

Describing component collaboration using goal sequences

Cyril Carrez1, Jacqueline Floch2, Richard Sanders2

1 NTNU,
Department of Telematics,
7431 Trondheim, Norway

carrez@item.ntnu.no
2 SINTEF ICT,

7465 Trondheim, Norway
{jacqueline.floch, richard.sanders}@sintef.no

Abstract. Services are normally not performed by a single component, but
result from the collaboration of several distributed components. Their precise
specification and validation require complex models, where the intention of the
service is easily lost in the detail. This paper exploits the concept of service
goals that was earlier introduced to simplify service modeling. It describes the
semantics of service goals, how to specify and how to use them. We show that
so-called goal sequences can provide a designer-friendly, high-level description
of the intention of the service, while maintaining simplicity, reusability and
flexibility when composing from elementary services. By way of examples, we
illustrate the difference between goal sequences and behavior descriptions.
Finally we discuss issues related to the validation of goal sequences and their
use at design time and runtime, for example in connection with service
discovery.

Keywords: Goal sequences, collaborative components, high-level service
specification.

1 Introduction

Ensuring interoperability in distributed systems has been a software engineering
topic for decades. Recently the ICT community has rallied around the principles of a
service oriented architecture (SOA) in order to address this challenge, see e.g. [1].
Within contemporary SOA, the composition approach called choreography is
concerned with collaborative business processes involving multiple autonomous
services, where different participants can assume different roles with different
relationships. However, so far only informal specifications of service choreography
have been suggested [2]. At the same time, semantic web services seek to characterize
what a service can provide by offering means of expressing interfaces using Web
Services Description Language (WSDL) [3]. Although WSDL aims at providing a
formal definition of the interface to a service, it is restricted to a static description of
operations and associated messages.

We have previously suggested the concept of a service goal to characterize the
possible achievements of a service, and have shown how service goals can simplify
service modeling in UML2 [4]. This article refines the semantics of service goals,
which is one result of the EU IST project SIMS1. We have also suggested goal
sequences as a means of expressing the intensions of a composite service [5], i.e. the
intention of a choreography. In this article we argue for the merits of goal sequences
by means of simple examples, and contribute with advances on how to model them.
However, while goal sequences provide a designer-friendly overview, they do not
specify everything. In this article we discuss in particular the difference between goal
sequences and behavior.

SOA is increasingly gaining acceptance, influencing the way people understand
and define services. However, there is a fundamental limitation of SOA as it is
currently understood. In SOA, services are provided by a service provider to a service
consumer. A service provider is normally a “passive object” in the sense that it never
takes any initiatives towards a service user. Collaborative services on the other hand
entail collaborations between several autonomous entities that may behave in a
proactive manner and may take initiatives towards each other. This is typical for
telecom services, but also for a large class of services such as attentive services,
context aware services, notification services and ambient intelligence. In this paper
we consider collaborative services, where multiple components interact to perform a
composite service. This generalization allows for a wider class of services.

The structure of this position paper is as follows: in section 2 we present service
goals and their semantics, showing how composite services are modeled from
elementary services using UML2 collaborations, and how goals characterize so-called
semantic interfaces. Section 3 presents goal sequences as an intuitive way of
modeling the intention of composite services, similar to choreographies. In section 4
we discuss issues related to validation and composition at design time and at runtime.
We also discuss related work, and finally conclude by drawing some perspectives.

2 Semantics of service goals

As proposed by Sanders et al. [4], services are modeled by UML2 collaborations [6].
We distinguish between composite and elementary collaborations, as shown in Fig. 1.
Elementary collaborations specify partial service behaviors. They define a
collaboration between exactly two parts, called semantic interfaces, as well as the
service goals of the collaboration. Semantic interfaces specify interface behavior,
while service goals (or goals for short) specify the desired outcome of that behavior;
both are discussed in this section. Composite collaborations, on the other hand,
specify the service roles implemented by components2 that take part in the service.
Composite collaborations are in fact composed of UML2 collaboration uses, where

1 Semantic Interfaces for Mobile Services; see http://www.ist-sims.org
2 We distinguish between the specification of a service, and its implementation. With that

distinction in mind, we speak of service roles when specifying the service (at design time),
while we speak of components when we execute the service implementation (at runtime).
Service roles are depicted by an octagon in the composite collaboration.

each collaboration use is typed by an elementary collaboration. A service role can be
bound to a number of semantic interfaces, which thus type its ports. For example, Fig.
1a specifies a service where a Traveler interacts with a Hotel and a Plane in order to
plan a travel. The interactions are typed by the elementary collaborations
ReserveHotel and ReservePlane.

