
Quality, productivity and economic benefits of software
reuse: a review of industrial studies

Parastoo Mohagheghi & Reidar Conradi

Published online: 3 May 2007
Springer Science + Business Media, LLC 2007
Editor: Katsuro Inoue

Abstract Systematic software reuse is proposed to increase productivity and software
quality and lead to economic benefits. Reports of successful software reuse programs in
industry have been published. However, there has been little effort to organize the evidence
systematically and appraise it. This review aims to assess the effects of software reuse in
industrial contexts. Journals and major conferences between 1994 and 2005 were searched
to find observational studies and experiments conducted in industry, returning eleven papers
of observational type. Systematic software reuse is significantly related to lower problem
(defect, fault or error) density in five studies and to decreased effort spent on correcting
problems in three studies. The review found evidence for significant gains in apparent
productivity in three studies. Other significant benefits of software reuse were reported in
single studies or the results were inconsistent. Evidence from industry is sparse and
combining results was done by vote-counting. Researchers should pay more attention to
using comparable metrics, performing longitudinal studies, and explaining the results and
impact on industry. For industry, evaluating reuse of COTS or OSS components, integrating
reuse activities in software processes, better data collection and evaluating return on
investment are major challenges.

Keywords Software reuse . Review . Quality . Productivity . Evidence

Empir Software Eng (2007) 12:471–516
DOI 10.1007/s10664-007-9040-x

P. Mohagheghi (*)
SINTEF, ICT, P.O.BOX 124 Blindern, 0314 Oslo, Norway
e-mail: parastoo.mohagheghi@sintef.no

P. Mohagheghi : R. Conradi
Department of Computer and Information Science, Norwegian University of Science and Technology,
7491 Trondheim, Norway

R. Conradi
e-mail: conradi@idi.ntnu.no

1 Introduction

There is extensive literature on systematic software reuse (or in-short reuse); its purpose and
promises, how to develop for and with reuse, technical/managerial/organizational aspects,
measuring reuse rate and Return-On-Investment (ROI), and success and failures of reuse
practices. However, little research has accumulated reported results in a review type paper
like this, where the goal is collecting and appraising evidence and finding research gaps for
future studies.

In this paper, we summarize empirical quantitative evidence from industry on reuse
appeared between 1994 and 2005. The question guiding the review is: “To what extent do
we have evidence that software reuse leads to significant quality, productivity or economic
benefits in industry?.” Specifically the aim of this review is to (1) find and organize the
quantitative empirical evidence from industry related to the review question, (2) evaluate
the quality of reporting, identify metrics, data collection procedures and analysis methods,
(3) summarize the findings, and (4) identify gaps for future research. The review defines
five research questions that are answered through the evidence. The possible audience of
this review are two groups: those who plan future studies on reuse may learn from
experience to improve the state of research, and those who seek evidence on reuse benefits
for decision-making may use this review as a reference.

The remainder of the paper is structured as follows. Section 2 provides definitions of
concepts used in the review. Section 3 presents the review process in terms of research
questions, the framework for performing the review, paper selection criteria and validity
threats. Section 4 gives an overview of the reviewed papers and Sections 5–7 asses the
papers regarding metrics used, data collection and analysis, and summarizes findings.
Section 8 discusses shortcomings in reuse research and ideas for future research and
Section 9 presents lessons for improving research. The review is concluded in Section 10.

2 Concepts

There is a diversity of definitions in literature on reuse and types of studies, and our
purpose here is not to review the definitions, but to present what we mean when using these
terms.

2.1 Software Reuse

Software reuse is the systematic use of existing software assets to construct new or
modified ones or products. Software assets in this view may be source code or executables,
design templates, free standing Commercial-Off-The-Shelf (COTS) or Open Source
Software (OSS) components, or entire software architectures and their components forming
a product line or product family. Knowledge may also be reused and knowledge reuse is
partly reflected in the reuse of architectures, templates or processes. Developing
components so that they become reusable is called developing for reuse, while developing
systems of reusable components is called developing with reuse (Karlsson 1995). Both
these are covered in the review. Reusability is a property of a software asset that indicates
its probability of reuse (Frakes and Kang 2005). Ad-hoc reuse in this review means that
reuse is opportunistic and not part of a repeatable process, as opposed to systematic reuse;
meaning planned. Glass (2002) discusses that “ad hoc” originally means “for this” or

472 Empir Software Eng (2007) 12:471–516

“suited for the task at hand,” and is different from not planned or not repeatable. However,
the term is widely used in other literature as opposed to systematic reuse, and this review
uses it as well.

Almost any software today is built on software developed by others; for example
operating systems, programming languages’ libraries, CASE tools, debuggers, desktop
applications, databases or application servers. Reuse in this review does not cover reuse of
the above software which is not considered to be developed by the company itself, but
would be purchased or obtained as OSS products for software development.

Sometimes reuse refers to developing new releases of assets or products based on the
previous releases (Basili 1990). We call this release-based or incremental development,
which is in fact a maintenance and evolution activity. Frakes and Terry (1996) call this for
“carry-over reuse.” This type of reuse is not included in this review.

2.2 Study Types

We decided to include all studies reporting quantitative results from industry related to
reuse in the review and then classify the study type, leaving out surveys and papers with
discussion but no hard data. The study type is important information in each study since it
communicates what is expected from a study and how the evidence should be evaluated.
However, a search of literature for study types showed that there are not consistent
definitions and/or the definitions are not communicated well. Therefore, we have to define
our perspective of study types.

One definition of study types that is applied on empirical research is given by Zannier et al.
(2006) (see the paper for a complete list of their references). Table 1 also shows these
definitions and some other that we found.

Zannier et al. (2006) analyzed a random sample of 63 papers published in 29 ICSE (the
International Conference on Software Engineering) proceedings since 1975 using the above
classification. Authors of only 25 papers had defined their study type, and Zanneir et al.
give both authors and their perspective of the study types. We use their definitions but also
add that when studies are performed at a single point in time, they are called cross-
sectional, as opposed to longitudinal studies.

A case study may be comparative, and Kitchenham and Pickard (1998) describe three
methods of comparison in a quantitative case study, which are (a) comparing the results of
using a new method with a company baseline, (b) comparing components within a project
that are randomly exposed to a new method to others or within project component
comparison, and (c) comparing a project using a new method to a sister project that uses the
current method or sister-project case studies. An alternative sister-project design is
developing a product twice using different methods or replicated product design. This
review found examples of (b) and (c) in different types of studies, and we hence call the
method of comparison for component-comparison (components may be from one or several
products) and sister-project comparison (including replicated product design).

2.3 Objects and Subjects of Study, Variables and Measurement

We use the definitions of variables, treatments, objects and subjects of study of Wohlin et al.
(2000). The object of study is the entity that is studied; for example, a program that shall be
developed with different techniques. The people that apply the treatment are called subjects,
for example the developers of a software product. The characteristics of both the objects
and the subjects can be independent variables in a study. All variables that are manipulated

Empir Software Eng (2007) 12:471–516 473

Table 1 Study types and their definitions

Study type Definition as given in Zannier et al. (2006) Other definitions

Controlled
experiment

Random assignment of treatment to
subjects, large sample size (>10), well-
formulated hypotheses and independent
variable selected. Random sampling.

Controlled study (Zelkowitz and
Wallace 1998).

Experimental study where particularly
allocation of subjects to treatments are
under the control of the investigator
(Kitchenham 2004).
Experiment with control and treatment
groups and random assignment of
subjects to the groups, and single-
subject design with observations of a
single subject. The randomization
applies on the allocation of the objects,
subjects and in which order the tests are
performed (Wohlin et al. 2000).

Experiments explore the effects of
things that can be manipulated. In
randomized experiments, treatments are
assigned to experimental units by
chance (Shadish et al. 2001).

Our note: Randomization is used to
assure a valid sample that is a
representative subset of the study
population; either in an experiment or
other types of study. However, defining
the study population and a sampling
approach that assure representativeness
is not an easy task, as discussed by
Conradi et al. (2005).

Quasi-
experiment

One or more points in Controlled
Experiment are missing.

In a quasi-experiment, there is a lack of
randomization of either subjects or
objects (Wohlin et al. 2000).

Quasi-experiment where strict
experimental control and randomization
of treatment conditions are not possible.
This is typical in industrial settings
(Frakes and Succi 2001).

Quasi-experiments lack random
assignment. The researcher has to
enumerate alternative explanations one
by one, decide which are plausible, and
then use logic, design, and measurement
to assess whether each one is operating
in a way that might explain any
observed effect (Shadish et al. 2001).

Case study All of the following exist: research
questions, propositions (hypotheses),
units of analysis, logic linking the data
to the propositions and criteria for
interpreting the findings (Yin 2003).

A case study is an empirical inquiry that
investigates a contemporary
phenomenon within its real-life context,
especially when the boundaries between
phenomenon and context are not clearly

474 Empir Software Eng (2007) 12:471–516

Table 1 (Continued)

Study type Definition as given in Zannier et al. (2006) Other definitions

evident. A sister-project case study
refers to comparing two almost similar
projects in the same company, one with
and the other without the treatment
(Yin 2003).

Observational studies are either case
studies or field studies. The difference is
that multiple projects are monitored in a
field study, may be with less depth,
while case studies focus on a single
project (Zelkowitz and Wallace 1998).

Case studies fall under observational
studies with uncontrolled exposure to
treatments, and may involve a control
group or not, or being done at one time
or historical (Kitchenham 2004).

Exploratory
case study

One or more points in case study
are missing.

The propositions are not stated but other
components should be present (Yin 2003).

Experience
report

Retrospective, no propositions (generally),
does not necessarily answer why and how,
often includes lessons learned.

Postmortem Analysis (PMA) for
situations such as completion of large
projects, learning from success, or
recovering from failure (Birk et al. 2002).

Meta-
analysis

Study incorporates results from several
previous similar studies in the analysis.

Historical studies examine completed
projects or previously published studies
(Zelkowitz and Wallace 1998).

Our note: Meta-analysis covers a range
of techniques for summarizing findings
of studies.

Example
application

Authors describe an application and
provide an example to assist
the description. An example is not
a type of validation or evaluation.

Our note: If an example is used to
evaluate a technique already developed
or apply a technique in a new setting, it
is not classified under example application.

Survey Structured or unstructured questions
given to participants.

The primary means of gathering qualitative
or quantitative data in surveys are
interviews or questionnaires
(Wohlin et al. 2000).

Structured interviews (qualitative surveys)
with an interview guide, to investigate
rather open and qualitative research
questions with some generalization potential.
Quantitative surveys with a questionnaire,
containing mostly closed questions.
Typical ways to fill in a questionnaire are by
paper copy via post or possibly fax, by
phone or site interviews, and recently by
email or web (Conradi et al. 2005).

Discussion Provided some qualitative, textual,
opinion- oriented evaluation.

Expert opinion (Kitchenham 2004).

Empir Software Eng (2007) 12:471–516 475

and controlled are called independent variables. Those variables that we want to see the effect
of the changes in the independent variables are called dependent variables. A treatment is one
particular value of an independent variable. The treatments are being applied to the combination
of objects and subjects. A confounding factor is a factor that makes it impossible to distinguish
the effects from two treatments from each other, such as different skills of developers.

Measurement is here used for the activity of measuring a property of software, a metric
is the property of software that is measured; for example software size in Lines of Code
(LOC), while a measure refers to the symbol or number that is assigned to the property by
the activity of measurement.

For case studies, Yin (2003) recommends defining unit of analysis or what the “case” is;
for example individuals, a product or an organization, and sources of evidence which may
be documentation, archival records, interviews, direct observations, participant-observation,
and physical artifacts. Using multiple sources of evidence is strongly recommended to
increase reliability of a case study. Since this terminology is not used in the papers, we have
not summarized papers regarding their sources of evidence.

3 The Review Process

This section presents the review framework and the five research questions that are derived
from the review question, the paper inclusion criteria and the validity threats of the review.

3.1 Review Framework and Research Questions

In this review, we ask “To what extent do we have evidence that software reuse leads to
significant quality, productivity or economic benefits in industry?”. This research was
initiated related to a study we performed on quality benefits of reuse. However, in spite of our
expectation for overwhelming evidence, the search for papers showed that reported results
from industry are surprisingly few. In addition to the sparseness of the results, the question of
practical significance is rarely discussed. We also searched for experiments in artificial
settings, which only added one student experiment to the search results (Basili et al. 1996)
that is not included in this review.

The formulation of the review question follows recommendations by Dybå et al. (2005)
for collecting evidence as answer to questions. Questions should be well-partitioned into
intervention, context and effect. In this review, the intervention is “software reuse,” the
context is “industrial settings” and the effect is “changes in quality, productivity or Return-
On-Investment (ROI).” The intervention is either directly or indirectly measured in reuse
metrics, while the effect is measured in dependent variables such as problem density.
Figure 1, inspired from Wohlin et al. (2000) and Dedrick et al. (2003), shows the
framework leading this review.

We have also added the appraising view to the question by asking the significance of the
results. Specifically we ask the following research questions:

RQ1 What types of studies are performed and what data are reported on the reuse
approaches?

RQ2 Which metrics are used for reuse and its effects?
RQ3 How are quantitative data reported and analyzed?
RQ4 What are the findings and what theory may be developed based on the findings?
RQ5 What are the shortcomings regarding reuse research?

476 Empir Software Eng (2007) 12:471–516

RQ1 to RQ5 are discussed in Sections 4–8 successively. Since we have not found any
such review of earlier research, we need to perform a detailed exploratory analysis of
papers. Our guide in performing this review has specially been: Webster and Watson (2002),
Kitchenham (2004), Kitchenham et al. (2002), Gregor (2002) and Pickard et al. (1998).

3.2 Paper Inclusion Criteria

The review concentrates on studies whose results are published in peer-reviewed journals
and conferences. Additional sources would be books and technical reports (for example,
Hallsteinsen and Paci 1997) that are not included in the review.

We searched the ACM digital library and the IEEE Xplore which also include many
conference proceedings, Empirical Software Engineering Journal, Journal of Systems and
Software, Journal of Information Science, MIS Quarterly (MISQ) from September 1994
(online), IEEE Transactions of Software Engineering (TSE), IT Professional, ACM
Computing Surveys (CSUR), and the Journal of Research and Practice in Information
Technology (from 2003 online). We searched the above sources with keywords “reuse,”
“reuse benefits” and “reuse case study.” To assure better coverage, proceedings of the
International Conference on Software Reuse (ICSR), the IEEE International Conference on
Software Maintenance (ICSM) since 1995 online, the International Software Product Line
Conference (SPLC) started in 2001, the International Conference on Software Engineering
(ICSE) since 1995 online, the International Conference on COTS-Based Software Systems
(ICCBSS) started in 2002, MISQ and the IEEE Software magazine were manually checked.
We searched for papers reporting quantitative results but will discuss their qualitative
findings as well. We searched for case studies and experiments but excluded surveys.

We only reviewed papers published from 1994 to 2005. Frakes and Terry (1996) provide
a survey of reuse metrics and models from earlier research, and Hallsteinsen and Paci
(1997) summarize some earlier research. This review differs from the above sources with
respect to giving an explicit selection criterion and the searched resources, appraising
evidence and discussing significance, classifying studies and covering new research.

The review process identified eleven papers that match our selection criterion, all
retrieved in full text, and which compared systematic reuse with ad-hoc or no reuse, or
compared reused components with the non-reused ones. In addition to these papers,
Ramachandran and Fleischer (1996) included data on reuse rate but no quantitative findings
on benefits and is therefore not included in the review. We also found three papers on reuse

Effects:

Benefits & savings

Intervention:

Software Reuse
cause-effect

Theory

Observation in industry

Inputs:

Assets

Outcomes:

Metrics & Findings

Complementary factors:

E.g., training or support

construct

validity

construct

validity

internal

validity

conclusion

validity

external

validity

Treatment:

Reuse metrics

Confounding factors:

E.g., context,

complexity or size

Fig. 1 The review framework

Empir Software Eng (2007) 12:471–516 477

of OSS components that are not included in the review either because they describe reuse of
software for infrastructure or they lack quantitative data, or both reasons apply:

– Madanmohan and Dé (2004) performed structured interviews with developers of some
commercial firms to find how they use OSS software. They classified the products as
being operating systems, middleware, databases and support software. The paper has
no data on ROI or quality.

