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Abstract

3D imaging systems provide valuable information for
autonomous robot navigation based on landmark detection
in pipelines. This paper presents a method for using a
time-of-flight (TOF) camera for detection and tracking of
pipeline features such as junctions, bends and obstacles.
Feature extraction is done by fitting a cylinder to images
of the pipeline. Data in captured images appear to take
a conic rather than cylindrical shape, and we adjust the
geometric primitive accordingly. Pixels deviating from the
estimated cylinder/cone fit are grouped into blobs. Blobs
fulfilling constraints on shape and stability over time are
then tracked. The usefulness of TOF imagery as a source for
landmark detection and tracking in pipelines is evaluated by
comparison to auxiliary measurements. Experiments using
a model pipeline and a prototype robot show encouraging
results.

1. Introduction

Sewer systems are run in most municipalities in the
world. Power plants and factories use pipelines for carry-
ing oil and gas. Both are based on pipeline systems having
the risk of being troubled by cracks, corrosion, erosion and
external damage. Inspection of pipeline systems is crucial
for failure detection.

With the exception of research robots, current sewer in-
spection systems are based on remotely operated cable-
tethered robots with on board video camera systems [1].
Pipeline inspection in general can be greatly simplified us-
ing autonomous robots navigating based on information
from the environment. This encourage development of nav-
igation systems for robots in pipelines.

We are currently developing an in-pipe robot consisting
of a two meter train of ten independent modules that mimics
snakelike maneuverability. The final robot will be able to
move vertically and horizontally through pipelines of differ-

ent diameters. Navigation of the robot will be done based on
landmarks and a coarse pipeline map, thus a vision system
for landmark and obstacle detection and tracking is needed.

Previous work on navigation in pipelines has applied a
variety of sensors. Ahrary et al [1] describes a method
based on stereo camera and laser scanner data, doing dis-
tance measurement by stereo matching. Stereo cameras are
also used in the MAKRO project [10]. The autonomous
robot KURT [6] does landmark detection based on ultra-
sound data in order to recognize different types of pipe
crossings.

Stereo cameras introduce physical restrictions on the
robot due to the need for camera separation. Further, stereo
cameras depend on feature matching from both cameras for
range estimation. This produces a rather sparse and un-
evenly distributed data set. Laser range sensors measure
distances at a coarse grid across the range sensor field-of-
view, also providing sparse data sets. A drawback of ultra-
sound is the limitation in resolution.

Most autonomous robot navigation systems attempt to
solve two simultaneous tasks; exploring an unknown envi-
ronment by building a map, and determining the robot po-
sition in this map. This process is known as simultaneous
localization and mapping (SLAM). SLAM has been applied
to both indoor [5] and outdoor [8] navigation. Despite sig-
nificant progress in the area, challenges still remain accord-
ing to recent surveys, see [3] and [11]. However, pipelines
are very constrained environments, and a coarse predefined
map of pipeline landmarks coupled with a landmark detec-
tion method is deemed sufficient for robot localization and
navigation.

Time-of-flight (TOF) cameras are a promising source
of 3D imagery for landmark and obstacle detection in
pipelines. The recently developed TOF cameras have a
great potential for mobile robot applications. They have
been used for mobile robotics mapping and navigation in
real world environments [7], and obstacle detection and seg-
mentation for navigation in factory-like environments [2].
Applications of TOF cameras in pipeline environments have
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Figure 1: Sketch of the pipeline system used for experi-
ments. The robot starts at waypoint 1 and moves to way-
point 4. Waypoint 2 is a 45◦ bend, waypoint 3 is a Y-
junction, waypoint 4 is a T-junction and waypoint 5 is a
90◦ bend.

to our knowledge not been published in the literature.