Traveler

Plane

Hotel

iResHotel
iHotel

iPlane

iResPlane

TravelReservation
ReserveHotel

iResHotel iHotel

Goals: RoomReserved, OptionOnRoom

ReservePlane

iResPlane iPlane

Goals: SeatReserved

a) Composite Collaboration b) Elementary Collaborations

rp:ReservePlane

rh:ReserveHotel

Two semantic interfaces

Service role
(they are realized by the component)

Fig. 1. Travel service modeled using collaborations and collaboration uses

2.1 Service goals and elementary collaborations

The elementary collaborations of Fig. 1b identify the goals reachable by each of them.
Service goals do not define the behavior of an application, but rather the desired
outcome of a behavior: they describe its intention. For example, concerning
ReserveHotel, two goals can be achieved: RoomReserved or OptionOnRoom. Both are
desirable outcomes of this micro-service. However, this does not mean that those
goals must or will be achieved during an interaction between the Traveler and Hotel:
possibly the hotel has no rooms left, meaning neither goal can be achieved.

Service goals were first proposed by Sanders [5, 7]. While Sanders described
service goals using OCL expressions, we describe the goals using ontologies [8].
Ontologies allow us to describe the semantics of the goals (for instance “establish a
multimedia call”), allowing flexible reasoning on goals and user-friendly descriptions.

We also differ from Sanders in the number of goals an elementary collaboration
can achieve. Specifically we do not consider partial or sub-goals to describe a partial
achievement in the collaboration. Several goals can be specified, but only one can be
achieved during the execution of the elementary collaboration at runtime. This
restriction was motivated by the desire to have a simple and intuitive specification
when service goals are used during composition of a service (see section 3).

2.2 Service goals and semantic interfaces

While a goal characterizes the desired outcome of a behavior, the behavior itself is
described by a semantic interface [9]. A semantic interface describes the visible

behavior of a service role at a connection endpoint. Goals are attached to that
behavior, allowing one to specify how a semantic interface can achieve a goal in a
collaboration. Semantic interfaces type the ports of the service role, and are used to
validate the composite service: when two service roles interact through ports,
compatibility checks can be applied on complementary semantic interfaces to ensure a
consistent interaction [10, 11].

Semantic interfaces are specified using UML state machines, with message passing
semantics. Triggers and effects specify respectively a reception or a sending of a
signal, thus specifying how to interact with the semantic interface3. We use a
stereotype <<goal>> state to specify that the interaction has achieved a particular goal
at this point. This way, goals represent “progress” in the behavior, and thus are a
characterization of liveness. For example, Fig. 2 shows the state machine of the
semantic interface iHotel of the elementary collaboration ReserveHotel presented in
Fig. 1. One can ask for available rooms at specific dates, and either reserve the room
and thus achieve the goal RoomReserved4, or take an option on that room and achieve
the goal OptionOnRoom. A <<goal>> state has exactly one outgoing transition,
stereotyped <<transitionGoal>>: this transition is instantaneous. Goal states are
represented by a dashed state symbol in Fig. 2.

IdleIdle CheckRoomsCheckRooms WaitConfirmWaitConfirm

ReserveRoomReserveRoom

MakeOpt
Reservation

MakeOpt
Reservation

RoomReservedRoomReserved

OptionOnRoomOptionOnRoom

Dates

/AvailableRooms

Reference&Dates

Dates

Reserve

TakeOption

Abort

/Reference

/Reference

iHotel

IdleIdle WaitRoomsWaitRooms ConfirmConfirm

WaitRef.WaitRef. RoomReservedRoomReserved
/Dates

AvailableRooms /Reserve

/Abort

Reference

iUser_ResHotel

Compatible
Goals are achieved

accordingly

VerifyOption /OK

/AvailableRooms

State stereotyped
<<goal>>

Fig. 2. Two compatible semantic interfaces, illustrating goal compatibility

We draw attention to two important issues regarding the goals and how they relate

to the behavior of a semantic interface. First of all, different behaviors can lead to the
same goal: for instance to achieve the goal RoomReserved, it is possible to ask for

3 Parameters of signals are not taken into account.
4 Payment of the room is performed by another elementary collaboration, as shown in section 3.