– Norris (2004) writes that using OSS software for developing mission-critical software
at NASA has reduced in-house effort and provided software with fewer bugs, without
giving quantitative data.

– Fitzgerald and Kenny (2004) report on cost savings using OSS software when developing
an infrastructure system for a hospital. Phase 1 of the project covered generic products
such as an email system, a content management system and desktop applications and
showed significant savings. Phase 2 would cover more specific products but at the time
of publication, Phase 2 was still under planning and the savings were so far only
estimated in the paper.

The final list therefore includes the following eleven papers ordered here after the year of
publication: Lim (1994), Thomas et al. (1997), Frakes and Succi (2001), Succi et al. (2001),
Morisio et al. (2002), Tomer et al. (2004), Mohagheghi et al. (2004),1 Baldassarre et al.
(2005), Morad and Kuflik (2005), Selby (2005), and Zhang and Jarzabek (2005).

3.3 Threats to the Validity of the Review

The main threats to validity of the review are:

– Uncovered publication channels for external validity: We chose the journals, conferences
and libraries that in our experience publish major research results on software reuse.
Additional search may add new papers, which needed more effort. Giving the inclusion
criterion and the publication channels allows for validation and extension of the review.

– Undetected papers for external validity: We searched with a few keywords but to
improve the detection process, we manually checked several publication channels.
From the reviewed papers, only one of them does not include the word “reuse” in the
title and was detected by manual check; i.e. (Morisio et al. 2002), which is an
indication that we may have missed some papers but the extent is limited.

– Publication bias for internal validity: Probably success cases of reuse are published
more often than failures, and significant results may be published more often than
when the results are not considered as significant.

– Researcher bias for construct validity: Both authors have experience with industrial
software reuse. We compared papers to determine relevant classifications and searched
literature for definitions. The classifications and conclusions reflect our knowledge and
opinion. The researchers have done their best to provide an objective review when
analyzing research and we have presented all the results in the review to allow
discussion and future extension. The main analysis is performed by the first author and
the results are discussed with the second author.

1 This paper is extended in Mohagheghi and Conradi (2007), and some information is taken from the
extended version.

478 Empir Software Eng (2007) 12:471–516

4 Answering RQ1—What Types of Studies are Performed and What Data
are Reported on the Reuse Approaches?

In this section, we review the studies regarding the object of study, study type, domain, scale,
publication channel, the year of publication, and the data reported on the reuse approaches.

4.1 Objects, Types of Studies, Scale, Publication Channel and Year

Appendix A gives an overview of the eleven reviewed papers, ordered after the year of
publication. It also shows objects and type of studies. We applied the classification
discussed in Section 2.2 while most papers also define the study type. The field
“Agreement” shows whether there is agreement between the review’s and authors’
perspective of the study type. KLOC stands for Kilo Lines of source Code as a measure
of software size. When a paper does not provide information on an attribute, the label “−” is
used. The conclusions may be summarized as:

– Study type: Thomas et al. (1997) and Selby (2005) do not discuss the study type. For
the others, we have shown the study type both from the authors’ and the review’s
perspective. The main differences in classification are: (1) Quasi-experiments and
experiments from the authors’ perspective (Frakes and Succi 2001; Succi et al. 2001;
Zhang and Jarzabek 2005) are classified as (exploratory) case studies and experience
reports in this review because of the lack of clear hypotheses and the little degree of
control applied by the investigators. (2) Two case studies from the authors’ perspective
(Lim 1994; Tomer et al. 2004) are classified as experience report and example
application in this review. The term “case study” is often used in literature to cover all
studies where some data on “cases” are presented. The review has identified four case
studies (Thomas et al. 1997; Mohagheghi et al. 2004; Baldassarre et al. 2005; Selby
2005), three exploratory case studies (Frakes and Succi 2001; Succi et al. 20012;
Morisio et al. 2002), three experience reports (Lim 1994; Morad and Kuflik 2005;
Zhang and Jarzabek 2005), and one example application (Tomer et al. 2004).

– Publication channel: Four papers are published in various conference proceedings and
seven in journals, where IEEE Trans. Soft. Eng. has published four of the papers.

– Year: 2005 has been the most productive year with four papers.

Succi et al. (2001) and Tomer et al. (2004) have not reported programming language, and
four of the papers (Tomer et al. 2004; Baldassarre et al. 2005; Morad and Kuflik 2005; Zhang
and Jarzabek 2005) have not reported the size of products or the reusable assets, where in
Zhang and Jarzabek (2005) it is not clear whether 4.5 KLOC is the total size or the mean size
of applications. There is variation in domain and programming languages. Based on the given
software size and our conclusions, we classified the studies according to their scale into:

– Small-scale studies (S): Five studies (Frakes and Succi 2001; Morisio et al. 2002;
Tomer et al. 2004; Morad and Kuflik 2005; Zhang and Jarzabek 2005) cover a few
reused software assets or small products.

– Medium-scale studies (M): Three studies (Lim 1994; Succi et al. 2001; Baldassarre et al.
2005) cover larger products than the first group but less or around 100 KLOC, and still
the objects of study are few.

2 Succi et al. (2001) can be classified as a case study as well, but research questions and hypotheses are not
well-stated in the paper.

Empir Software Eng (2007) 12:471–516 479

– Large-scale studies (L): Three studies (Thomas et al. 1997; Mohagheghi et al. 2004;
Selby 2005) cover products with software size more than 100 KLOC or cover a large
number of objects.

4.2 Reuse Approaches

Appendix B presents data on the reuse approaches. The definitions of terms and an
overview for each field are given in Table 2.

Morisio et al. (2000) have a similar list for comparing projects with a few additional
factors such as whether there exists an explicit reuse process or when the reusable assets are
developed (on demand or beforehand). Most of the papers in this review did not include
data on these factors.

4.3 Summary of the Section and Answering RQ1

All the 11 studies in this review are classified as observational studies with four case studies,
three exploratory case studies, three experience reports and one example application. We
conclude that our search has not returned any experiment or quasi-experiments in industry. Four
studies are sister-project studies; comparing projects or products and in one case replicated
product design. The closest to experimentation is comparing similar projects in size and
domain, developed within the same company where developers have comparable skills or may
be randomly assigned (Succi et al. 2001; Baldassarre et al. 2005; Morisio et al. 2002), or
redeveloping a product with systematic reuse (Zhang and Jarzabek 2005). This review of
literature has not found any study with random assignment of treatments to objects, and only
Baldassarre et al. (2005) report random assignment of developers to the two projects. Zannier
et al. (2006) report also that they did not find any example of simple or stratified random
sampling in a sample of ICSE papers. The selection of objects (products or components) is
due to access to data, which may be classified as investigator-selected or convenience
sampling. On the other hand, Zannier et al. found the absolute majority of studies being self-
confirmatory; i.e., the authors played a role in the development of the product of study. We did
not find support for that in the review and only in three cases (Lim 1994; Mohagheghi et al.
2004; Morad and Kuflik 2005) the authors were employees of the companies. However, for
several studies the relation of investigator to the case was not clearly stated.

The scale of the studies varied (small-scale studies are most represented) and so are the
approaches to reuse, domain and reuse rate. Most studies involved systematic reuse or
compared it with ad-hoc reuse. Units of reuse varied as well but only reuse of source code
was measured. Only in the three small-scale studies, reused components were developed
externally or before the application, and only Morad and Kuflik (2005) give an example of
reuse of three OSS assets, where savings in person-hours are estimated. A few studies do
not report size of the products or components, programming languages or characteristics of
their reuse approaches.

Only two studies report data from several releases of a software product or projects over
time; i.e., Mohagheghi et al. (2004) and Lim (1994), where the first study evaluates
components in several releases of one software product and the second study reports
productivity gains over several years. Selby (2005) has collected data for several years of
development, but does not present the data as releases of the same products, only from the
same environment. Most studies in this review are therefore cross-sectional, and long-term
effects of reuse are understudied.

480 Empir Software Eng (2007) 12:471–516

Table 2 Summary of reuse approaches

Approach Definition Findings

Development
scope

Whether the reusable assets are from a
source internal or external to the project
(Frakes and Terry 1996). Examples of
externally developed assets are those
developed in other projects, COTS or
OSS components.

In small-scale studies, reused assets are
internal or external, while in the medium
to large-scale studies, reused assets are all
internal. Large-scale studies are
characterized by internal reuse,
architecture reuse and a systematic
approach to reuse.

Technical
approach

Refers to technical methods for
implementing reuse. We started with the
classification in Frakes and Terry (1996)
but had to add several classes since their
classification did not cover all the papers.a

The classes used here are:
Compositional; reuse of functions or
subroutines (fine-grained);

Reuse of templates which can be of any
kind;

Reuse of software modules or
components;

Object-Oriented (OO) frameworks;
Domain engineering for product families;
Component-based reuseb with adherence
to component models such as CORBA/
CCM/EJB;

Generative programming;
Reuse repository or library, which can be
generic or domain-specific, and can be
combined with other approaches.

Compositional: Frakes and Succi (2001)
and Succi et al. (2001);

Reuse of templates: Baldassarre et al.
(2005);

Reuse of software modules or components:
Thomas et al. (1997), Tomer et al. (2004),
Morad and Kuflik (2005) and Selby (2005);

OO frameworks: Morisio et al. (2002);
Domain engineering: Mohagheghi et al.
(2004) with a layered software
architecture, and Zhang and Jarzabek
(2005) with meta-components;

Component-based reuse: Mohagheghi et al.
(2004);

Generative programming: none;
Reuse repository or library: Thomas et al.
(1997), Succi et al. (2001), Tomer et al.
(2004), Morad and Kuflik (2005), and
Baldassarre et al. (2005);

Lim (1994) does not give any information
on the approach to reuse.

Domain scope Covers horizontal reuse of generic assets
across domains such as general libraries,
vertical reuse within a domain, and
architecture reuse in domain engineering.

We found examples of all the three in the
papers.

Reuse
management

Refers to the degree to which reuse is done
systematically, and may be systematic or
ad-hoc. We consider having an explicit
reuse program as a type of systematic
reuse. Tomer et al. (2004) and Morad and
Kuflik (2005) define a compromise
between these two approaches as well,
called controlled reuse, where candidate
assets that may be reusable in the future
are kept in a repository without putting
effort in making them reusable. A future
project that uses such asset will make a
reusable asset out of it.

Nearly all papers cover systematic reuse or
compare systematic reuse with ad-hoc
reuse. Only Frakes and Succi (2001) is
characterized with merely ad-hoc reuse.

Reuse initiation Product families or in general any reuse
program may be initiated in multiple
ways (Krueger 2002):

From the studies who have reported the
approach to reuse initiation, Lim (1994)
reported an incremental reactive
approach, while Mohagheghi et al. (2004)
and Zhang and Jarzabek (2005) reported
an extractive approach.

Proactive when companies can predict their
reuse requirements and have resources to
design all reusable assets up-front;

Empir Software Eng (2007) 12:471–516 481

5 Answering RQ2—Which Metrics are Used for Reuse and its Effects?

This section presents the metrics used in the studies; except for the metrics related to cost-
benefit analysis, which are few and are presented in Section 7 together with the findings.

5.1 Independent Variables—Reuse Metrics

While attributes of reuse approach presented in Section 4.2 such as Development scope or
characteristics such as domain may be used as independent variables, most of them happen

Table 2 (Continued)

Approach Definition Findings

Reactive when one or several product
variations are developed at a time;

Extractive when reusable assets are
extracted from one or several products to
make the product family baseline.

Modification Assets may be reused:
Verbatim which means reusing an asset
“as-is” In a black-box style;

or modified in a white-box style to make
an asset reusable for a new target.

Pure verbatim reuse: Frakes and Succi
(2001), Mohagheghi et al. (2004), Tomer
et al. (2004) for five assets, Morad and
Kuflik (2005) and in the study of Succi et
al. (2001) we concluded that reuse is most
probably verbatim.

Six studies have reported verbatim and
modified reused, including Tomer et al.
(2004) for two assets. Lim (1994) does
not discuss this aspect.

Reuse rate The size of reused assets divided by the
software size.

It shows great variation in papers. While
some companies consider 30% reuse as
the acceptable goal of their reuse program
Selby 2005), others consider this as low.
We conclude that there is no golden
figure and companies have different goals.

Unit of reuse Varies from fine-grained functions to large-
grained frameworks that are reused as-is
or by architectural layers.

Although reuse of templates or meta-
components is also reported, the
quantitative data are on the source code
level. Reuse of other assets than source
code seems hard to be quantified or is
covered by measuring source code.

Complementary
factors

Refer to facilitators of reuse such as reuse
training and management commitment.

Most papers have discussed some
complementary factors.

a Their classification includes generative, compositional, in-the-small (component-based), in-the-large,
indirect (through an intermediate entity) versus direct, carried-over (from one release to next) and
leveraged (with modifications)
b The term “component-based reuse” is often used in literature to cover several approaches to reuse when
systems are assembled of reusable “components” as independent units of production and acquisition. The
reusable components may be retrieved from a repository, shared between products in a product family, or be
obtained as OSS or COTS components. However, component-based reuse here refers to reuse of components
that adhere to a particular component model, and target a particular component platform (Szyperski 2002), as
a difference with other COTS or OSS software with no constraints on conformance to an architecture.

482 Empir Software Eng (2007) 12:471–516

to be fixed in the studies. The independent variables related to reuse are identified to be (see
Table 3):

– Development mode is a two-level factor and refers to whether development happens
with or without systematic reuse in a project. It is used in sister-project studies.

– Component origin is a multi-level factor and refers to whether a specific component (or
any asset) is reused verbatim, slightly or extensively modified, or is newly developed.
It is used in component-comparison studies.

– Reuse rate quantifies the amount of reuse in a project or sometimes within a component.
Reuse rate may be used as a dependent variables as well, but not in the reviewed literature.

5.2 Dependent Variables—Reuse Effects

We analyzed all the dependent variables used in the papers and identified four major
groups: metrics related to software problems (Table 4), effort and productivity (Table 5),
software change (Table 6) and module level metrics (Table 7).

We use the term “problem” in the review covering errors, defects and faults when the
distinction is not clear or when we refer to all of them. There is inconsistency and vagueness

Table 3 Independent variables and their definitions in the papers

Independent
variable

Definitions

Development
mode

Succi et al. (2001): Development with only a general library, or with a general and
domain library.
Morisio et al. (2002): Development with an OO framework or without it.
Baldassarre et al. (2005): Development with ROD (reuse-oriented development
process) or without it.
Zhang and Jarzabek (2005): Games derived from a Product Line Architecture (PLA)
or the same games without a PLA.

Component
origin

Lim (1994): New and reused code versus new code only.
Thomas et al. (1997), Selby (2005): Modules or components reused verbatim, with
slight (<25%) or major (≥25%) modification, or newly developed.
Tomer et al. (2004), Morad and Kuflik (2005): Components developed from scratch
compared to when developed with ad-hoc, controlled or systematic reuse.
Mohagheghi et al. (2004): Reused versus non-reused components.