In this paper, we study the application of TOF cameras
in pipelines and evaluate its usefulness as a sensor for land-
mark and obstacle detection. We hypothesize that signif-
icant deviations from the idealized, cylindrical shape of a
pipeline either are landmarks like branches and junctions,
or obstacles like internal deposits. We also evaluate using
a cone as an alternative geometric primitive for deviation
measurements. Ranges to detected landmarks are validated
by comparison to auxiliary measurements.

To evaluate the method experimentally, a robot proto-
type was built using a Lego Mindstorms NXT set. The TOF
camera, a Mesa SwissRanger SR-3000, was mounted on the
front of the robot, tilted slightly upward. A pipeline model
consisting of 40 cm diameter sewer pipelines was used for
experiments. Figure 1 shows a sketch of the pipeline sys-
tem, including 45◦ and 90◦ bends plus Y- and T-junctions.
During experiments reported in this paper the robot moved
from waypoint 1 to 4.

This paper is structured as follows. Our proposed
method for landmark detection and tracking is presented
in section 2. Results are evaluated and related to auxiliary
measurements in section 3. Section 4 concludes the paper
and gives a brief outlook on the obtained results.

2. Methodology

The proposed method for feature extraction is based on
first fitting a cylinder or cone to the measured 3D data
points, and subsequently detecting deviations between the
fitted geometric primitive and the data at hand. The cylin-
der/cone fitting is done partly to ease later feature detection,
partly to create a reference coordinate system in which fea-
ture location is easily interpretable.

2.1. Cylinder fitting

We consider it reasonable to believe that the view-
direction of the camera in most cases will be rather par-
allel to the cylinder axis. Therefore, we have chosen to pa-
rameterize the cylinder to be fitted by the point where the
cylinder axis intersects the camera’s focal plane, and the
point where it intersects a second plane parallel to the focal
plane one meter ahead of the camera. The two intersection
points are specified in planar coordinates, and with radius
this becomes five parameters. This parameterization has the
benefit having few continuous parameters of the same scale,
which is beneficial for later optimization.

The cost function used for model fitting is inspired by
the MLESAC [12] criterion. This criterion is designed to
reward good coherence between model and data, whilst si-
multaneously ignoring gross outliers coming from e.g. mea-
surements of a wall in the end of a pipeline. The criterion is
given by

R =
∑

i

ρ(di) ρ(e) =
{
e2 e2 < t2

t2 e2 > t2
(1)

where R is our cost function, di is the squared distance be-
tween data point i and the closest point on the cylinder can-
didate, and t is an acceptable deviation threshold for gross
outliers.

Initial experiments indicate that measurement points that
are either far away from the camera or have low signal am-
plitude are probably incorrect. When evaluating the cost
function, such points are ignored by using fixed amplitude
and distance thresholds to suppress them.

The optimization is done using the Nelder-Mead
method [9]. This is initialized the first time using a cylin-
der axis coinciding with the camera axis, and subsequently
by reusing the result from the previous cylinder fitting. The
parameter reuse provides additional stability and faster con-
vergence during fitting.

2.2. Cone fitting

Initial experiments using cylinder fitting encourage a
model adjustment, as the acquired data within the range of
interest appear to take a more conic than cylindrical shape.
The cone fitting model is based on the same principles as
the cylinder fitting, with the exception that an additional pa-
rameter specifying cone steepness also is estimated.

Experiments show that the cone model can lead to un-
likely cone configurations in cases where the view of the
pipe is very limited. A sanity check on cone steepness is
therefore done on the cone parameters. In case of rejection,
the cylinder parameters are used for further analysis.
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Figure 2: Illustration of feature detection process. Thick
lines: Actual data. Thin lines: Fitted cylinder/cone. α, β:
Viewlines/pixels. A,B: Expected intersection points be-
tween viewlines α, β and fitted cylinder/cone. C,D: Ac-
tual data points along viewlines. Viewline α is detected as a
possible feature candidate due to the large distance ∆hAC

between A and C. Viewline β is classified as not being a
feature candidate due to the short distance ∆hBD between
B and D.