For sake of simplicity, it is not included here.

available dates and reserve the room as the iUser_ResHotel does, or give the reference
of an option on a room that was made earlier, and reserve the room if the option is
still valid, shown in the upper part of the state machine of iHotel. Secondly, some
behavior can still occur at the semantic interface after a goal has been reached, e.g.
clean-up messages (for instance closing a session). Hence achieving a goal does not
mean terminating a behavior.

The power of semantic interfaces lies in their use during composition. When two
service roles interact, the connected semantic interfaces must be compatible, as we
defined it in [11]: their interaction does not lead to unspecified message reception,
deadlock, or improper termination, and their interaction is live. Concerning deadlock,
we restrict ourselves to avoiding deadlocks between two semantic interfaces by
ensuring that one of them will always be able to take action. By improper termination,
we mean that both semantic interfaces should terminate accordingly. Finally, by live
interaction, we mean they are capable of reaching a common goal. The compatibility
relation is illustrated in Fig. 2, with the semantic interface iUser_ResHotel shown at
the bottom. This semantic interface cannot make any option on a room, but is still
goal compatible with iHotel as they can achieve the goal RoomReserved.

As a final point, all the entities we presented so far are elements of reuse:
elementary collaborations, semantic interfaces and service roles can be reused in other
composite collaborations, hence taking part in services they were not designed for in
the first place. This reusability is illustrated through the examples of the article.

3 Goal sequences

So far we have shown how service goals describe the intention of partial service
behaviors, and how they are related to elementary collaborations and semantic
interfaces. When it comes to the service, service goals are composed in order to
specify the intention of the whole service. This composition is specified by what we
call goal sequences. Goal sequences were first introduced by Sanders [5]; in this
article we propose a precise semantics allowing one to exploit them for validation
purposes.

A goal sequence is a high-level specification which describes a desirable behavior,
namely how goals depend on each other in terms of pre-conditions. As shown in
section 4, they are used to verify that a composition of service roles is live (i.e.
something useful may be achieved), or during service discovery. We distinguish
between Collaboration goal sequences and Role goal sequences. The difference is
that the former applies to composite collaborations and refers to goals of the
elementary collaborations, while the latter applies to the service roles, and refers to
the goals of its semantic interfaces. The principles presented in this section apply to
both kinds of goal sequences; we will only discuss in length about collaboration goal
sequences (here denoted goal sequences for short).

A goal sequence describes dependencies between the goals of the elementary
collaborations that are used in a particular composite collaboration. They describe the
intention of the composite service: that something useful can be achieved, and how it
should be achieved (i.e. how the different elementary collaboration goals should be

sequenced). We suggest that goal sequences are specified using UML Activity
diagrams, where an activity represents a collaboration use5 of the composite
collaboration6, and outgoing arrows represent the goals achieved by that collaboration
use. Activity diagrams are very helpful for goal sequences, as several collaborations
may execute in parallel. Moreover, activity diagrams are in line with the semantics of
goal sequences: each activity represents a goal to be achieved. Sanders proposed
interaction overview diagrams for goal sequences [4, 7]; however such diagrams
currently lack tool support. We investigated using state diagrams in [11], which have
more tool support, but they tend to get cluttered up when expressing parallel behavior
in orthogonal states.

Fig. 3 shows the goal sequence for the TravelReservation presented in Fig. 1a. The
two collaboration uses are represented by the two activities rh and rp. The goal
sequence specifies the intention of the service, which is to reserve a room and a seat
in a plane (goals RoomReserved and SeatReserved). We have deliberately chosen to
drop the goal OptionOnRoom, as TravelReservation does not propose such an
intention (in fact, TravelReservation is reusing ReserveHotel which may have been
specified in another service). We define that it does not matter in which order the
goals are achieved, as long as both of them can be achieved before the termination of
the composite service. Note that this describes the intention of the service, and does
not mean that each execution will actually achieve those goals: possibly the plane or
the hotel is full. This example shows the primary advantage of goal sequences: it is
easy to show the intention of the service. We believe that goal sequences are quite
intuitive, and maintain simplicity during composition.