Reuse rate Thomas et al. (1997): Reused code relative to total code measured in the number of
Ada statements.
Lim (1994), Mohagheghi et al. (2004), Baldassarre et al. (2005): Reused LOC relative
to total LOC.
Frakes and Succi (2001), Succi et al. (2001): Compositional approach to reuse.
External Reuse level (ERL) is the ratio of external lower level items (functions)
reused inside a higher level item (file) over the total number of lower level items
used. External Reuse Frequency (ERF) is the number of references to external lower
level items (functions) reused inside a higher level item (file) over the total number of
references. External Reuse Density (ERD) is the number of external lower level items
(functions) called to LOC of a file.
Morisio et al. (2002): Reuse level is the ratio between the size of what is reused from
the framework and the total size in an individual application. Size is measured in
Object-Oriented Function Points (OOFP).
Selby (2005): Percentage of modules reused verbatim or with modification.

Empir Software Eng (2007) 12:471–516 483

in the use of the above terms. Mohagheghi et al. (2006) identified three questions to answer:
what is covered (problem appearance or its cause), where problems are (software vs.
system, executable vs. non-executable software such as requirements or documentation) and
when problems are detected (the detection phase). These differences are visible in Table 4:

– “Errors” are often counted for appearances of a problem. It may lead to changes in
several modules or causes called for “defects” or “faults.”

– Problems may be reported only for source code or all types of artefacts (executable and
non-executable such as documents).

– Problems may be recorded pre-release, post-release or in both phases.

All of the papers in Table 4 have used metrics related to problems as quality indicators. Since
the discussion of the relation between dependent variables and quality (quality-in-use or other
views such as process quality) is often missing in the papers, we do not get into this discussion
and refer to this as a threat to construct validity in Section 7.5. Lim (1994), Thomas et al.
(1997), Frakes and Succi (2001), Succi et al. (2001) and Mohagheghi et al. (2004) have used
counts of problems or its density, while Thomas et al. (1997), Morisio et al. (2002) and Selby
(2005) have included rework effort or isolation and correction difficulty as quality indicators.

Table 5 shows metrics related to effort and productivity. Increasing productivity and
decreasing development time or effort are often given as the main motivations for reuse.
Apparent productivity is calculated by dividing the total size of software to the total effort
spent, while actual productivity is calculated by dividing the size of newly developed code
to the total effort. One inherent problem with this approach is that integration of reusable
assets or their modification takes effort which is included in the total effort, while their size
is not included. With reuse, apparent productivity increases obviously. We discuss an
alternative approach to measure actual productivity in Section 8.2.

Reducing the number of changes or the size of modified code should improve
maintainability of a product, which motivates the use of software change metrics in Table 6.

Module-level metrics are used in two ways as shown in Table 7: Sister-project studies
have evaluated whether development with reuse reduces product complexity, while two
component-comparison studies (Thomas et al. 1997; Selby 2005) have used these metrics to
characterize reuse at module level.

5.3 Summary of the Section and Answering RQ2

We identified three independent metrics which are Development mode, Component origin
and Reuse rate, while other attributes of reuse presented in Section 4.2 may also be used as
independent variables.

Metrics used to measure reuse effects are divided in four groups: metrics related to
software problems (used in seven papers), effort or productivity (eight papers), software
changes (four papers) and software module characteristics (five papers). In addition to
these, Zhang and Jarzabek (2005) have measured improvement in performance in terms of
memory usage and speed in running time. The papers have used 22 different dependent
metrics, with very few examples of a common definition. In many cases, metrics are not
well defined either, especially for metrics related to software problems. The diversity of
metrics and definitions makes comparison of quantitative results difficult. The tables in this
section may help future studies in choosing metrics so that several studies use common or
comparable metrics. This is one precondition for combining evidence systematically or
performing any meta-analysis in the field.

484 Empir Software Eng (2007) 12:471–516

Table 4 Metrics related to software problems

Metric Papers and their definitions of metric

Defect density: the number of defects
divided by the software size

Lim (1994): No definition of what a defect is. Size is in LOC.
Succi et al. (2001): Customer Complaint Density (CCD) is the
ratio of customer complaints to LOC and is actually post-release
defect density.

Error density: the number of errors
divided by the software size

Thomas et al. (1997): The source of error may be requirements,
functional specification, design, code, or previous change.
Errors may be reported in unit testing, system or acceptance
testing. We assume these are pre-release problems. Size is in
LOC.

Frakes and Succi (2001): Errors are for source code but the
definition and the detection phase are not given. Size is in LOC.

Fault density: the number of faults
divided by the software size

Thomas et al. (1997): An error correction may affect more than
one module. Each module affected by an error is counted as
having a fault. Size is in LOC.

Mohagheghi et al. (2004): Faults are causes of failure, studied for
source code, and are detected in system testing and later phases;
i.e. both pre- and post-release faults. Size is in LOC.

Selby (2005): An error correction may affect more than one
module. Each module affected by an error is counted as having a
fault. Size is in LOC. Type of faults (what) and detection phase
(when) are not given.

Rework effort spent in isolating and
correcting problems

Frakes and Succi (2001): Subjective quality rating by developers
based on the difficulty in debugging and maintaining software,
from 1 to 10 (best).

Thomas et al. (1997): Relative rework effort in person–hours
divided by the number of statements spent in isolating and
correction errors.

Morisio et al. (2002): Quality of programming is defined as the
relative development effort and rework effort to correct failures
detected in acceptance testing; between 0 and 1 where 1 means
no rework and 0 means rework effort equals development
effort.

Selby (2005): Fault correction error and fault isolation effort
measured separately in person–hours per module.

Difficulty in error isolation or correction Thomas et al. (1997): Isolation and correction difficulty for errors,
where more than one day spent on isolation or correction
indicates difficultly.

Source of error Thomas et al. (1997): Source of error refers to where error was
introduced such as requirement, design or code.

Error slippage from unit test Thomas et al. (1997): Percentage of errors that escape unit test
and are detected later.

Error type Thomas et al. (1997): Error type may be procedural, interface or
data.

Fault severity Mohagheghi et al. (2004): Severity of faults for reused and non-
reused components.

No. of faults Selby (2005): The number of faults.

Empir Software Eng (2007) 12:471–516 485

6 Answering RQ3—How are Quantitative Data Reported and Analyzed?

Appendix C shows how data are reported and analyzed in the eleven papers. We summarize
the observations here.

Small-scale studies have used all the available data in the analysis and have mostly
included the dataset in the papers. Except for Morisio et al. (2002) with hypotheses and a
regression model, the other four small-scale studies have not defined hypotheses or applied
inferential statistics. Medium and large-scale studies do not present all the data. However,
data are fully analyzed and no sampling is done in these studies. In the three large-scale

Table 5 Effort and productivity metrics

Metric Papers and their definitions of metric

Development effort per module, asset, or
product in person hours, days or months

Frakes and Succi (2001): Development effort in person–
days spent per module.

Tomer et al. (2004), Morad and Kuflik (2005): Development
effort spent in different scenarios (new development, ad-
hoc/controlled or systematic reuse) per asset in person–
hours.

Selby (2005): Average module development effort in
person–hours, covering also corrections and changes.

Zhang and Jarzabek (2005): Development effort of an
application based on the reusable product line architecture
and without it in person–days.

Apparent productivity Lim (1994), Frakes and Succi (2001), Baldassarre et al.
(2005), Selby (2005): LOC per engineering month or day
or hour (including reuse).

Morisio et al. (2002): Gross productivity is the size of
application in OOFP (Object-Oriented Function Points)
divided by development effort.

Actual productivity Morisio et al. (2002): Net productivity is defined as the size
of new code developed around the framework in OOFP
divided by development effort.

Baldassarre et al. (2005): New LOC divided by development
effort in person–hours.

Time to market Lim (1994): Reduction in time to market.
Design effort Selby (2005): Percentage of development effort spent in

design per module.

Table 6 Metrics related to software change

Metric Papers and their definitions of metrics

No. of changes Frakes and Succi (2001), Selby (2005): The number of changes
(enhancement or repair) to a module.

Change density Mohagheghi et al. (2004): No. of requirement changes per LOC.
Selby (2005): No of changes (enhancement or repair) per LOC.

Change in the amount of
developed code

Zhang and Jarzabek (2005): Total size of product

Rate of modified code
between releases

Mohagheghi et al. (2004): Size of modified code divided by the total size of
code between releases (for components and the whole product).

Change implementation effort Selby (2005): Effort per change in person–hours.

486 Empir Software Eng (2007) 12:471–516

studies, the researchers have mined industrial databases and in two of them, data were
inserted in relational databases for analysis. Appendix C also shows that the range of
statistical tests is limited and there are no examples of data transformation (for example
logarithmic transformations) in the studies.

Six papers have applied statistical tests and the authors have discussed preconditions
such as normal distribution of data. However, when it comes to defining hypotheses and
applying inferential statistics, we observe variances of the null ritual in four papers.
Gigerenzer (2004) defines the null ritual in three steps:

1. Set up a statistical hypothesis of no difference or no correlation. Do not specify any
alternative hypothesis.

2. Use 0.05 (or some other fixed value) as a convention for rejecting the null. Report the
results as p<0.05, p<0.01 or p<0.001; whichever comes next to the obtained value.

3. Always perform this procedure.

The null ritual is a modification of the Fisher’s null hypothesis testing, which may be
summarized in the following three steps:

1. Set up a statistical null hypothesis. The null need not to be a nil hypothesis of no difference.
2. Report the exact level of significance and do not talk about accepting or rejecting hypotheses.
3. Use this procedure only if you know very little about the problem at hand. This procedure

does not allow combining previous knowledge in inference; e.g., in contrast to the
Bayesian approach.

Gigerenzer (2004) writes that statistical rituals eliminate statistical thinking and
inferential statistics should be performed with care. Alternatives are Exploratory Data
Analysis (EDA) techniques or reporting descriptive statistics and making conclusions
without performing hypothesis testing. Even with well-defined null and alternative
hypotheses, the selection of a 0.10 or 0.05 level of significance is a matter of personal
choice, depending on whether a researcher is averse to missing a significant effect or to
reporting a spurious effect. There is often no discussion of why a certain level of
significance is selected in the papers or even why it varies within a single study.

Some papers in the review report the p-values while others do not or only report
values over a certain threshold. Lim (1994) have discussed the results as significant for
the company without applying inferential statistics, Succi et al. (2001) have reported p-
values and considered the results as significant, and Mohagheghi et al. (2004) have

Table 7 Module-level metrics

Metric Papers and their definitions of metric

Complexity of
products

Morisio et al. (2002): The number of methods per unit net size (in OOFP).
Baldassarre et al. (2005): Mean Cyclomatic Complexity (MCC) per artefact and for the
system as a whole.

Zhang and Jarzabek (2005): OO metrics for complexity.
Module
characteristics

Thomas et al. (1997): Size in the number of Ada statements, the number of parameters
as a measure of generality, the number of “with” as an indication of external
dependency.

Selby (2005): Size in LOC, assignment statements per LOC, the number of module
calls excluding calls to utility functions per LOC, utility calls per LOC, input-output
parameters per LOC, read and write statements per LOC, comments per LOC, MCC
per LOC.

Empir Software Eng (2007) 12:471–516 487

discussed practical significance for the company in terms of saved effort. Other papers
have used fixed thresholds for discussing significance without reflecting on the practical
significance.

7 Answering RQ4—What are the Findings and What Theory may be Developed Based
on the Findings?

This section summarizes the findings in terms of reuse economics, quality and productivity
benefits, qualitative findings and validity concerns.

7.1 Reuse Economics and Savings

An overview of metrics and findings related to cost-benefit models is given in Table 8. The
cost of reuse is assessed in the costs of developing reusable assets and integrating them. No
costs are evaluated for training, infrastructure for reuse or setting up reuse repositories.
Savings are assessed in development and rework effort.

7.2 Findings Related to Quality and Productivity

The detailed findings related to quality and productivity in the four sister-project studies are
shown in Appendix D. Kitchenham (2004) lists a set of criteria for quality assessment of
studies. None of the studies claim to have selected their cases randomly from a population
or have presented them as representative for a population. However, sister projects are
claimed to be comparable with respect to domain, size, duration and developer skills (one
developer in Morisio et al. 2002).

Five studies have compared reused components (verbatim or modified reused) with new
code, sometimes within the same product and sometimes within a collection of products.
We called these component-comparison studies. The studies of Tomer et al. (2004) and
Morad and Kuflik (2005) are not included here since they only include data on effort
savings. All data are analyzed in the studies. Appendix E summarizes the quantitative
results of these studies.

In the sister-project studies, some control is applied by the investigators in the design of
studies which ranks them higher in the chain of evidence. Component-comparison studies
analyze available data on components with no control over the study. On the other hand,
sister-project studies are all of small or medium scale, while three component-comparison
studies have mined large industrial data bases. One observation of this review is that we
have not found results in favour of no reuse or no systematic reuse, unless related to error
correction difficulty (Thomas et al. 1997) and fault severity (Mohagheghi et al. 2004).

Two large-scale case studies; i.e. Thomas et al. (1997) and Selby (2005); have compared
characteristics of reused modules with the non-reused ones. Both studies reported that
modules reused verbatim were significantly smaller in size. Selby (2005) found that
modules reused verbatim tended to be small, well-documented modules with little input–
output processing. It also seems that these modules tended to be terminal nodes, because
they had less interaction with other system modules but more interaction with utility
functions. Thomas et al. (1997) reported that components reused verbatim from a domain
library were smaller in size and had less external dependencies. There is however one
difference: modules reused verbatim in Selby (2005) had simpler interfaces than other
modules in terms of input–output parameters per LOC, while components reused verbatim

488 Empir Software Eng (2007) 12:471–516

in Thomas et al. (1997) had more parameters than either modified or new components.
Thomas et al. (1997) explain the difference to be related to Ada or FORTRAN approaches
to reuse.

7.3 Combining the Results for Quality and Productivity

We have a range of quantitative results that we want to appraise and combine. Pickard et al.
(1998) describe three methods for combining the results of empirical studies:

– Combining the p-values of studies which can reject a null hypothesis or fail to reject it,
without giving any information on the actual effect.

Table 8 Metrics and findings on reuse economics

Metric Papers and findings

Cost of developing reusable assets
compared to the non-reusable ones

Morad and Kuflik (2005): An average of 160–250% of
developing non-reusable assets.

Lim (1994): In HP, 111% of the cost of creating a non-reusable
version. The cost is also evaluated for different phases of
development. The most significant increases were in the
investigation and external design phases to understand the
multiple contexts in which the work product will be reused.

Cost of integrating reusable assets Morad and Kuflik (2005): Integration of a black-box reusable
binary component costs 1–3% of new development.

Lim (1994): 19% of the cost of creating a non-reusable version.
ROI (savings/cost) Lim (1994): ROI in product 1 was 410% over 10 years, and for

product 2 it was 216% over 8 years. The model includes the
time value of money, gross cost and savings of reuse (called
Net Present Value). Reuse gave 42% reduction in time to
market for product 2.

Tomer et al. (2004): For all the seven assets, systematic or
controlled reuse gave savings relative to new development. For
five assets, systematic reuse gave savings between 42 and 81%
compared to new development (measured in person–hours).
For one asset, controlled reuse was 32% better than systematic
reuse, while for others, systematic reuse would be best.

Morad and Kuflik (2005): Savings of systematic reuse over new
development is approximately 50%, and less for other reuse
scenarios. For the OSS products, systematic reuse with
adaptation would be best, although it is difficult to read exact
savings from diagrams.

Rework savings Thomas et al. (1997): Reuse via slight modification shows a
35% reduction in relative rework effort over newly created
components, while verbatim reuse provides an 88% reduction.
For these modes of reuse, the benefit of fewer errors clearly
outweighs the cost of more difficult error correction for reused
components.

Mohagheghi et al. (2004): The lower fault density of reused
components is estimated to reduce the total effort by 20%.

Break even point (recover creation costs) Lim (1994): The break even point in one product occurred in the
second year and in the other product in the sixth year. The
number of reuses ranges from one to eight for different assets.

