CPLEX 12.3 on a shared server
with 1.87 GHz Intel R© Core CPUs. To implement Row Generation within branching
nodes, CPLEX o�ers di�erent strategies. An extension of the LazyConstraintCallback
class was used: the cut separator is called only if the current solution is integer. The
recommended settings for cplex were: (i) Turning o� presolve, (ii) Avoiding multiple
threads (iii) Setting the MIP search to Primal (iv) Turning o� dual reduction. In
addition we also disabled the heuristic search (HeurFreq = -1) and increased integer
tolerance.

Results. In our computations, we confronted the performances of the two formula-
tions by running tests using the real-life instances described above. A summary of
computed results is shown in table 1.

The time limits for the non-compact version was set to 15 seconds. In most instances,
and in particular on the harder ones, and on average, the non-compact formulation
outperforms the compact, �ow based one. In all cases above reported, the algorithm
based on the non-compact formulation found optimal solutions within a few seconds,
an acceptable time for dispatchers.

Next, we show the evolution of the integral solutions found by CPLEX and of the
gap between the incumbent solution and the best available LB for two instances of the
Alcamo - Trapani line:
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Name Line # trains Late Initial Rows Rows Added Computation
Time(s)

C NC C NC C NC
1 T-BG 30 3 9483 1401 307 96 20,70 0,95
2 T-BG 27 3 8234 1302 246 130 19,28 0,78
3 T-BG 21 3 4324 908 625 215 18,45 9,35
4 T-BG 28 3 9507 1633 583 964 15,41 14,04
5 T-BG 32 3 4858 918 688 453 16,89 2,69
6 G-S 17 0 2736 747 8 0 0,25 0,08
7 G-S 18 0 2908 771 12 0 0,17 0,08
8 G-S 18 0 2612 725 12 0 0,12 0,09
9 G-S 17 0 2731 742 12 0 0,11 0,2
10 G-S 16 0 2612 725 12 0 0,09 0,08
11 L-C 7 0 596 261 0 0 0,01 0,03
12 L-C 7 0 563 250 0 0 0,05 0,05
13 L-C 7 0 507 234 0 0 0,32 0,21
14 L-C 6 0 480 225 0 0 0,32 0,22
15 L-C 6 0 470 223 0 0 0,03 0,05
16 P-T 26 3 3669 904 399 189 6,81 1,09
17 P-T 24 1 3781 898 741 259 2,98 0,98
18 P-T 24 0 3530 873 790 323 8,10 0,84
19 P-T 24 0 3553 882 311 516 1,38 1,26
20 P-T 23 1 3417 862 313 412 1,31 1,09
21 R-A 14 0 1609 458 325 95 1,69 0,21
22 R-A 16 1 1722 487 228 100 2,95 0,21
23 R-A 14 0 1576 465 251 100 2,40 0,20
24 R-A 14 0 1580 460 228 102 1,73 0,19
25 R-A 14 0 1508 447 175 95 2,19 0,17
26 A-T 20 2 4031 832 975 435 32,57 0,97
27 A-T 20 1 4250 851 661 386 5,74 11,04
28 A-T 19 1 3764 832 707 743 10,14 5,81
29 A-T 19 1 3729 796 590 763 22,25 6,13
30 A-T 18 0 3057 755 830 786 28,08 6,41

Average 7,56 2,18

Table 1: Computational results. C stands for Compact, NC stands for Non-Compact, referring to

the method used in the algorithm to ensure that no station capacity constraint is violated
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Figure 8: Instance 28: Above, evolution of feasible solutions; Below, evolution of the gap

between the best current feasible solution and lower bound

21



Figure 9: Instance 29: Above, evolution of feasible solutions; Below, evolution of the gap

between the best current feasible solution and lower bound

In both cases, solutions of acceptable quality were found quite early in the branching
process. In a very few instances of the Trento - Bassano line, the process did not
terminate, but good feasible solutions were found within the time limits and the �nal
gap was small.

7 Current developments

A number of research directions are currently being explored. We are investigating the
possibility to strengthen our relaxation by identifying stronger valid inequalities. We are
looking for new branching strategies and investigating heuristic approaches to initialize
CPLEX. We are also studying alternative ways to represent meetings, which appear
very promising. Finally, we are extending the approach to deal with double-track lines
and multiple routes.
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8 Appendix.

Necessity proof of Theorem 4.5.
Proof.
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Figure 10: The cut in the necessity proof of Theorem 4.5.

We show that if there does not exist a platform assignment for some station s, then
N(s, ȳ) does not admit a circulation. We use Ho�man's circulation theorem, which
states that N does not have a circulation if and only if there exists a set of nodes
H such that

∑
e∈δ−(H) le >

∑
e∈δ+(H) fe. To simplify the explanation, we drop from

the support network all arcs with 0 lower and upper bounds (i.e. the arcs in the set
(wi, uj) ∈ EW with j not a successor of i). So, assume that a platform assignment
does not exist, then there exist cs + 1 trains, say Q = {k, . . . , k + cs} ⊆ T , which
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are simultaneously in station s. We construct a cut by letting H = {p} ∪ {wj : j =
{k, . . . , |T |} ∪ {uj : j = {k + cs, . . . , |T |}.

We then have
∑

e∈δ−(H) le = |Q| = cs + 1 since the only arcs with positive lower

bound (the arcs in EU) entering H are precisely the arcs (uk, wk), . . . , (uk+cs , wk+cs)
(all other arcs in EU are either completely contained in H, for j > k + cs, or in the
complement H̄ of H, for j < k).

On the other hand, it is easy to see that the only arc with positive upper bound
outgoing from H is (p, r), which implies

∑
e∈δ+(H) fe = cs < cs + 1 =

∑
e∈δ−(H) le.In

fact:

1. Er ∩ δ+(H) = ∅. Indeed, all arcs in Er are outgoing from r and r ∈ H̄.

2. EU ∩ δ+(H) = ∅. Indeed, uj ∈ H forj = k + cs, . . . , |T |. But then also wj ∈ H
for j = k + cs, . . . , |T |.

3. EW ∩ δ+(H) = ∅. We must show that (wi, uj) /∈ EW for i ≥ k and j ≤ k + cs.
That is, we show that for j ∈ {1, . . . , k, . . . , k + cs} and i ≥ k, then j /∈ Su(i).
This is trivial for i > k + cs since j /∈ Su(i) for all i > j. Also, by assumption,
the trains in Q = {k, . . . , k+ cs} are simultaneously in the station, which implies
that j /∈ Su(i) for all j, i ∈ Q.

4. Ep ∩ δ+(H) = {(p, r)}. Trivial, since p ∈ H and all arcs in Ep \ {(p, r)} are
incoming in p.
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