rh

Room
Reserved

Seat
Reserved

rp

Fig. 3. Goal sequence for the composite collaboration TravelReservation

Fig. 3 shows one typical pattern for goal sequences, namely two goals that can be

achieved in parallel. Fig. 4 shows patterns needed to specify different kinds of pre-
conditions. The first one, on the upper left corner, shows the principle of goal
sequences. In this pattern, two goals g1 and g2 are sequenced; the semantics is that
the achievement of g1 is a pre-condition for the achievement of g2. We say that g1
enables g2. As we shall see in section 4, this does not mean that g1 enables the

5 Recall that a collaboration use is typed by an elementary collaboration. Hence the goals of the

collaboration use are the goals of the corresponding elementary collaboration. This way, an
elementary collaboration can be used in many places in a composite collaboration.

6 For role goal sequences, activities represent semantic interfaces.

collaboration C2, as the behavior of C2 may start before or without g1 being
achieved. Boolean expressions AND and OR can also be specified in pre-conditions,
as shown at the bottom of the figure.

C1

g2

g1

g3

g2 g3

C1

C2 C3

g2 g3

g1

C2C1

g2g1

C1

C2 C3

g1

C3C2

C2

C1

g2

g1

Two goals in sequence:
C1.g1 is a pre-condition to C2.g2 Two goals in parallel

Goal that is a precondition to
two independent goals

Pre-condition with AND:
(C2.g2 AND C3.g3) is a precondition to C1.g1

Pre-condition with OR:
(C2.g2 OR C3.g3) is a precondition to C1.g1

Fig. 4. Patterns for collaboration goal sequences

Goal sequences are very useful and intuitive when it comes to the design of

collaborative services, i.e. when several participants can take initiative. For instance,
Fig. 5 specifies a payment functionality when reserving a room to the hotel. As shown
on the left of the figure, three service roles take part in the service: in addition to the
User and the Hotel, there is also a Bank. Several collaboration uses demonstrate the
composition of micro-services, most of them can be reused in different services: Pay
and ConfirmPayment can be used in any service where money is involved. The goal
sequence is shown in Fig. 5b: the room has first to be reserved, and then the user pays
the bank, which in turn pays the hotel. Confirmation of payment and booking ends the
service. Note, again, that the order of those two goals is of no importance.

Fig. 5 also shows the difference between the (collaboration) goal sequence and the
role goal sequence: Fig. 5c is the role goal sequence for the Bank, which specifies
how the service role should sequence the goals. We see the role goal sequence is in
fact a subset of the collaboration goal sequence in Fig. 5b. Role goal sequences should
not need to be specified by hand, but rather be derived automatically from the
collaboration goal sequence.

A role goal sequence sets constraints on the behavior of a service role: the service
role should sequence the goals of its semantic interfaces in the proper order. For
instance, the Bank should be paid before it pays the booking of the room, which in

turn should happen before it confirms payment to the User. Such constraints are one
of the uses of goal sequences we discuss in the next section. However, role goal
sequences do not specify precisely how to compose semantic interfaces: even though
some goals should be sequenced, the service role could nonetheless interact in parallel
on the associated semantic interfaces (see section 4.2).

User Hotel

ReserveAndPayHotel

cb:ConfirmBooking

rh:ReserveHotel

Bank

pb:PayBooking
p:Pay

cp:ConfirmPayment

a) Composite Collaboration

RoomReserved

Paid

Booking
Confirmed

Payment
Confirmed

BookingPaid

b) Collaboration
Goal Sequence

rh

p

pb

cb cp

Paid

Payment
Confirmed

BookingPaid

c) Role Goal Sequence
(Bank)

p.seller

pb.payer

cp.seller

Paid

Payment
Confirmed

BookingPaid

c) Role Goal Sequence
(Bank)

p.seller

pb.payer

cp.seller

Fig. 5. Goal sequence and role goal sequence in a three-party service

4 Discussion

This section discusses several remaining open issues. We show how resolving
them will enable validation of interoperability between components in a flexible
manner. We first discuss the validation of goal sequences at design time, and how
they can be used at runtime. We show that although they can be useful for service
discovery, goal sequences are not sufficient to ensure safe composition.