Empir Software Eng (2007) 12:471–516 489

– Meta-analysis when the studies have used comparable metrics and reported a
quantitative measure of effect size.

– Vote-counting that does not depend on the actual effect size values and
comparable metrics. Different outcomes of the hypotheses tests are categorized
into significant positive effect, significant negative effect or non-significant effect.
Each study then casts a “vote” in support of the above relationships and the
numbers of votes are counted, thus becoming new scale that behaves like p-
values. If the ratio of votes to the total number of studies is over a predetermined cut-
off value, a relationship for the specific variable is identified. The method assumes
that there is one underlying common phenomenon, for example when a single
correlation coefficient is applied.

Each of the above methods has its requirements. The first one depends on p-values
which are not reported in several studies. Meta-analysis requires homogenous studies and
comparable metrics, while the studies in this review vary in type and metrics. Vote-counting
requires an underlying common phenomenon but it allows testing very weak hypotheses.
However, it may be the only method applicable when there are different metrics for a
phenomenon or the reported information is very limited.

We decided therefore to perform a modified approach of vote-counting by categorizing
the findings in “significant positive,” “significant negative,” “positive,” “negative,” and “no
relation.” This way, we can evaluate the weight of evidence. By the weight of evidence, we
mean the extent to which empirical results are consistent across a variety of studies (Pickard
et al. 1998). We add the scale of the studies to evaluate whether reuse scales up, and finally
significance in our vote-counting covers both practical and statistical significance
depending on which one is discussed in the papers. Vote-counting is also discussed in
Mohagheghi and Conradi (2006).

Table 9 shows a summary of findings. The dependent metrics are ordered after their
popularity as given in the column “Metric included” (from 11 studies). In Table 8, “+ +”
means a significant positive effect of reuse, “+” means positive effect, “0” means no
relation or inconsistent results, “−” means negative effect and “− −” means significant
negative effect of reuse. Note that Frakes and Succi (2001) do not discuss significance due
to small sample size, Lim (1994) discusses practical significance, three studies (Tomer et al.
2004; Morad and Kuflik 2005; Zhang and Jarzabek 2005) are experience reports or
example applications without discussion of significance, while the remainder of studies
discuss statistical significance (and in cases practical significance as well). The three last
columns in Table 9 show summary statistics indicating the number of studies that include a
metric and how often the results were significant positive or negative.

Three dependent metrics are not included in Table 9 where the results were difficult to
interpret (sources of error, decrease in time-to-market due to reduced development effort,
and design effort). More than half of the dependent metrics are only used in single studies.
The relations in Table 9 can be summarized for the independent or dependent metrics.
When summarized for the independent metrics:

– Development mode: When comparing development with systematic reuse to develop-
ment without it across projects in four studies (Succi et al. 2001; Morisio et al. 2002;
Baldassarre et al. 2005; Zhang and Jarzabek 2005), significant increase in apparent
productivity is reported in two of them. In case of actual productivity and complexity
of products, the results are inconsistent. Other benefits are only reported from single
studies. From the above studies, Zhang and Jarzabek (2005) is an experience report
with no discussion of significance.

490 Empir Software Eng (2007) 12:471–516

T
ab

le
9

V
ot
e-
co
un

tin
g
fo
r
re
us
e
ef
fe
ct
s
on

so
ft
w
ar
e
qu

al
ity

an
d
pr
od

uc
tiv

ity

F
ra
ke
s

an
d

S
uc
ci

(2
00

1)
–

S

M
or
is
io

et
al
.

(2
00

2)
–

S

To
m
er

et
al
.

(2
00

4)
–

S

M
or
ad

an
d

K
uf
lik

(2
00

5)
–

S

Z
ha
ng

an
d

Ja
rz
ab
ek

(2
00

5)
–

S

L
im

(1
99

4)
–

M

S
uc
ci

et
al
.

(2
00

1)
–

M

B
al
da
ss
ar
re

et
al
.

(2
00

5)
–M

T
ho
m
as

et
al
.

(1
99

7)
–

L

M
oh

ag
he
gh

i
et

al
.

(2
00

4)
–L

S
el
by

(2
00

5)
–

L

M
et
ri
c

in
cl
ud
ed

S
ig
ni
fi
ca
nt

po
si
tiv

e
S
ig
ni
fi
ca
nt

ne
ga
tiv

e

D
ef
ec
t,
er
ro
r
or

fa
ul
t

de
ns
ity
,
pr
e/
po

st
re
le
as
e
or

un
de
fi
ne
d

(u
)

+
u

+
+
u

+
+
po

st
+
+
pr
e

+
+
bo

th
+
+
u

6
5

0

D
ev
el
op

m
en
t
ef
fo
rt
pe
r

m
od

ul
e,

as
se
t
or

pr
od

uc
t
in

pe
rs
on
–

ho
ur
s/
da
ys
/m

on
th
s

+
+

+
+

+
+
a

5
1

0

R
ew

or
k
ef
fo
rt
(e
ff
or
t

sp
en
t
on

co
rr
ec
tio

ns
)

pe
r
L
O
C
or

pe
r

m
od

ul
e
(M

)

+
+
+

+
+

L
O
C

+
+
M

4
3

0

A
pp

ar
en
t
pr
od
uc
tiv

ity
0b

+
+

+
+
c

+
+
d

4
3

0
C
om

pl
ex
ity

of
pr
od

uc
ts

0
0

+
+

3
1

0

A
ct
ua
l
P
ro
du

ct
iv
ity

+
+

0
2

1
0

N
o.

of
ch
an
ge
s
to

a
so
ft
w
ar
e
m
od

ul
e

+
+
+

2
1

0

C
ha
ng

e
de
ns
ity

0e
+
+
f

2
1

0
N
o.

of
fa
ul
ts

+
+

1
1

0
D
if
fi
cu
lty

in
er
ro
r

co
rr
ec
tio

n
−
−

1
0

1

D
if
fi
cu
lty

in
er
ro
r

is
ol
at
io
n

0
1

0
0

Empir Software Eng (2007) 12:471–516 491

T
ab

le
9

(C
on

tin
ue
d)

F
ra
ke
s

an
d

S
uc
ci

(2
00

1)
–

S

M
or
is
io

et
al
.

(2
00

2)
–

S

To
m
er

et
al
.

(2
00

4)
–

S

M
or
ad

an
d

K
uf
lik

(2
00

5)
–

S

Z
ha
ng

an
d

Ja
rz
ab
ek

(2
00

5)
–

S

L
im

(1
99

4)
–

M

S
uc
ci

et
al
.

(2
00

1)
–

M

B
al
da
ss
ar
re

et
al
.

(2
00

5)
–M

T
ho
m
as

et
al
.

(1
99

7)
–

L

M
oh

ag
he
gh

i
et

al
.

(2
00

4)
–L

S
el
by

(2
00

5)
–

L

M
et
ri
c

in
cl
ud
ed

S
ig
ni
fi
ca
nt

po
si
tiv

e
S
ig
ni
fi
ca
nt

ne
ga
tiv

e

F
au
lt
se
ve
ri
ty

−
−

1
0

1
E
rr
or

sl
ip
pa
ge

fr
om

un
it
te
st

0g
1

0
0

A
m
ou

nt
of

de
ve
lo
pe
d

co
de

+
1

0
0

R
at
e
of

m
od

if
ie
d
co
de

be
tw
ee
n
re
le
as
es

+
+

1
1

0

C
ha
ng

e
im

pl
em

en
ta
tio

n
ef
fo
rt

+
+
f

1
1

0

P
er
fo
rm

an
ce

(m
em

or
y

us
ag
e
an
d
sp
ee
d)

+
h

1
0

0

a
C
om

pa
ri
ng

of
pr
oj
ec
ts
sh
ow

ed
th
at

av
er
ag
e
de
ve
lo
pm

en
t
ef
fo
rt
pe
r
m
od

ul
e
de
cr
ea
se
d
w
ith

m
or
e
re
us
e,

al
th
ou
gh

no
t
si
gn

if
ic
an
tly

b
T
he

re
su
lts

ac
ro
ss

fo
ur

sm
al
l
da
ta
se
ts
w
er
e
in
co
ns
is
te
nt
,
w
ith

so
m
e
be
in
g
po
si
tiv

e
an
d
so
m
e
no
t

c
L
im

re
po
rt
s
th
at

ap
pa
re
nt

pr
od
uc
tiv

ity
in
cr
ea
se

fo
r
tw
o
pr
oj
ec
ts
du
e
to

co
m
po
ne
nt

re
us
e
le
d
to

sh
or
te
r
tim

e-
to
-m

ar
ke
t.
A
ls
o
in
cr
ea
se
d
re
us
e
ra
te
w
as

po
si
tiv

el
y
co
rr
el
at
ed

w
ith

in
cr
ea
se
d
ap
pa
re
nt

pr
od
uc
tiv

ity
d
A
pp
ar
en
tp

ro
du
ct
iv
ity

w
as

le
ss

w
ith

re
us
e
in

th
e
fi
rs
tp

er
io
d
si
nc
e
th
e
re
po
si
to
ry

ha
d
to

be
po
pu
la
te
d.

A
ft
er

th
at
,t
he

re
us
e-
ba
se
d
pr
oc
es
s
w
as

m
or
e
pr
od

uc
tiv

e
th
at
co
nv
en
tio

na
l

de
ve
lo
pm

en
t

e
T
he

nu
m
be
r
of

re
qu
ir
em

en
t
ch
an
ge
s
pe
r
co
m
po
ne
nt

do
es

no
t
sh
ow

si
gn
if
ic
an
t
di
ff
er
en
ce

fo
r
re
us
ed

an
d
no
n-
re
us
ed

co
m
po
ne
nt
s

f
W
e
co
ul
d
no

t
fi
nd

th
e
ex
ac
t
fi
gu

re
s
in

th
e
pa
pe
r
bu

t
th
e
re
su
lts

w
er
e
si
gn

if
ic
an
t
at

0.
05

le
ve
l

g
N
ea
rl
y
tw
o
th
ir
ds

of
th
e
er
ro
rs

es
ca
pe
d
un

it
te
st
in
g
in

al
l
ty
pe
s
of

re
us
e
(v
er
ba
tim

,
sl
ig
ht
ly

or
ex
te
ns
iv
el
y
m
od

if
ie
d
an
d
ne
w
),
ex
ce
pt

fo
r
sl
ig
ht
ly

m
od
if
ie
d
co
de

w
ith

43
%

h
T
he

re
us
ab
le

pr
od
uc
t
lin

e
ar
ch
ite
ct
ur
e
in
cl
ud

ed
op

tim
iz
at
io
n
st
ra
te
gi
es

th
at

co
ul
d
pr
op
ag
at
e
to

th
e
ap
pl
ic
at
io
ns

an
d
im

pr
ov

e
th
ei
r
pe
rf
or
m
an
ce

492 Empir Software Eng (2007) 12:471–516

– Component origin: In component-comparison studies, systematic reuse (either verbatim,
with slight modification or mixed with new code) is related to significant decrease in
problem density in four studies (Lim 1994; Thomas et al. 1997; Mohagheghi et al. 2004;
Selby 2005). From these, Lim (1994) is an experience report where only practical
significance is discussed. Systematic reuse is also related to significant decrease in
rework effort in two studies (Thomas et al. 1997; Selby 2005). Decrease of development
effort per module or asset is studied in Frakes and Succi (2001), Tomer et al. (2004),
Morad and Kuflik (2005) and Selby (2005), but only Selby (2005) discusses significance.
Note that the definitions of metrics vary across studies. Other significant positive impacts
are verified by single studies or the results are inconsistent. Two significant negative
effects are also reported by single studies: Thomas et al. (1997) report significant
difficulty in error correction for verbatim reused code since probably easier errors are
already removed from reused code, and because developers have a greater familiarity
with newly created components. We add that sometimes, it may be difficult to find the
cause of a problem when a component is reused since the problem may be in integration
or interaction with other components. Mohagheghi et al. (2004) report significant higher
fault severity of reused components because problems in these components would lead to
service unavailability or restarts. However, severity or difficulty ranking are often
subjective and may not reflect the impact or importance of modifications.

– Reuse rate: The studies of Frakes and Succi (2001) and Succi et al. (2001) are
correlational; meaning that they evaluate the relation between reuse rate and the
dependent variables. In the above studies, increased reuse rate is related to decrease in
problem density, although not significant in Frakes and Succi (2001). Lim (1994) and
Selby (2005) report some results related to reuse rate that are given under “Notes.” The
increase in apparent productivity with increasing reuse rate is reported as significant in
Lim (1994), while the four datasets in Frakes and Succi (2001) were inconsistent on the
relation between the External Reuse Level (ERL) and apparent productivity.

We can also summarize the findings horizontally for each dependent metric, where we
only summarize rows with several reported results and also give explanations from papers
on why reuse is related to the outcome:

– Defect, error or fault density is significantly reduced with introducing systematic
reuse as confirmed by several medium and large-scale studies of different types,
although the definitions of metrics and whether they study pre or post-release
problems vary. Succi et al. (2001) observed that customer complaints reduced with
increasing reuse rate when a domain library was in place, and not with reuse of a
generic library, meaning that it is systematic reuse that had a positive impact.
Reused components may be designed more thoroughly and be better tested, since
faults in these components affect several products and the prevention costs are
amortized over several products (Mohagheghi et al. 2004). Also because work
products are used multiple times, the accumulated defect fixes results in a higher
quality work product (Lim 1994). It is interesting to notice that reuse with extensive
modification does not provide the reduction in problem density that the other modes
of reuse. Selby (2005) reports that the modules reused with major revision had the
highest fault correction effort, highest fault isolation effort and highest change
correction effort, due to the loss of original design and abstractions. Thomas et al.
(1997) did not observe any significant difference in defect density of extensively
modified components versus new code, and modified components had more design
errors.

Empir Software Eng (2007) 12:471–516 493

– Decrease in development effort per module or per asset is verified in four small-scale
studies without discussion of significance, and in one large-scale study with significant
results; i.e., Selby (2005). Selby means that reuse leads to less effort spent in design
because creation of a new module requires the creation and evaluation of a new design,
while reuse may require a walkthrough of existing design.

– Rework effort is significantly reduced with systematic reuse. (1997) evaluated
rework effort per LOC, Selby (2005) per module and Morisio et al. (2002) relative
to the development effort. In the case of Selby (2005), rework effort is lowest for
modules reused verbatim, but these modules are also smallest in size. The difference
is also significant for modules with slight revision. Evidence is obtained both from sister-
project and component-comparison studies of different scales. The fewer number of
problems or lower problem density reduces the rework effort (Thomas et al. 1997). Morisio
et al. (2002) write that more difficult tasks are probably already performed by framework
designers.

– Apparent productivity improves significantly with systematic reuse (Lim 1994;
Morisio et al. 2002; Baldassarre et al. 2005), and the positive relation with reuse
rate is reported in Lim (1994). Evidence is obtained from two small or medium-scale
sister-project studies and one medium-scale component-comparison study. Because the
work products have already been created, tested and documented, apparent productivity
will increase. However, increased productivity does not necessarily shorten time-to-market
because reuse must be used effectively on the critical path of a development project (Lim
1994).

– Results regarding actual productivity are inconsistent. Baldassarre et al. (2005) report
that actual productivity was not significantly different between the two projects
developed with systematic or ad-hoc reuse. Morisio et al. (2002) report increase in
actual productivity and relates it to learning.

– Results regarding complexity are inconsistent. Baldassarre et al. (2005) report
significant decrease in complexity with reuse and mean that without systematic reuse,
a software system becomes more complex and more difficult to maintain. Zhang and
Jarzabek (2005) and Morisio et al. (2002) did not observe any decrease in complexity
when applying systematic reuse. Note that the definitions of the metric varied as shown
in Table 7. All the studies are sister-project studies.