4.1 Validation of goal sequences at design time and runtime

Goal sequences can be used to verify if a composition is live, meaning that the
interconnected service roles are able to achieve something useful together. To ensure
that the intention of the service is achievable, validation using tools can be performed;
preferably this is done at design time, but if necessary it can be done at run time. The
validation will ensure the correctness of a composition of service roles.

At design time, service roles can be validated against their semantic interfaces and
the goal sequences. Projection and refinement mechanisms can be used in order to
verify that the service role is compatible with the semantic interfaces [10, 11]. It
should also be possible to check if the service role satisfies the pre-conditions on
goals imposed by the role goal sequence, i.e. it sequences the goals of its semantic
interfaces in the proper order.

Once service roles have been validated against service specifications (i.e. the
collaborations, semantic interfaces and goal sequence), components that implement
these roles can be developed7 and deployed along with descriptors that describe their
behavioral properties: semantic interfaces and role goal sequences.

At runtime, the descriptors can be used to validate a dynamic composition.
Semantic interfaces can be used to check that two interconnected components are goal
compatible, implying that they can achieve a goal together, for instance that a User
and a Hotel can achieve the OptionOnRoom goal. The same principle applies to goal
sequences: if components cannot sequence their goals correctly, then there is no use in
starting a service session. E.g. if a particular Hotel requires payment before
confirming a booking, then it is of no interest to a User that behaves according to the
ReserveAndPayHotel service. However, several questions arise concerning such
validation: given the role goal sequences of each component, is it possible to validate
component collaborations on the fly in an efficient manner, i.e. so the validation can
be performed by the device? Is it possible to automatically derive a collaboration goal
sequence? If so, what will be the semantics of that goal sequence, i.e. the intention of
the resulting service? Should it be presented to the user? If so, how?

4.2 Goal sequences and safe composition

While the previous section focused on the use of goal sequences to ensure a
composition of service roles does something useful, we also need to take into account
safety properties during composition. A component interacts through its semantic
interfaces; some of them will be active when the component starts, while others will
become active as a result of its own or external initiatives. A safe composition should
make sure that if a component receives a signal on one of its semantic interfaces, it is
actually ready to receive such a signal.

Unfortunately, goal sequences fall short in that area; it turns out that they only
provide support for loose composition. As illustrated in Fig. 6, goal sequences do not
specify how elementary collaborations are composed (i.e. in sequence or in parallel
for instance). In this example, the Boss first asks his/her Secretary to plan a travel for
him/her. The Secretary will reserve the Hotel and the Plane, and give the Boss a
confirmation. The goal sequence shows that the elementary collaboration PlanTravel
should not achieve its goal before the end, while in fact PlanTravel initiates the whole
service.

In addition goal sequences are not well suited for detecting deadlocks. In the
ReserveAndPayHotel (Fig. 5a), one should make sure that the three components will
not be in deadlock, i.e. each one waiting for the other in a circular manner. However,
as goal sequences do not describe temporal dependencies between behaviors, it is not
possible to detect deadlocks using goal sequences alone. One should not aim at simply
detecting the deadlock when it happens, but rather at detecting possible deadlocks
before starting the service, i.e. detecting deadlock-free configurations of components.

7 Components also implement some functionality related to their execution environment (e.g.

underlying middleware for component registration, etc.)

Secretary

Plane

Hotel

iResHotel
iHotel

iPlane

iResPlane

Secretary_TravelReservation

rp:ReservePlane

rh:ReserveHotel

Boss

iPlanTravel

pt:PlanTravel

iTravel Room
Reserved

Seat
Reserved

Travel
Reserved

a) Composite Collaboration b) Goal Sequence

pt

rh rp

Fig. 6. Goal sequences and order of execution of elementary collaborations

4.3 Goal sequences in service discovery at runtime

Goals and Goal sequences can be exploited in service discovery at runtime. For
instance a Caller may need to discover a Callee that is capable of using Video, and
does not want to interact with a component that can only communicate via SMS.

At runtime, when a user starts a service, he/she will start some component on
his/her device. This component will be involved in some service, which means it
wants to discover compatible components in order to interact with them to provide
some useful functionality to the user. This entails discovering components that have
compatible semantic interfaces, and a compatible role goal sequence.