7.4 Qualitative Findings

Although this review focuses on studies with quantitative findings, we give an overview of
a few reported qualitative findings in the papers here:

– Reuse allows a company to use personnel more effectively because it leverages
expertise (Lim 1994). More experienced personnel can be assigned to develop the
reusable assets.

– Selby (2005) reported that larger projects reuse more with modification than smaller
ones since scale may motivate reuse.

– Mohagheghi et al. (2004) reported that a reusable architecture leads to clearer
abstraction of components. Reuse and standardization of software architecture and
processes allowed also easier transfer of development in the conditions of
organizational changes (Mohagheghi and Conradi 2007).

– Morad and Kuflik (2005) reported that reuse adoption was slower than expected and
the management hesitated to assign resources to the reuse team.

494 Empir Software Eng (2007) 12:471–516

7.5 Validity Threats Discussed in the Papers

The validity of a study is the degree of confidence in inferences made from the data; i.e.
inferential quality. Only five papers have discussed validity threats at all: Thomas et al.
(1997), Succi et al. (2001), Morisio et al. (2002), Baldassarre et al. (2005) and Mohagheghi
et al. (2004). We discuss the four classes of validity threats below.

Construct validity is concerned with whether the selected metrics reflect the intervention
and effects; i.e., “right metrics.” Morisio et al. (2002) discuss that size and complexity were
known from earlier studies while net rework effort was selected as a quality indicator since
it is integrated in the effort model. Mohagheghi et al. (2004) discuss that fault density is
used to compare the quality of components within the same environment, and is widely
used. In the same study, the rate of modified code between releases (code volatility) was
selected since less modified code has fewer faults. Succi et al. (2001) found a high
correlation between two of the metrics (External Reuse Level and External Reuse
Frequency), meaning that they are not orthogonal. None of studies have validated the
selected metrics for their discriminative power, predictability or repeatability as recom-
mended by Schneidewind (1992). Selection of metrics is often constrained by the available
data. The relation between the selected metrics and quality is not well-discussed either. For
example, Fenton et al. (2002) discuss that the number of detected problems is a function of
both test effectiveness and potential problems, and few problems pre-release may indicate
poor testing or high quality software. We notice that 3/6 studies using problem density have
not even discussed whether they count pre- or post-release problems.

Conclusion validity for statistical analysis is concerned with whether the relationship between
intervention and outcome is of statistical significance; i.e. “right analysis.” As discussed in
Section 6, the conclusion on significance is in many cases based on fixed thresholds.

Internal validity is concerned with whether the observed relation is a causal one or “right
data” are collected, and is also a condition for external validity. It is difficult to discuss
cause-effect without manipulation in controlled experiments and removal of confounding
factors. Another view of causality given by Mill and discussed in Gregor (2002) is that:
(a) the cause has to precede the effect in time, (b) the cause and effect has to be related, and
(c) other explanations of the cause-effect relation have to be eliminated. In cross-sectional
studies in which all the data are gathered at one time, the researcher may not even know if the
cause precedes the effect (Shadish et al. 2001). Adding comparison groups and pre-treatment
observations to case studies clearly improves causal inference (same place). We identified
three sister-project studies with some degree of control applied by the investigator (Succi et
al. 2001; Morisio et al. 2002; Baldassarre et al. 2005). These studies discuss internal
validity in relation to the study design, as shown under confounding factors in Appendix D.
The question is whether this discussion is enough for establishing causality. Other
confounding factors discussed in the papers are the impact of size (Thomas et al. 1997;
Succi et al. 2001; Mohagheghi et al. 2004), complexity of modules or their interfaces
(Thomas et al. 1997; Selby 2005), programming languages (Mohagheghi et al. 2004),
developer skills (several studies), learning (Morisio et al. 2002) and differences in the
functionality of components (Mohagheghi et al. 2004). The three experience reports (Lim
1994; Morad and Kuflik 2005; Zhang and Jarzabek 2005) and one example application
(Tomer et al. 2004) do not include discussion of confounding factors.

External validity of the results should be discussed to evaluate whether the results are
generalizable to a population, other contexts (“right context”) or to theory. Studies in this
review are from industry, although cases are not claimed to be representative. Succi et al.
(2001) write that the major results described in the paper can be extended to the underlying

Empir Software Eng (2007) 12:471–516 495

normal population (what is it?). The major limitation to external validity in Morisio et al. (2002)
is discussed to be the employment of a single subject in the study, who cannot be
representative for all developers. Even with valid results, the set of projects with similar size,
domain, language or development methods is not well defined or so small that generalization
outside the companies is difficult, and similarity of projects is not easy to assess. Industrial
studies in this review have not been performed by taking samples from a population or
selecting cases based on pre-defined criteria, other than access to data. Other views of external
validity should therefore be sought. Lee and Baskerville (2003) propose generalization to
theories or models (an example in Mohagheghi et al. 2004). Another view of generalization is
evaluating the weight of evidence in the context of reader’s experience and how the results
may be valuable in enhancing the evidential force to encourage a technology or approach.

In addition to the inferential quality, it is necessary to discuss data quality and reliability.
Only Mohagheghi et al. (2004) discuss missing and inconsistent data due to the process of
reporting problems and changes that do not enforce developers to enter necessary data. We
did not find a discussion of data quality in the other papers. Pfleeger (2005) discusses some
characteristics in evaluating credibility of single studies such as sensitivity to errors, quality
and duration of observations, the expertise of those conducting and reporting studies, and
their interest in the results. Yin (2003) recommends being careful to ascertain the conditions
under which documents or archival records are generated and for which purpose.

7.6 Summary of the Section and Answering RQ4

We summarize the findings in several aspects:

Reuse savings In spite of the variety of cost-benefit models (Lim 1996 compares 17 of
them), we have little empirical evidence from industry on the actual economic benefits of
reuse. The studies of Tomer et al. (2004) and Morad and Kuflik (2005) have compared
scenarios of reuse, Thomas et al. (1997) and Mohagheghi et al. (2004) have evaluated
savings in rework effort, while Lim (1994) is an exception here with presenting long-term
data on savings.

Organizational impacts Quantitative findings are rarely reported together with organiza-
tional impacts and feedbacks to industry. We may think of several reasons: Most analyses
are performed by outsiders, data were collected or analyzed after the projects had finished,
and the researchers did not perform long-term studies. The three studies that have analyzed
large reuse programs (Thomas et al. 1997; Mohagheghi et al. 2004; Selby 2005) have
actually mined industrial data repositories. Even in the sister-project studies, it is not
reported whether the better performance of a reuse-oriented process had any impact on
industry decisions or their development processes. Pfleeger (1996) writes that quality
metrics per se, such as performance measures of defect rates, make no explicit strategic or
economic statement. It is important to relate the results to the industry settings since
“quality by itself is no longer a strategy that will ensure a competitive advantage. We must
use quality intelligently, as one component of the overall business strategy.”

Reusable assets When reusable assets are on the level of modules or functions, smaller and
less dependent software modules are more often reused as confirmed by two papers.
However, we found examples of reuse of large-grain building blocks as well, such as
components in a layered architecture (Mohagheghi et al. 2004), product line architectures
(Zhang and Jarzabek 2005) or OO-frameworks (Morisio et al. 2002). For large-grain

496 Empir Software Eng (2007) 12:471–516

components, the researchers write that reusable assets may encapsulate more difficult
design; i.e., leverage of expertise.

Combining the quantitative results We applied the vote-counting approach to combine the
quantitative results, where the goal was to identify where positive or negative results are
reported, and where they are significant. When it comes to productivity, significant increase
in apparent productivity is verified by two sister-project studies of small or medium scale,
and the study of Lim (1994). Results regarding actual productivity are few and inconsistent.
Significant decrease in development effort per module, asset or product is reported in one
study, while four small-scale studies have evaluated it and reported positive results,
although not significant. Reuse led to significantly lower problem density and less rework
effort, verified in several studies of all scales and in both sister-project and component-
comparison studies. There are other benefits that are verified in single studies and a few
disadvantages as well (but not as primary results of studies).

Ranking of evidence Kitchenham (2004) ranks evidence obtained from studies in five
classes, where 1 is the highest and is assigned to the evidence obtained from at least one
properly designed randomized controlled trial, and 5 is the lowest and is assigned to the
evidence obtained from expert opinion based on theory or consensus. We did not find
examples of experiments but when the degree of control is used to rank the evidence, three
of the sister-project studies (Succi et al. 2001; Morisio et al. 2002; Baldassarre et al. 2005)
would rank higher. Another step in appraising evidence is to evaluate how studies have
handled validity threats. We found no analysis of metrics regarding their construct validity.
Metric selection criteria was either not given or based on availability of data. Object
selection was based on convenience or the criteria were not described, and in most of the
studies, relation of the author to the case was not discussed. We do not criticise studies for
selecting objects, subjects or metrics based on convenience, but for the absence of
discussion regarding the selection process. Few papers discuss validity threats and
confounding factors or seek alternative explanations. The quality of data is generally not
discussed and we conclude that there is much room for improving design, analysis and
reporting of studies.

Theory in software reuse The need for useful and sound theories has never been
emphasized more, but there are few examples of what constitutes theory in software reuse
research. Gregor (2002) extends the definition of theory from explaining “why” to cover
different stages in research. The goals of theory as defined by Gregor and the contributions
of the review are summarized in Table 10.

8 Answering RQ5—What are the Shortcomings in Reuse Research?

We discuss the question in three sections: evaluating ROI, measurement issues and other
ideas for future research.

8.1 Evaluating ROI

In a recent paper by Frakes and Kang (2005) on the state of research on reuse and its future,
the authors write that “much data on the effect of reuse on important variables such as cost

Empir Software Eng (2007) 12:471–516 497

of software production, time to market and project completion time have also been
reported, though these studies tend to be quasi-experimental.” We have not found support
for this claim in the reviewed literature. There may be several explanations:

– Researchers are not interested in cost-benefit analysis. We think that the extensive
amount of literature and models on reuse economics rejects this explanation.

– Companies collect little data that may be used in credible cost-benefit analysis. It is
possible to think that once the decision on reuse is taken based on some initial
estimates of costs and benefits, companies do not collect data to evaluate such
estimates. It may be difficult to account for investments in reuse such as infra-

Table 10 Theory in software reuse based on the review results

Goal of theory Definition Examples of
research methods

Contributions of the review

Analyzing and
describing

When very little is known about
the phenomenon under
question. A contribution should
provide logical descriptions and
classifications.

Analysis of
existing
evidence;

This review analyzes evidence on
reuse and classifies studies in
several aspects; thus building
this type of theory where there
have not been any systematic
review before.

Empirical
observation.

Understanding Explains how and why something
happened. Judgment regarding
the contribution is made on the
basis of whether new or
interesting insights are provided,
and on the plausibility,
credibility and validity of the
arguments made.

Case studies; We should answer whether there
is a causal relationship between
reuse and the observed effects,
or how reuse has contributed to
the effects. We gave the
explanations from the papers
when discussing the evidence.
However, several observations
are not followed by discussions.

Surveys;
Ethnographic and
interpretive field
studies.

Predicting Describes what will be, without
necessarily understanding the
causes. The existence of
correlation between two
variables has a prediction value
but do not describe why
something happened.

Analyzing past
data.

We have found examples of
regression and correlation, but
no examples of prediction
models. One aspect of
prediction is what types of assets
are most probably reused which
was discussed in Section 7.2.

Explaining
and
predicting

That says what is, why and what
will be.

All research
methods
including case
studies and
experiments.

We have not found well-built
examples of this type of theory in
the reviewed literature. We think
that the reason is that explaining
and predicting needs longitudinal
studies, experimentation or large
sample sizes.

Design and
action

Says how to do something. Action research The review does not include this
type of papers but have identified
findings of this type of theory.
Papers relate systematic reuse and
not ad-hoc reuse to the benefits,
and reuse in large is applied by
architecture reuse (Mohagheghi
et al. 2004; Selby 2005).

498 Empir Software Eng (2007) 12:471–516

structure, training or making assets reusable. Another reason may be reliance on
expert opinion.

– Data are often analyzed by outsiders and not the company personnel. Outsiders have
limited access to data on reuse investments, while industry either does not evaluate or
does not report evaluations of economic success or failure of reuse programs.

Evaluating the above explanations, suggesting other ones or performing realistic ROI
analysis on reuse are subjects for future research. Sustainability is related to making better
links between reuse and corporate strategy (Frakes and Kang 2005).

8.2 Measurement Issues

Frakes and Terry (1996) have presented a survey of reuse metrics and models and classified
these in six types: cost-benefit models, maturity assessment models, amount-of-reuse
metrics, failure modes models to find reuse impediments, reusability assessment models,
and reuse library metrics. This review only found examples of metrics related to cost-
benefit models (Table 8), the amount-of-reuse metrics (reuse rate in Table 3), and
reusability assessment models (module-level characteristics in Table 7). A comparison of
metrics shows several challenges:

– Measuring reuse of other assets than code and effort spent on reuse: Software
architecture, design, test cases and templates are reused but their reuse rate, effort to
make them reusable or adapt them to a context are not quantified. One obvious reason
is that changes in other assets than code is not measurable by tools and involves human
judgement.

– Using comparable metrics: Few studies have used comparable metrics. Future studies
should define their metrics precisely compared to the ones already used, and if possible
use identical or comparable metrics.

– Validating metrics: Metrics should be evaluated by assessing their relation to quality
(quality is defined in so many ways, but everybody agrees that it is made up of a
collection of attributes where being fault free and delivered on-time are a few of them
(Glass 1997)), prediction value or their power of discrimination. Such analysis needs
data from several projects or over time. Using expert opinion is also an alternative
when such history does not exist; see for example Li and Smidts (2003).

– Measuring actual productivity: Actual productivity is often calculated by dividing size
of new code to total effort (see Table 5), but this does not show the productivity of a
project. One solution to this problem is to define the size of developed software as the
size of new code plus the equivalent size of reused code. Then actual productivity may
then be measured by dividing the size of developed software by total effort. New code
covers also glue-ware written to integrate components or add-ware to modify
components or make them reusable. COCOMO II includes a model to estimate the
equivalent size of reused software depending on factors such as design and code
modification rate and the understandability of reused software (Boehm et al. 2004).
Other models may be developed for the context.

8.3 Other Gaps for Future Research

Frakes and Kang (2005) propose future research to concentrate on techniques such as better
presentation of reusable assets, education on reuse in universities and training in industry,

Empir Software Eng (2007) 12:471–516 499

sustainability of reuse programs, identifying and validating metrics of reusability, and
relationship of reuse and domain engineering to newer software development processes
such as agile methods. The results presented in this review highlight the following gaps for
future research (other than ROI and measurement issues discussed before):

– Longitudinal studies over releases to validate metrics and conclusions, identify costs or
break-even points, and organizational impacts.

– Reuse process with integrated metrics for reuse. Mohagheghi et al. (2004) discuss the
lack of reuse metrics in the development process. Baldassarre et al. (2005) presented a
reuse-oriented process as part of a full reuse maintenance model. Other studies do not
give any description of the relation between reuse and software development processes.

– Improving the state of data collection and analysis in industry. The fact that data
collection in several studies needed development of additional tools and restoring of
data shows the gap between academia and industry in collecting data. Even for
problem reports that are collected by all companies, there are major concerns regarding
the quality of data and its prediction value. In many cases data are given to researchers
in formats that are not analyzable due to the limitations in commercial tools. This
observation confirms that the collected industrial data are not analyzed by industry to a
large extent (Mohagheghi et al. 2006).