The discovery of compatible components can result in numerous configurations, as
shown in Fig. 7. In this example, the Traveler wants to discover components that are
compatible with its semantic interfaces and role goal sequence. Several configurations
of components might be discovered, as shown on the left. Possibly some service
providers have heard of this service, and developed a TravelAgency that performs the
reservations, or the Hotel and the Plane may interact with each other to order a taxi;
in all the cases, the goal sequences need to be compared and the resulting composition
needs to be validated.

Without such validation, seemingly compatible but useless components might be
discovered. Using goal sequences, we restrict the discovery to components that can
potentially achieve the behavior intended by the user when he/she started the service.
Moreover, we can take advantage of ontologies to first filter components that achieve
the most appropriate goals.

Plane

HoteliHotel

iPlanerp:ReservePlane

rh:ReserveHotel

iResHotel

iResPlane

Traveller

SISISI RGSSISISI RGS
Service

discovery

Configuration1

HoteliHotel
SISISI RGSSISISI RGS

PlaneiPlane
SISISI RGSSISISI RGS

Configuration1

HoteliHotel
SISISI RGSSISISI RGS

HoteliHotel
SISISI RGSSISISI RGS

PlaneiPlane
SISISI RGSSISISI RGS

PlaneiPlane
SISISI RGSSISISI RGS

Configuration2

iHotel

iPlane

Travel
Agency

SISISI RGSSISISI RGS

Configuration2

iHotel

iPlane

Travel
Agency

SISISI RGSSISISI RGS

Configuration3

iResTaxiHotel

iResTaxiPlane

rt:ReserveTaxi

Hotel2iHotel
SISISI RGSSISISI RGS

Plane2iPlane
SISISI RGSSISISI RGS

Configuration3

iResTaxiHotel

iResTaxiPlane

rt:ReserveTaxi

Hotel2iHotel
SISISI RGSSISISI RGS

Hotel2iHotel
SISISI RGSSISISI RGS

Plane2iPlane
SISISI RGSSISISI RGS

Plane2iPlane
SISISI RGSSISISI RGSSI: Semantic Interface

RGS: Role Goal Sequence
Fig. 7. Discovery of compatible components

5 Related Work

The understanding that services entail collaboration among several distributed
autonomous components is not new. This was recognized since the early days of
telecommunications, but is also typical for many new services such as attentive
services, context aware services, notification services and ambient intelligence. In
terms of modeling of collaborations, various dialects of interaction diagrams existed
prior to the first standardization of the ITU-T MSC language in 1994 [12]. However,
interactions alone do not really cover structural aspects nor provide flexible binding of
interfaces to roles in the way now made possible using UML2 collaborations. While
interaction diagrams provide a cross-cutting view of a service, they are often too
detailed to be easily understood. Our approach abstracts the cross-cutting view on the
service using collaborations and goal sequences, and describes the detailed behavior
of interfaces using state machines.

In model driven development one strongly argues for developing abstract models
that can be refined and transformed into implementation specific models [13]. Model
driven approaches to service engineering are still in their infancy. Most of the UML-
based approaches developed for service modeling focus on consumer-provider
services. For example, Kramler & al. [14] propose to use UML2 collaborations for
modeling web service collaboration protocols, and activity and interaction diagrams
for more detailed specification. In the same way, Kraemer and Herrmann [15] specify
reactive systems with UML2 collaborations for structural properties, and UML2
activities for behavioral aspects. However, the authors are more focused on design
time, while we take advantage of service goals to discover useful compositions at
runtime. Similarly Ermagan and Krüger [16] consider services to be collaborations
between roles. They introduce a UML2 profile for the specification of service-
oriented architectures. However they do not seem to exploit the capability of
composition of collaborations (i.e. using UML2 collaboration uses). The definition of
a UML Profile for services is an ongoing activity at the OMG. The responses
submitted to the OMG RFP (request for proposal) “UML Profile and Metamodel for

Services (UPMS) RFP” [17] indicate that UML2 collaborations will gain importance
in the future modeling of services. At the time of writing the submitted responses to
UMPS are under discussion, and we are contributing to this work. A mechanism for
expressing goals is one such contribution.