– Study reuse of COTS and OSS components. The review mainly found examples of
internal development for and with reuse. A recent large survey in Norway, Italy and
Germany showed that 1/3 of ICT companies practiced some OTS-based development
(Conradi et al. 2005), and a survey of 61 ICT companies in Norway (although a non-
representative sample) showed that 68% of them are using COTS or OSS components
(Sommerseth 2006). Recently, a report on defect density of over 30 widely used OSS
products were published (Coverty 2006), but we don’t have observations from industry.

– Developing theories and models in addition to presenting results. We believe that this
review has taken a first step by analyzing evidence and collecting explanations. Future
studies should start with theory or models of inputs and outputs, be more explanatory
regarding their results by combining quantitative evidence with qualitative observations,
and discuss validity threats. They should seek for multiple explanations and insight.

9 Lessons for Future Studies

The review of literature from different views brings a range of issues to the forefront for
improving the state of research.

9.1 Defining Context and Data to Report

One important question is how much to report on the context to allow comparison of
studies. The guidelines for empirical research by Kitchenham et al. (2002) may be used in
design and reporting of studies. Based on the review results, we have summarized the
minimum for reporting in Table 11.

9.2 Data Analysis

Industrial studies are mostly of the observational type. Researchers use data that are
collected in the industrial settings and have usually little control over the environment or

500 Empir Software Eng (2007) 12:471–516

the data collection procedures. Researchers often apply statistical inferential techniques on
this collection of non-random data with questionable quality. There is more control in sister-
project case studies but again the settings are not artificial to control all the variables. We
discussed in Section 6 that variations of the Fishers’s null hypothesis testing are the
dominant method for inference. Some improvements to the analysis may be suggested.

Hypotheses statement Alternative hypotheses are only stated in few papers, while others
assume the alternative hypothesis to be a state of difference between means without
mentioning it. Papers should be more explicit on that. There are examples in Morisio et al.
(2002) and Mohagheghi et al. (2004) where the expected outcome is stated as the hypotheses
of the studies.

Testing hypotheses P-values are only reported in three studies which make taking
independent conclusions difficult for readers or for combining the results in a meta-
analysis. Gigerenzer (2004) and Wang (1993) recommend reporting p-values rather than the
accept-reject method based on a fixed threshold level. We have not found a study where the
experimental approach of defining sample size and type I and II errors beforehand was
done, or the power was calculated. If applicable, see (Dybå et al. 2006). However, effect
size may be discussed in some cases even without experimental design. Effect size is the

Table 11 Reporting context and data

Attribute Description

Study objects or units of
analysis, and subjects

Product and component size, development effort, size of reused assets,
programming language, domain or type of application, internal goals for
reuse or data on company baseline (if any), and skills of developers.

Criteria applied to select objects
and subjects

Random, by convenience or other criteria.

Relation of authors/investigators
to the case

This is important for evaluating objectivity.

Type of study Information on the degree of control (intervention or observation), pre-test
or post-test measurement, and whether there exists of a control group or
the method of comparison if a study is comparative.

Reuse approach Development scope, technical approach, reuse management, reuse
initiation, modification, reuse rate, what is measured in reuse, any
complementary factors including human factors proposed in Morisio et
al. (2000), when reusable assets are developed, explicit reuse process
and reuse team. See Table 2 for definitions.

Criteria for selection of metrics Related work, precise definitions and how they should be linked to the
propositions of the study. One improvement would be to select popular
metrics that are already used in other studies.

Data collection process Description of how data are collected, by whom, a discussion of the
quality of data or any measurement problems or biases and how these
are handled. Do data include subjective assessments, missing or invalid
points or outliers that affect the results? Sources of data (see Section 2.3)
such as archival records or participant-observation (the reporter
participates in the case as a staff member) should also be reported.

Presented data An overview of data in terms of the number of data points, means,
medians, standard deviations or variances, or in box plots and diagrams,
differences between mean values if comparison and effect size, the
confidence intervals and the period of data collection.

Empir Software Eng (2007) 12:471–516 501

difference of mean values divided by the pooled standard deviation and gives information
on the actual observed difference.

Evaluating the results Researchers often take a conclusion of rejecting or not rejecting a
hypothesis which is expected of them to do, but this should not merely depend on p-values.
Descriptive statistics and discussion of practical significance in the settings are
fundamental. One reason is that selection of a 0.05 or any other level is often subjective.
A second reason is that practical significance is a balance between effects and costs. We
found earlier that there is no golden figure for the reuse rate and the same is true for
improvements in productivity or problem density. While a 5% reduction in problem density
may be considered as significant in one setting, it may be considered as too low in another
setting relative to the investments on reuse.

9.3 Explaining the Results

We observed that few studies have discussed why a result is observed or try to establish
causality by eliminating alternative explanations. As discussed in Shadish et al. (2001), it is
especially important in non-experimental designs to assess alternative plausible explana-
tions. The results should also be discussed relative to internal goals (Lim discusses that in
one case, reuse rate exceeded the internal goal after a few years), previous data, feedback
from industry, the authors’ experience, or impacts on a company’s reuse process and
decision-making.

9.4 Evaluating Contribution for External Validity

Based on the goals of theory depicted in Table 10, reporting from single case studies can
have one of the following goals:

– Identifying commonalities and differences between settings for the purpose of
analyzing and describing, and predicting the impacts for the outcome.

– Providing new or interesting insights for the purpose of understanding or explaining.
– Theory development or verification of theory either for explaining, predicting or action.

We may therefore ask the following questions to evaluate the contributions: Do the
results strengthen or weaken our previous theories or expectations? Does a study have
characteristics that make it unique for identifying new variables, gaining new insights or
expecting atypical results? Does a study fill a gap or answer a question where we have little
evidence, for example related to actual productivity or reuse of externally-developed
components? Can we make conclusions about the theory or outcome and not about the
population; for example, extensively modified components will probably be more defect-
prone since the original design is significantly altered.

10 Conclusion

This review examined empirical studies in industry published between 1994 and 2005. The
contributions of the review are identifying the extent and type of empirical research on
reuse in industry, identifying context parameters, analyzing the metrics, combining the

502 Empir Software Eng (2007) 12:471–516

findings, seeking for explanations and theory building, identifying gaps for future research,
and suggestions for improving empirical studies in this field.

General observations Industrial studies may assure a high degree of relevance since the
settings are not artificial and the developers are professional. On the other hand, several
conditions are not controlled by the investigators. This fact does not explain the low quality
of much research in the field. We found several papers that lacked information on their
study design, research questions and hypotheses. Generally, metrics were poorly defined
and there were few discussions on the quality of data. Also, the insufficient discussion of
results in many studies and the lack of attention to establishing causality create serious
doubts about the validity of conclusions. Little research has been done on important
questions regarding sustainability of reuse programs and their impact on organizations and
businesses. Since experimentation does not seem to be applicable in subjects such as
software reuse that need context and observation over long time, we must strive to improve
the quality of observational studies. Journals and conferences can play an important role
here by requiring higher quality from the submitted papers.

Findings We performed the most basic form of combining empirical evidence which is
vote-counting, showing also when the results are non-significant or when significance is not
discussed. The best would be to have adequate number of studies to divide them depending
on the study types. In spite of the concerns discussed above, the review found evidence for
significant positive effects of reuse on:

– Software quality: There is positive and significant evidence on lower problem density
(defect-, error- or fault density) and effort spent on corrections (rework effort) with
introducing systematic reuse in industry. Problem density and rework effort may have
been selected because industry collects problem reports, and relates product quality to
the reported problems and effort spent on correcting them. A ranking of software
engineering metrics by experts showed that problem density was among the top three
measures in all phases of development (Li and Smidts 2003). The relation between the
selected dependent metrics and quality needs better validation to improve construct
validity.

– Productivity: There is positive and significant evidence on apparent productivity gains
in small and medium-scale studies. Increasing productivity has been one of the main
motivations for reuse. The results for actual productivity are inconsistent and the
definition of metric is also problematic. Further studies are therefore necessary to
evaluate productivity gains.

The scale of the studies and other characteristics such as application domain and the
approach to reuse varied. The variation shows that reuse works in various situations and is
practiced in multiple ways. Software industry has few standardized metrics and comparing
studies may lead to a progress in this area.

One important question is to identify contexts where reuse is beneficial and how reuse
should be applied to observe the benefits. Evidence collected from the studies suggests that:

– It is verbatim reuse and reuse with slight modification that results in significant lower
problem density, development or correction effort.

– When reusable assets are on the level of modules or functions, smaller and less
complex ones may be reused more often. For large-scale reuse, the reusable assets may
incorporate difficult design decisions.

Empir Software Eng (2007) 12:471–516 503

– Medium and large-scale reuse programs invest on developing the reusable assets
internally.

Gaps The intention of the review is to assist decision-makers about reuse investments and
future research to focus on unsolved issues. It highlights gaps in empirical research to be:

– For researchers, verifying economic returns of reuse, using comparable and consistent
metrics for measuring reuse and its effects so that empirical evidence can be collected
and appraised in a more effective way, improving analysis and statistical thinking, and
improving the state of research design and reporting are major challenges.

– For industry, improving tools and data collection routines, evaluating reuse of COTS
and OSS components, integrating reuse in software development processes and
analyzing own data are major challenges. We observed a great deal of variance among
studies regarding the amount of reuse, problem density and productivity gains. It is
therefore necessary to have explicit internal goals and baselines, and link benefits to
strategic or economic values. It is interesting to notice that only in three studies, the
authors were employees of the companies or have stated this relation clearly. The
question is whether any feedback was given to industry in the other studies performed
by outsides.

In addition to identifying gaps, we provided suggestions for improving reuse research
based on the results of the review.

Final comments The evidence is sparse and we may hope that the positive trend of year
2005 with four published papers continues. We found too few empirical studies to
generalize findings in several aspects. The review results are presented in several tables that
increased the length of the review, but we mean that the data are useful for preparing future
research. Performing empirical studies in software engineering does not have a long history,
with much to look for and learn about.

Acknowledgement This review was done in the SEVO (Software EVOlution in component-based software
engineering) project (SEVO 2006), which is a Norwegian R&D project for 2004–2008 with contract number
159916/V30. We thank Marco Torchiano for his comments on the first version of this review. We also thank
the anonymous reviewers for their valuable comments and suggestions.

Table 12 An overview of papers

Reference and
publication channel

Objects of study Type of study

Lim (1994), IEEE
Software

1. HP product of 80 KLOC written in
Pascal and SPL for manufacturing
resource planning.

2. HP product of 64 KLOC written in C
for plotters and printers.

Author: Case studies.
Review: Experience report, comparing
components within each product for
quality and data on reuse economics for
the two products over years.

Agreement: No. Research question and
hypotheses are not stated to classify
this as a case study.

Appendix A

504 Empir Software Eng (2007) 12:471–516

Table 12 (Continued)

Reference and
publication channel

Objects of study Type of study

Thomas et al. (1997),
Journal of Systems
and Software

Components from seven medium-scale
Ada projects within a narrow domain
(simulators at NASA/GSFC Flight
Dynamics Division) from a single
company. The size of projects is 12.8-
27.1 thousand Ada statements or 61–
184 KLOC.

Authors:–
Review: Case study. Comparing
components within a collection of
products.

Agreement:–

Frakes and Succi
(2001), Journal of
Systems and
Software

Data are from four small sets of C and C
++ modules from four different sources
(maximum 16 modules in a set): text
processing and retrieval, telecom,
telecom and system for medical
records.

Authors: Exploratory correlational study
as a type of quasi-experiment.

Review: Exploratory case study,
comparing software modules within
four datasets.

Agreement: No. Hypotheses are not
stated and there is no control by the
investigator.

Succi et al. (2001),
IEEE Trans.
Software
Engineering

Data are from two products in the same
product family in an Italian medium
sized software company that develops
accounting software systems. One
product (99 KLOC) was developed
using the company’s standard
development cycle (including ad-hoc
reuse) while the other product (101
KLOC) was developed after the
development of a domain-specific
library. Programming language is not
given.

Authors: Two-group post-test only
experiment. Data collection after
completion of the projects.

Review: Sister-project case studies
(exploratory?). It is not given how the
projects were selected. Correlational
study.

Agreement: No. Assignment of
treatments is not discussed, hypotheses
are not stated but t-test is applied for
different means.

Morisio et al. (2002),
IEEE Trans.
Software
Engineering

A single programmer developed five
small applications based on an OO-
framework (of 10 KLOC in Java and
some COTS) and four based on
traditional component development.
Software sizes were in the range of
256–3,020 LOC and effort per project
has been 13–95 person–hours. The
applications were network applications
such as telelearning and video on
demand.

Authors: Exploratory case study or a
single-object quasi-experiment.

Review: Sister-project case studies. The
authors call the study exploratory since
one developer is involved, and we also
use that.

Agreement: Yes.

Mohagheghi et al.
(2004), ICSE’04
Proceedings

Data are from three releases of a telecom
product of 408–480 KLOC programmed
in Erlang, C and Java. This product
shares reusable components with a
second product in a product family.

Authors: Case study of data mined from
industry.

Review: Case study. Components from a
single product are compared for
releases.

Agreement: Yes.
Tomer et al. (2004),
IEEE Trans.
Software
Engineering

A model is proposed to compare the
cost/effort of different reuse scenarios
(e.g., opportunistic versus systematic or
new development) and applied on
seven software modules in one

Authors: Case study.
Review: Example application, comparing
reuse scenarios for components where
some data are measured and some are
estimated.

Empir Software Eng (2007) 12:471–516 505

Table 12 (Continued)

Reference and
publication channel

Objects of study Type of study

company (electronic systems). Module
sizes are not given.

Agreement: No. A model is proposed by
the authors and examples of its use are
given.

Baldassarre et al.
(2005), ICSM’05
Proceedings

Data are from two on-going projects in an
Italian SME, one with a reuse-oriented
development (ROD) and one without it,
otherwise similar in language
(COBOL), specification and design
technique. Software sizes are not given
in the paper. We contacted the first
author who said that she would classify
the size as medium. The first project
developed an application for automatic
currency conversion, and the second for
managing banking procedures.

Authors: Sister-project case studies, with
random allocation of developers to the
two products.

Review: Sister-project case studies, two
on-going projects. It is not given how
the projects were selected.

Agreement: Yes.

Morad and Kuflik
(2005), SwSTE’05
Proceedings

Reuse experiences of initiating a reuse team
is described. Two internal reusable assets (a
large tool and a small component for
electronics industry) and three OSS
components are given as examples.
Programming languages are C++ and Java.

Authors: Cases.
Review: Experience report, similar to Tomer
et al. (2004) comparing reuse scenarios
for components where some data are
measured and some are estimated.

Agreement: Yes.
Selby (2005), IEEE
Trans. Software
Engineering

Data are from 25 software systems from a
NASA development environment,
ranging from 3 to 112 KLOC of Fortran
source code. In addition to analyzing data
on project level, data from 2,954 modules
with complete data on their development
are analyzed to evaluate reusability.

Author:–
Review:Case study of data mined from
industry, comparing projects related to
reuse rate and comparing components
in the collection of projects for several
attributes.

Agreement:–
Zhang and Jarzabek
(2005), SPLC’05
Proceedings

A product line was initiated by identifying
similarities and differences among four
small games (probably 4.5 KLOC
totally) in an extractive way and these
products were developed again based on
the product line architecture (PLA).
Further, a new game was developed
twice, once based on the PLA and once
without it. The J2ME platform (Java) is
used for implementation.

Authors: Experiment.
Review: Experience report. Replicated
product design.

Agreement: No. Several characteristics
of experiment are missing such as
discussion of object or subject selection
or hypotheses.

506 Empir Software Eng (2007) 12:471–516

A
p
p
en
di
x
B

T
ab

le
13

D
at
a
on

re
us
e
ap
pr
oa
ch
es

R
ef
er
en
ce

&
sc
al
e

D
ev
el
op
m
en
t
sc
op
e

T
ec
hn
ic
al

ap
pr
oa
ch

an
d
do
m
ai
n
sc
op
e

R
eu
se

m
an
ag
em

en
t

an
d
in
iti
at
io
n

M
od
if
ic
at
io
n

R
eu
se

ra
te

M
ea
su
re
d
un
it

of
re
us
e

C
om

pl
em

en
ta
ry

fa
ct
or
s

F
ra
ke
s
an
d
S
uc
ci

(2
00
1)
–S

E
xt
er
na
l
re
us
e

of
fu
nc
tio

ns
is
m
ea
su
re
d.

C
om

po
si
tio

na
l
(C

an
d
C
+
+
fi
le
s

an
d
fu
nc
tio

ns
)

A
d-
ho
c

V
er
ba
tim

E
xt
er
na
l
R
eu
se

L
ev
el
/

F
re
qu
en
cy
/D
en
si
ty

(E
R
L
/E
R
F
/E
R
D
)
is

m
ea
su
re
d.

M
ea
n
E
R
L
/

E
R
F
is
m
ax

0.
47
.

S
ou
rc
e
co
de

(f
un
ct
io
ns
)

N
o.

M
or
is
io

et
al
.

(2
00
2)
–S

E
xt
er
na
l
(d
ev
el
op
ed

be
fo
re

ex
pe
ri
m
en
t

in
si
de

th
e
co
m
pa
ny
)

O
O

fr
am

ew
or
k

S
ys
te
m
at
ic

in
pr
od
uc
ts
ba
se
d
on

th
e
fr
am

ew
or
k

V
er
ba
tim

an
d
m
od
if
ie
d

A
ro
un
d
80
%

re
us
e
le
ve
l

in
th
e
fi
ve

pr
od
uc
ts

ba
se
d
on

th
e
O
O

fr
am

ew
or
k.

S
ou
rc
e
co
de

of
fr
am

ew
or
k
as
-i
s

F
ra
m
ew

or
k
is
w
el
l

do
cu
m
en
te
d
an
d
ea
sy

to
le
ar
n.

T
om

er
et

al
.

(2
00
4)
–S

In
te
rn
al

R
eu
se

of
so
ft
w
ar
e

m
od
ul
es

S
ys
te
m
at
ic

an
d

co
nt
ro
lle
d

V
er
ba
tim

an
d
m
od
if
ie
d

N
ot

gi
ve
n.

S
ou
rc
e
co
de

in
bi
na
ri
es

fo
r
fi
ve

as
se
ts
,
S
ou
rc
e

co
de

fo
r
ot
he
r

tw
o

C
om

bi
na
tio

n
of

ap
pr
oa
ch
es
.

M
or
ad

an
d
K
uf
lik

(2
00
5)
–S

In
te
rn
al

an
d
ex
te
rn
al
,

in
cl
ud
in
g
an

ex
am

pl
e
of

O
S
S

R
eu
se

re
po
si
to
ry
,

ho
ri
zo
nt
al

an
d

ve
rt
ic
al

re
us
e

S
ys
te
m
at
ic

V
er
ba
tim

V
er
ba
tim

re
us
e
10
–1

5%
fo
r
in
te
rn
al
.
N
ot

gi
ve
n

fo
r
pr
oj
ec
ts
us
in
g
O
S
S
.

S
ou
rc
e
co
de

in
bi
na
ri
es

M
an
ag
em

en
t

co
m
m
itm

en
t
an
d
re
us
e

te
am

bu
t
he
si
ta
tio

n
to

en
la
rg
e
th
e
re
us
e
te
am

,
pa
rt
ic
ip
at
io
n
of

re
us
er
s

in
de
fi
ni
tio

n
of

re
us
ab
le

as
se
ts
.

Z
ha
ng

an
d
Ja
rz
ab
ek

(2
00
5)
–S

In
te
rn
al

D
om

ai
n
en
gi
ne
er
in
g,

ar
ch
ite
ct
ur
e
re
us
e

an
d
m
et
a-
co
m
po
ne
nt
s

fo
r
cu
st
om

iz
at
io
n

S
ys
te
m
at
ic
,
E
xt
ra
ct
iv
e

in
iti
at
io
n

M
od
if
ie
d
by

cu
st
om

iz
at
io
n

U
nd
ef
in
ed

U
nd
ef
in
ed

E
xt
ra
ct
iv
e
an
d
pr
oa
ct
iv
e

ap
pr
oa
ch
es
,
us
in
g

ex
pe
ri
en
ce

fr
om

an
ea
rl
ie
r
pr
oj
ec
t.

L
im

(1
99
4)
–M

In
te
rn
al

U
nd
ef
in
ed

S
ys
te
m
at
ic

(r
eu
se

pr
og
ra
m
),
In
cr
em

en
ta
l

re
ac
tiv

e
in
iti
at
io
n

U
nd
ef
in
ed

1.
68
%

re
us
e

S
ou
rc
e
co
de

In
cr
em

en
ta
l
(r
ea
ct
iv
e)

ap
pr
oa
ch

to
re
us
e

fo
r
ca
se

1,
re
us
e
te
am

fo
r
ca
se

2.

2.
31
%

re
us
e

Empir Software Eng (2007) 12:471–516 507

T
ab

le
13

(C
on
tin

ue
d)

R
ef
er
en
ce

&
sc
al
e

D
ev
el
op
m
en
t
sc
op
e

T
ec
hn
ic
al

ap
pr
oa
ch

an
d
do
m
ai
n
sc
op
e

R
eu
se

m
an
ag
em

en
t

an
d
in
iti
at
io
n

M
od
if
ic
at
io
n

R
eu
se

ra
te

M
ea
su
re
d
un
it

of
re
us
e

C
om

pl
em

en
ta
ry

fa
ct
or
s

S
uc
ci

et
al
.

(2
00
1)
–M

In
te
rn
al

C
om

po
si
tio

na
l,
ca
ll
to

fu
nc
tio

ns
in

a
ge
ne
ra
l

pu
rp
os
e
lib

ra
ry

in
on
e

pr
od
uc
t,
an
d
do
m
ai
n

an
d
ge
ne
ra
l
pu
rp
os
e

lib
ra
ry

in
an
ot
he
r

A
d-
ho
c
in

on
e
pr
od
uc
t

an
d
sy
st
em

at
ic

in
an
ot
he
r

S
ee
m
s
to

be
ve
rb
at
im

re
us
e
of

fu
nc
tio

ns
.

E
\R
L
,
E
R
F
an
d
E
R
D

ar
e

us
ed

fo
r
re
us
e
on

fu
nc
tio

n
le
ve
l,
an
d
ar
e

no
t
si
gn
if
ic
an
tly

di
ff
er
en
t
in

th
e
tw
o

pr
od
uc
ts
.
M
ea
n
E
R
L
/

E
R
F
ar
e
<
0.
70
.

S
ou
rc
e
co
de

(f
un
ct
io
ns
)

C
om

m
itm

en
t
to

im
pr
ov
em

en
t.

B
al
da
ss
ar
re

et
al
.

(2
00
5)
–M

In
te
rn
al

R
eu
se

re
po
si
to
ry

an
d

re
us
e
of

te
m
pl
at
es

A
d-
ho
c
in

on
e
pr
od
uc
t

an
d
sy
st
em

at
ic

in
an
ot
he
r

V
er
ba
tim

an
d
m
od
if
ie
d

th
ro
ug
h
te
m
pl
at
es

25
%

fo
r
th
e
pr
od
uc
t

w
ith

re
us
e

S
ou
rc
e
co
de

R
eu
se

tr
ai
ni
ng
.

T
ho
m
as

et
al
.

(1
99
7)
-L

In
te
rn
al

A
rc
hi
te
ct
ur
e
re
us
e
an
d

do
m
ai
n
lib

ra
ry

S
ys
te
m
at
ic

V
er
ba
tim

an
d

cu
st
om

iz
at
io
n
(A

da
ge
ne
ri
cs

in
a
re
us
e

lib
ra
ry

th
at

ca
n
be

in
st
an
tia
te
d
w
ith

sp
ec
if
ic

pa
ra
m
et
er
s)

V
er
ba
tim

re
us
e
4–
89
%

in
se
ve
n
pr
oj
ec
ts
.
T
ot
al

re
us
e
(i
nc
lu
di
ng

m
od
if
ie
d)

31
–1
00
%

S
ou
rc
e
co
de

A
da

la
ng
ua
ge

en
co
ur
ag
es

re
us
e.

M
oh
ag
he
gh
i
et

al
.

(2
00
4)
–L

In
te
rn
al

D
om

ai
n
en
gi
ne
er
in
g,

ar
ch
ite
ct
ur
e
re
us
e

an
d
a
de
fi
ne
d

co
m
po
ne
nt

m
od
el
.

V
er
tic
al
an
d
ho
ri
zo
nt
al

re
us
e

E
xt
ra
ct
iv
e
in
iti
at
io
n,

S
ys
te
m
at
ic

V
er
ba
tim

59
–6
1%

in
th
re
e
re
le
as
es

of
on
e
pr
od
uc
t
in

th
e

pr
od
uc
t
fa
m
ily

S
ou
rc
e
co
de

of
co
m
po
ne
nt
s,

re
us
ed

as
-i
s

M
an
ag
em

en
t

co
m
m
itm

en
t,

ex
tr
ac
tiv

e
ap
pr
oa
ch
,

la
ye
re
d
ar
ch
ite
ct
ur
e.

S
el
by

(2
00
5)
–L

In
te
rn
al

A
rc
hi
te
ct
ur
e
an
d

co
nt
ex
t-
de
pe
nd
en
t

m
od
ul
e
re
us
e

(v
er
tic
al
)

S
ys
te
m
at
ic

V
er
ba
tim

,
sl
ig
ht

or
m
aj
or

m
od
if
ic
at
io
n

M
ea
n
32
%

fo
r
al
l

th
e
pr
od
uc
ts
,
0–

82
%

ac
ro
ss

th
e
pr
od
uc
ts
.

V
er
ba
tim

re
us
e
0–
70
%

S
ou
rc
e
co
de

at
m
od
ul
e
le
ve
l

M
at
ur
e
re
us
e
pr
oc
es
s

an
d
en
vi
ro
nm

en
t,

co
m
m
itm

en
t
of

de
ve
lo
pe
rs
.

508 Empir Software Eng (2007) 12:471–516

Appendix C

Table 14 Quantitative data presented in the papers and analysis methods

Reference &
scale

Data in the paper Hypotheses Analysis Discussion of
significance

Frakes and
Succi
(2001)–S

All data No (exploratory case
study)

Spearman’s rank
correlation (robust
to outliers)

No. Significance of
correlation statistics
are not tested due to
small sample size.

Morisio
et al.
(2002)–S

All data Null hypotheses of
difference and no
alternative
hypotheses.

Analysis of
covariance to select
input variables, least
square linear
regression to build
models.

Significance of
variables in the
model is discussed.

Tomer et al.
(2004)–S

All data No (example
application)

Not applicable. No.

Morad and
Kuflik
(2005)–S

Some data and
diagrams

No (experience
report)

Not applicable. No.

Zhang and
Jarzabek
(2005)–S

All data No (experience
report)

Not applicable. No.

Lim
(1994)–M

Mean values of two
products over
years.

No (experience
report)

No. The results are
discussed as
significant for HP.

Succi et al.
(2001)-M

Mean, max and min,
standard deviations,
total overview of
data.

Not stated but t-test is
applied for
significant different
means which means
null hypothesis of
no difference. No
alternative
hypotheses.

Normality is
discussed. Pearson
correlation between
pairs, t-test for
significantly
different means.

Correlation is
considered
significant at 0.05
and 0.01 levels. P-
values are reported
for t-tests and no
fixed significance
level is given, but
concluded as
significant.

Baldassarre
et al.
(2005)–M

Box plots with
median and scatter
plots.

Null hypotheses of
no difference and
alternative
hypotheses of
difference.

Mann–Whitney U test
for differences
between two
treatments,
Wilcoxon test for
successive
measures of same
treatment.

P-values are reported
and no significance
level is give, but the
paper states that
there has been a
fixed threshold.

Thomas
et al.
(1997)–L

Mean values, total
overview of data
and distributions
in percentages.

Null hypotheses of no
difference or
independence. No
alternative
hypotheses.

Non-parametric
Mann-Whitney U
test since many
parameters were not
normally
distributed. Chi-
square test for
testing differences
of categorical data.

P-values higher than
0.0001 are given
and less than 0.01
are considered as
significant.

Empir Software Eng (2007) 12:471–516 509

Table 14 (Continued)

Reference &
scale

Data in the paper Hypotheses Analysis Discussion of
significance

Mohagheghi
et al.
(2004)–L

Mean, median and
standard deviations.
Some detailed data,
a total overview of
data, percentages
and scatter plots.

Null hypotheses of no
difference and
alternative
hypotheses of
difference. One
directional null
hypothesis.

Normality is
discussed. T-test,
Mann–Whitney test
(when not normal)
and Chi-square test
are applied.

P-values are reported
and no fixed
significance level is
given, but discussed
as significant. Effect
size and practical
significance are
discussed.

Selby
(2005)–L

Mean, median and
standard deviations,
scatter plots and
histograms.

Null hypotheses of no
difference. No
alternative
hypotheses.

Non-parametric
ANOVA using
ranked data since
several dependent
variables were not
normally
distributed.

Significance level (α)
is discussed (e.g. α
<0.05 or α>0.05 or
α<0.001). P-values
are not given.

Table 15 Summary of quantitative findings in sister-project studies

Reference &
scale

Findings Discussion of confounding factors

Morisio et al.
(2002)–S

Regression model shows that development with
an OO framework gives higher apparent and
actual productivity than without it (difficult to
read how much). Quality measured in less
rework improves over time in both cases, but
more with a framework than without it.

One single developer was involved but
the seven applications were
comparable.

The cumulative size of software written
by a programmer is related to learning
and a framework increases conceptual
learning and thus productivity.

The time sequence of development of
applications was a compromise between
randomization and the practical needs
of the study.

Zhang and
Jarzabek
(2005)–S

Design quality as measured in OO metrics
(complexity, coupling) was almost the same
after using a product line architecture
compared to before. Size in LOC was reduced
by 26.5%. Memory usage decreased from 0.6
to 19% in four games and the games run 2.7–
10% faster than before. Effort was reduced by
68% for one game.

The study is replicated product design and
one confounding factor is whether the
same developers have been involved in
replication, which is not answered.

Appendix D

510 Empir Software Eng (2007) 12:471–516

Table 15 (Continued)

Reference &
scale

Findings Discussion of confounding factors

Succi et al.
(2001)–M

The product developed with domain library and
systematic reuse had 44% less customer
complaints per LOC (problem density) than the
product developed with ad-hoc reuse. Higher
reuse levels in units resulted in lower problem
density when a domain library was in place, but
not with ad-hoc reuse.

Comparable projects and developers.
Size measures are not correlated with
customer complain density.

The decrease in problem density after
delivery is not correlated with the
complexity of code.

Baldassarre
et al.
(2005)–M

MCC of the product developed with systematic
reuse was 33% less than the product developed
without it, and it had significantly higher
apparent productivity (median was almost 38
LOC/person hour compared to 28 in one
dataset), while net productivity was not
different.

Comparable projects and random
assignment of developers.

Table 16 Summary of quantitative findings in component-comparison studies

Reference &
scale

Findings Discussion of confounding factors

Frakes and
Succi
(2001)–S

Correlational exploratory case study with four
datasets:

1. Negative correlation was observed between
reuse rate and the number of changes
(Deltas) to a module; −0.5 using External
Reuse Level (ERL) and −1.0 using External
Reuse Frequency (ERF).

2. Positive correlation was observed between
reuse rate and subjective quality rating (0.46
Spearman’s rank correlation for ERL and
0.62 for ERF).