Goals have been extensively used in the engineering domain to capture, analyze,
validate and document the properties a system should have [18, 19]. Similarly goals
are proposed in service modeling to represent the properties desired by the user [20,
21]. While the term goal is a concept related to the user, capability is used in relation
with the service and represents what the service does. In their conceptual service
framework Quartel & al. [20] suggest that the definition of the user goal should
provide a high-level description of the service, this to facilitate the discovery of
services. They propose an abstraction level at which a service is modeled as a single
interaction, that somehow matches an elementary collaboration in our work.

To the best of our knowledge, no one has used goal sequences before to represent
the overall functionality of services and the dependencies between elementary
collaborative behaviors. Goals associated to components and represented in the state
machines are similar to progress labels introduced by Holzmann [22] and can be
exploited to validate the liveness properties of interacting state machines. Related to
our work and also building upon on [4], Castejón and Bræk extend the concept of goal
sequences allowing a precise specification of services solely using collaborations and
goal sequences (but not state machines) [23]. Their aim is to develop abstract service
models that can be used for early detection of errors, such as implied scenarios. Their
approach focuses on service composition at design time. Differently we consider
discovery and composition at runtime and therefore need more simple service
representations.

In the web service domain, intensive research work aims at the automation of
service discovery and composition. Current web technologies operate at a syntactic
level and therefore require human interaction. The Web Service Modeling Ontology
(WSMO) is a result of that research effort [21, 24]. WSMO provides a formal
language for semantically describing all relevant aspects of Web services. It defines
the concepts of capability and goal that respectively relate to the Web service and the
user. Capabilities include the semantic description of a variety of properties such as
non-functional properties (e.g. financial or security aspects), pre- and post-conditions
and interface behaviors. As a complementary concept, a goal includes the requested
capability that the user expects from a service. Although detailed service descriptions
are needed for precise discovery, unlike our goals WSMO does not provide any
abstract description of services that would facilitate a quick initial discovery of
potential, relevant services. The detailed interface behaviors, called choreographies in
WSMO, are described using UML state machines in our work.

We have intentionally avoided replication between UML models and ontology
artifacts. We do not define the semantics of each message using ontologies, but this
could be done in the same way as for goals. Beyond discovery, WSMO also aims at
facilitating service composition. It is not clear how this objective can be achieved as
no support for describing temporal dependencies between composed services is
provided. WSMO defines the concept of orchestration to describe how a service
makes use of other services. This concept restricts to the hierarchical composition of
services. WSMO does not provide support for more complex compositions such as

collaborative composition. Collaborative composition is called choreography in Erl
[1] and in the WS-CDL standard [2]. This use of the term choreography differs from
WSMO where choreography is restricted to the definition of interface behaviors.

6 Conclusion and Perspectives

Systems modeling in high-level graphical design languages such as UML and
access to advanced tools for validation, simulation and code generation has been
available within certain engineering areas for quite some time, the telecoms domain
being one that matured early in this respect, defining formal languages [12, 25]. It is
therefore somewhat surprising that service engineering is still largely implementation-
oriented without any clear separation between service logic and implementation
detail. This is a paradox since service-orientation essentially means to focus on
service specification and to hide the details of component design and implementation,
allowing different realizations of the same service.

In this paper we argue for the benefits of characterizing partial service behaviors
with goals, and of modeling them with elementary collaborations in UML2. A
mechanism for expressing goals is currently being input to the upcoming UML profile
and metamodel for services (UPMS).

Focusing on goals enables service engineers to design and analyze service
composition at a high level; we argue for the merits of goal sequences as an intuitive
description of the intention of service choreographies. We have discussed how goal
sequences can benefit service discovery, while they fall short of being sufficient for
comprehensive validation and automated composition. Solutions for dynamic
composition and runtime validation require further work. However, there is much to
be gained both at design time and for service discovery at runtime by abstracting
away unnecessary implementation details.

Acknowledgements. Our work is supported by the EU IST 6th framework

program.

7 References

1. Erl, T. Service-Oriented Architecture - Concepts, Technology, and Design. 6th ed. 2006.
Prentice Hall. ISBN 0-13-185858-0

2. W3C. Web Services Choreography Description Language (WSCDL) Version 1.0 - W3C
Candidate Recommendation - 9 November 2005. 2005.

3. W3C. Web Services Description Language (WSDL) Version 2.0 - W3C Recommendation -
26 June 2007. 2007.

4. Sanders, R., Castejón, H., Kraemer, F., Bræk, R.: Using UML 2.0 Collaborations for
Compositional Service Specification. In: Proceedings of the 8th International Conference of
Model Driven Engineering Languages and Systems, LNCS 3713, Springer (2005).

5. Sanders, R. and Bræk, R.: Modeling Peer-to-peer Service Goals in UML. In Proc. of the 2nd
Intl. Conf. on Software Engineering and Formal Methods (SEFM04), IEEE Computer
Society Press (2004)

6. Object Management Group: Unified Modeling Language: Superstructure version 2.1.1,
formal/2007-02-05 (2007). Available at http://www.omg.org/cgi-bin/doc?formal/07-02-05

7. Sanders, R.: Collaborations, Semantic Interfaces and Service Goals: a way forward for
Service Engineering. Doctoral theses at NTNU 2007:68. NTNU (2007)

8. SIMS: Deliverable D3.4 Techniques for Ontology-Driven Semantic Interface Artefacts, final
version. (2007). Available at http://www.ist-sims.org/

9. Sanders, R., Bræk, R., Bochmann, G., Amyot. D.: Service Discovery and Component Reuse
with Semantic Interfaces. In Proc. of the 12th Intl. Conf. on Model Driven Systems Design
(SDL Forum 2005). Springer (2005)

10. Floch J.: Towards Plug-and-Play Services: Design and Validation using Roles. PhD Thesis
2003:47. NTNU (2003)

11. SIMS: Deliverable D2.1 Languages and Method Guidelines, first version. (2007). Available
at http://www.ist-sims.org/

12. ITU-T Recommendation Z.120: Message Sequence Charts (MSC). (2004)
13. Mellor, S., Clark, A., Futagami, T.: Special Issue on Model-Driven Development. IEEE

Software 20(5) (2003)
14. Kramler, G., Kapsammer, E., Kappel, G., Retschitzegger, W.: Towards Using UML 2 for

Modelling Web Service Collaboration Protocols. In Proceedings of the First International
Conference on Interoperability of Enterprise Software and Applications (2005).

15. Kraemer, F. A., Herrmann, P.: Service Specification by Composition of Collaborations – An
Example. In Proc. of the 2nd Intl. Workshop on Service Composition (Sercomp). IEEE
Computer Society (2006)

16. Ermagan, V. and I.H. Krüger, I.H.: A UML2 Profile for Service Modeling. In Proceedings
of the 10th Intl. Conf. of Model Driven Engineering Languages and Systems (2007)

17. OMG. UML Profile and Metamodel for Services (UPMS) RFP - soa/06-09-09. Available
from: http://www.omg.org/cgi-bin/doc?soa/2006-9-9

18. Lamsweerde, A.: Goal-oriented requirements engineering: A guided tour. In Proceedings of
the 5th IEEE International Symposium on Requirements Engineering. (2001).

19. Yu, E.: Towards modelling and reasoning support for early phase requirements engineering.
In Proceedings of the 3rd IEEE Intl. Symposium on Requirements Engineering. (1997).

20. Quartel, D. A. C., Stehen, M. W. A., Pokraev, S., and van Sinderen, M. J.: COSMO: A
conceptual framework for service modelling and refinement. Information Systems Frontiers
9(2-3). (2007)

21. Roman, D., et al.: Web Service Modeling Ontology. Journal of Applied Ontology, vol 1.
(IOS Press). (2005).

22. Holzmann, G.J. Design and Validation of Computer Protocols. 1991. Prentice Hall. ISBN 0-
13-539834-7

23. Castejón, H. N. and Bræk, R. A Collaboration-based Approach to Service Specification and
Detection of Implied Scenarios. ICSE’s 5th Workshop on Scenarios and State Machines:
Models, Algorithms and Tools (SCESM’06), 2006.

24. Web Service Modeling Ontology (WSMO). D2v1.3. WSMO Final Draft 21 October 2006.
25. ITU-T Recommendation Z.100: Specification and Description Language (SDL). (2002)