3. Negative correlation was observed between
reuse rate and error density, between reuse
rate and Deltas, and between reuse rate and
effort per module. Positive correlation was
observed between reuse rate and subjective
quality rating (the figures for ERF were
−0.62, −0.61 and −0.69 and 0.76. For ERL,
the correlations were in the same direction
but lower). Results regarding apparent
productivity were contradictory.

4. Contradictory results regarding apparent
productivity.

Tomer et al.
(2004)–S

For all the seven assets, systematic or
controlled reuse gave savings relative to new

Appendix E

Empir Software Eng (2007) 12:471–516 511

Table 16 (Continued)

Reference &
scale

Findings Discussion of confounding factors

development. For five assets, systematic
reuse gave savings between 42 and 81%
compared to new development (measured in
person–hours). For one asset, controlled
reuse was 32% better than systematic reuse,
while for others, systematic reuse would be
best.

Morad and
Kuflik
(2005)–S

Savings of systematic reuse over new
development is approximately 50%, and less
for other reuse scenarios. For the OSS
products, systematic reuse with adaptation
would be best, although it is difficult to read
exact savings from diagrams.

Lim
(1994)–M

First product: Defect density was 0.9 for
reused and 4.1 for non-reused code. Using
reused code in combination with new code
resulted in 51% reduction in defect density
compared to new code and 57% increase in
productivity. Second product: Defect density
was 0.4 for reused and 1.7 for non-reused
code. Using reused code in combination
with new code resulted in 24% reduction in
defect density compared to new code and
40% increase in productivity. Increased
reuse rate (also with modification) is related
positively to increase in apparent
productivity.

Thomas
et al.
(1997)–L

Reuse through slight modification shows 59%
reduction in error density and verbatim reuse
results in more than 90% reduction in error
density compared to new code. Percentage
of difficult-to-isolate errors ranges from
12.4% for new components to 14.5% for
extensively modified ones. Percentage of
difficult-to-complete errors was 22.4% for
verbatim reused components compared to
10.1% for new code, which is significantly
higher. Components reused verbatim had an
average of 24.5 Ada statements and 1.1
withs per component (a measure of external
dependency), while new components had an
average of 45.8 statements and 3.4 withs per
component. Reuse via slight modification
shows a 35% reduction in relative rework
effort over newly created components, while
verbatim reuse provides an 88% reduction.
For these modes of reuse, the benefit of
fewer errors clearly outweighs the cost of
more difficult error correction for reused
components.

Smaller components were found to be more
defect-prone, but for verbatim reused
components, the defect densities were low
anyhow.

Verbatim reused modules were smaller and
had less external dependencies.

512 Empir Software Eng (2007) 12:471–516

References

Baldassarre MT, Bianch A, Caivano D, Vissaggio G (2005) An industrial case study on reuse oriented
development. In: Proc. 21st IEEE Int’l Conf. on Software Maintenance (ICSM’05), pp 283–292

Basili VR (1990) Viewing maintenance as reuse-oriented software development. IEEE Softw 7(1):19–25
Basili VR, Briand LC, Melo WL (1996) How software reuse influences productivity in object-oriented

systems. Commun ACM 39(10):104–116
Birk A, Dingsøyr T, Stålhane T (2002) Postmortem: never leave a project without it. IEEE Softw 19(3):43–45
Boehm B, Brown W, Madachy R, Yang Y (2004) Software product line cycle cost estimation model. In:

Proc. 2004 ACM-IEEE Int’l Symposium on Empirical Software Engineering (ISESE’04), pp 156–164

Table 16 (Continued)

Reference &
scale

Findings Discussion of confounding factors

Mohagheghi
et al.
(2004)–L

The number of change requests per KLOC
was 0.0012 for reused and 0.0008 for non-
reused components; i.e. higher for reused.
Using mean values, the fault-density of
reused components is 44–61% of the non-
reused ones, less difference for modified
code. 37% of faults were severe for reused
components and 27% for non-reused ones.
Reused components were in average 43%
modified between two releases, compared to
57% for non-reused ones. The lower fault
density of reused components is estimated to
reduce the total development effort by 20%.

No relation was observed between size and
fault-density.

The impact of different programming
languages used for reused and non-reused
components is rejected since the one used
for reused components had more defects
per LOC when studied in isolation.

Reuse is both vertical and horizontal and thus
the impact of differences in functionality is
less.

Developers of reused and non-reused
components were from the same company
and had comparable skills.

Selby
(2005)–L

On project level, project size was not related
to the percentages of modules reused
verbatim or with slight modification, but it
was significantly positive related to reuse
with major modification. On module level,
modules reused verbatim had in average
98% less faults than modules newly
developed. For modules slightly modified
the result was 55%. Fault isolation effort per
module was in average 99% less for
verbatim reuse and 50% less for modules
slightly modified compared to new modules.
The number of changes per module was in
average 94% less for verbatim reuse and
26% less for modules slightly modified
compared to new modules. Modules reused
with major modification had the most
changes, most changes per LOC and highest
change implementation effort (even more
than new code). Modules reused verbatim
were smaller in size and had less
development effort.

Verbatim reused modules were smaller in size
and had less input-output parameters.

Empir Software Eng (2007) 12:471–516 513

Conradi R, Li J, Slyngstad OPN, Kampenes VB, Bunse C, Morisio M, Torchiano M (2005) Reflections on
conducting an international survey of Software Engineering. In: Proc. 4th International Symposium on
Empirical Software Engineering (ISESE’05), pp 214–223

Coverty http://scan.coverity.com/, visited in April 2006
Dedrick J, Gurbaxani V, Kraemer KL (2003) Information technology and economic performance: a critical

review of the empirical evidence. ACM Comput Surv 35(1):1–28
Dybå T, Kitchenham BA, Jørgensen M (2005) Evidence-based software engineering for practitioners. IEEE

Softw 22(1):58–65
Dybå T, Kampenes VB, Sjøberg D (2006) A systematic review of statistical power in software engineering

experiments. Inf Softw Technol 48(8):745–755
Fenton N, Krause P, Neil M (2002) Software measurement: uncertainty and causal modeling. IEEE Softw 19

(4):116–122
Fitzgerald B, Kenny T (2004) Developing an information system infrastructure with open source software.

IEEE Softw 21(1):50–55
Frakes WB, Kang K (2005) Software reuse research: status and future. IEEE Trans Softw Eng 31

(7):529–536
Frakes WB, Succi G (2001) An industrial study of reuse, quality and productivity. J Syst Softw 57

(2001):99–106
Frakes WB, Terry C (1996) Software reuse: metrics and models. ACM Comput Surv 28(2):415–435
Gigerenzer G (2004) Mindless statistics. J Socio-Econ 33(2004):587–606
Glass RL (1997) Telling good numbers from bad ones. IEEE Softw 14(4):15–16, 19
Glass RL (2002) In search of meaning (a tale of two words). IEEE Softw 19(4):136, 134–135
Gregor S (2002) A theory of theories in information science. In: Gregor S, Hart D (eds) Information systems

foundations: building the theoretical base. Australian National University, Canberra, pp 1–20
Hallsteinsen S, Paci M (eds) (1997) Experiences in software evolution and reuse. Springer
Karlsson E-A (ed) (1995) Software reuse, a holistic approach. John Wiley & Sons
Kitchenham BA (2004) Procedures for performing systematic reviews. Joint technical report, Keele

University Technical Report TR/SE-0401 and National ICT Australia Technical Report 0400011T.1
Kitchenham BA, Pickard LM (1998) Evaluating software eng. methods and tools—part 10: designing and

running a quantitative case study. ACM Sigsoft Softw Eng Notes 23(3):20–22
Kitchenham BA, Pfleeger SL, Hoaglin DC, El Emam K, Rosenberg J (2002) Preliminary guidelines for

empirical research in software engineering. IEEE Trans Softw Eng 28(8):721–734
Krueger C (2002) Eliminating the adoption barrier. IEEE Softw 19(4):29–31
Lee AS, Baskerville RL (2003) Generalizing generalizability in information systems research. Inf Syst Res

14(3):221–243
Li M, Smidts CS (2003) A ranking of software engineering measures based on expert opinion. IEEE Trans

Softw Eng 29(9):811–824
Lim WC (1994) Effect of reuse on quality, productivity and economics. IEEE Softw 11(5):23–30
Lim WC (1996) Reuse economics: a comparison of seventeen models and directions for future research. In:

Proc. 4th Int’l Conf. on Software Reuse (ICSR’96), pp 41–50
Madanmohan TR, Dé R (2004) Open source reuse in commercial firms. IEEE Softw 21(6):62–69
Mohagheghi P, Conradi R (2006) Vote-counting for combining quantitative evidence from empirical studies—

an example. In: Proc. 5th ACM-IEEE Int’l Symposium on Empirical Software Engineering (ISESE’06),
pp 24–26

Mohagheghi P, Conradi R (2007) An empirical investigation of software reuse benefits in a large telecom
product. ACM Transactions of Software Engineering Methodology (TOSEM) (in press)

Mohagheghi P, Conradi R, Killi OM, Schwarz H (2004) An empirical study of software reuse vs. defect-
density and stability. In: Proc. 26th Int’l Conf. on Software Engineering (ICSE’04), pp 282–292

Mohagheghi P, Conradi R, Børretzen JA (2006) Revisiting the problem of using problem reports for quality
assessment. In: Proc. 6th Workshop on Software Quality (WoSQ’06)—as part of Proc. 28th International
Conference on Software Engineering & Co-Located Workshops, pp 45–50

Morad S, Kuflik T (2005) Conventional and open source software reuse at Orbotech—an industrial experience.
In: Proc. IEEE Int’l Conf. on Software-Science, Technology & Engineering (SwSTE’05), 8 p

Morisio M, Tully C, Ezran M (2000) Diversity in reuse processes. IEEE Softw 17(4):56–63
Morisio M, Romano D, Stamelos I (2002) Quality, productivity, and learning in framework-based

development: an exploratory case study. IEEE Trans Softw Eng 28(9):876–888
Norris JS (2004) Mission-critical development with open source software: lessons learned. IEEE Softw

21(1):42–49
Pfleeger SH (1996) When the pursuit of quality destroys value. IEEE Softw 13(3):93–95

514 Empir Software Eng (2007) 12:471–516

http://scan.coverity.com/

Pfleeger SH (2005) Soup or art? The role of evidential force in empirical software engineering. IEEE Softw
22(1):66–73

Pickard LM, Kitchenham BA, Jones PW (1998) Combining empirical results in software engineering. Inf
Softw Technol 40(1998):811–821

Ramachandran M, Fleischer W (1996) Design for large scale software reuse: an industrial case study. Proc.
4th Int’l Conf. on Software Reuse (ICSR’96), pp 104–111

Schneidewind NF (1992) Methodology for validating software metrics. IEEE Trans Softw Eng 18(5):410–422
Selby W (2005) Enabling reuse-based software development of large-scale systems. IEEE Trans Softw Eng

31(6):495–510
SEVO (2006) http://www.idi.ntnu.no/grupper/su/sevo/index.html
Shadish WR, Cook TD, Campbell DT (2001) Experimental and quasi-experimental designs for generalized

causal inference. Houghton Mifflin Company
Sommerseth M (2006) Component based system development in the Norwegian software industry. NTNU

master thesis. http://www.idi.ntnu.no/grupper/su/su-diploma-2006/sommerseth-dipl06.pdf
Succi G, Benedicenti L, Vernazza T (2001) Analysis of the effects of software reuse on customer satisfaction

in an RPG environment. IEEE Trans Softw Eng 27(5):473–479
Szyperski C (with Gruntz D, Murer S) (2002) Component software, beyond object-oriented programming,

2nd edn. Addison Wesley
Thomas WM, Delis A, Basili VR (1997) An analysis of errors in a reuse-oriented development environment.

J Syst Softw 38(3):211–224
Tomer A, Goldin L, Kuflik T, Kimchi E, Schach SR (2004) Evaluating software reuse alternatives: a model

and its application to an industrial case study. IEEE Trans Softw Eng 30(9):601–612
Wang C (1993) Sense and nonsense of statistical inference: controversy, misuse, and subtlety. Marcel Dekker
Webster J, Watson RT (2002) Analyzing the past to prepare for the future: writing a literature review. MIS

Quarterly 26(2):xiii–xxiii
Wohlin C, Runeseon P, Höst M, Ohlsson MC, Regnell B, Wesslén A (2000) Experimentation in software

engineering. Kluwer
Yin RK (2003) Case study research, design and methods. Sage
Zannier C, Melnik G, Maurer F (2006) On the success of empirical studies in the International Conference on

Software Engineering. In: Proc. 28th Int’l Conf. on Software Engineering (ICSE’06), pp 341–350
Zelkowitz MV, Wallace DR (1998) Experimental models for validating technology. IEEE Computer 31(5):

23–31
Zhang W, Jarzabek S (2005) Reuse without compromising performance: industrial experience from RPG

software product line for mobile devices. In: Proc. 9th Int’l Software Product Line Conf. (SPLC’05),
pp 57–69

Parastoo Mohagheghi is a researcher at SINTEF, Department of Information and Communication
Technology (ICT). She received her Ph.D. from the Norwegian University of Science and Technology in
2004 and worked there before joining SINTEF. She has also industry experience from Ericsson in Norway.
Her research interests include software quality, model driven development, software reuse, measurement and
empirical software engineering. She is a member of IEEE and ACM.

Empir Software Eng (2007) 12:471–516 515

http://www.idi.ntnu.no/grupper/su/sevo/index.html
http://www.idi.ntnu.no/grupper/su/su-diploma-2006/sommerseth-dipl06.pdf

Reidar Conradi received his Ph.D. in Computer Science from the Norwegian University of Science and
Technology (NTNU) in 1976. From 1972 to 1975 he worked at SINTEF as a researcher. Since 1975 he has
been assistant professor at NTNU and a full professor since 1985. He has participated in many national and
EU projects, chaired workshops and conferences, and edited several books. His research interests are in
software engineering, object-oriented methods and software reuse, distributed systems, software evolution
and configuration management, software quality and software process improvement. He is a member of
IEEE Computer Society and ACM.

516 Empir Software Eng (2007) 12:471–516

	Quality, productivity and economic benefits of software reuse: a review of industrial studies
	Abstract
	Introduction
	Concepts
	Software Reuse
	Study Types
	Objects and Subjects of Study, Variables and Measurement

	The Review Process
	Review Framework and Research Questions
	Paper Inclusion Criteria
	Threats to the Validity of the Review

	Answering RQ1—What Types of Studies are Performed and What Data are Reported on the Reuse Approaches?
	Objects, Types of Studies, Scale, Publication Channel and Year
	Reuse Approaches
	Summary of the Section and Answering RQ1

	Answering RQ2—Which Metrics are Used for Reuse and its Effects?
	Independent Variables—Reuse Metrics
	Dependent Variables—Reuse Effects
	Summary of the Section and Answering RQ2

	Answering RQ3—How are Quantitative Data Reported and Analyzed?
	Answering RQ4—What are the Findings and What Theory may be Developed Based on the Findings?
	Reuse Economics and Savings
	Findings Related to Quality and Productivity
	Combining the Results for Quality and Productivity
	Qualitative Findings
	Validity Threats Discussed in the Papers
	Summary of the Section and Answering RQ4

	Answering RQ5—What are the Shortcomings in Reuse Research?
	Evaluating ROI
	Measurement Issues
	Other Gaps for Future Research

	Lessons for Future Studies
	Defining Context and Data to Report
	Data Analysis
	Explaining the Results
	Evaluating Contribution for External Validity

	Conclusion
	References

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Perceptual
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /Warning
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /Warning
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 150
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 600
 /MonoImageMinResolutionPolicy /Warning
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create Adobe PDF documents for journal articles and eBooks for online presentation. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.276 841.890]
>> setpagedevice