2.3. Comparison with synthetic image

The estimated cone parameters are used for synthesizing
an image representing the camera view expected if the cur-
rent view of the pipe is featureless. The synthetization is
done by first estimating unit vectors specifying the view di-
rection of each camera pixel, and subsequently calculating
the intersection point between these vectors and the fitted
cone.

For ease of reporting later feature position, we have cho-
sen to use cylindrical coordinates (θ, r, h), describing angle,
radius and range, for further processing. Origo is defined
as the intersection of cylinder axis and the camera’s focal
plane.

The synthezised image is compared with the actual data,
using the h-component of the cylindrical coordinates as ba-
sis for comparison, see Figure 2. Using the h-coordinate
was in initial experiments found to give better results than
e.g using the r-coordinate. Pixel regions with sufficiently
large deviation between model and actual data are assumed
to be possible landmarks or obstacles and are processed fur-
ther.

2.4. Feature extraction

Pixels in the camera data that deviate more than a given
threshold from the synthetic cone image are segmented out
and grouped into blobs. These blobs are filtered for size
and shape using blob area and compactness, defined by
Perimeter2/4πArea, to remove unlikely candidates, since
most of the artifacts are assumed to be smaller and have a
lower compactness than the landmarks.

In order for the detected features to become useful for a
higher-level navigation system, the algorithm needs to re-

port the distance and position of the features. This is done
by picking the blob pixel from the synthetic cone image
that has the lowest h-coordinate, and using the pixel to de-
termine the feature range and position. Using this pixel to
specify the feature detection point, is considered by us less
ambiguous than possible alternatives. For instance, instead
using the mean distance to the detected object will shift the
estimated feature position as the feature gradually comes
more into view, making measurements less precise.

2.5. Feature tracking

The range to each detected feature is tracked over time,
partly in order to remove spurious features. Features are
grouped over time by selecting the closest neighbor in
(h, θ)-space for each detection point found in subsequent
images. The r-component is not taken into account, as this
parameter does not provide any additional information on
changes over time in a pipeline of constant diameter. Fea-
tures appearing in less than five consecutive images are con-
sidered outliers.

2.6. Comparison with speed measurements

In order to determine feature detection and tracking abil-
ity, we compare our results with manual speed measure-
ments. We estimate the speed of the robot during its traver-
sal by measuring the distance between junctions and the
traversal time between these junctions. As the robot has
constant motor power we further assume constant speed be-
tween junctions.

3. Experimental results and discussion
Range images obtained in the illustrated pipe model us-

ing the prototype robot was segmented by the described
method. A simple landmark detector in the segmented im-
ages was used to track distance to landmark over time.
Tracking results were compared to auxiliary timing of the
robot path through the pipeline.

3.1. Cylinder model versus cone model

Experiments were performed to decide the best model
for description of the range data. The initial assumption
was that recorded data would correspond to a cylinder. By
visual inspection of recorded range data we observed that
the images had some defects giving a field taking a slightly
conic shape.

Range images were recorded in a pipeline without any
junctions or obstacles. Thus, one would expect that all ob-
served defects in the recorded data are due to secondary re-
flections from the pipeline, lens scattering, poor camera cal-
ibration and further camera imperfections. Figure 3 shows
a plot of the captured range image, seen from above. Here,
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Figure 3: TOF camera image of a pipeline without junc-
tions or obstacles, seen from above. All units in meters. The
density of range measurements decreases markedly at a dis-
tance of 1.5 meters. Note the conic shape of the range data,
discernible from the camera and up to 1.25 meters. Note
also that the measurements indicate a pipeline diameter of
60 cm, while the pipeline diameter used in the experiment
was 40 cm. The defects in the recorded data are assumed
to be due to poor camera calibration, secondary reflections,
lens scattering and further camera imperfections.

the recording defects are evident, as the pipeline diameter
was 40 cm, whilst measurements indicate a pipeline diame-
ter up to 60 cm.

Inspection of the range data reveals that the data initially
narrows slightly with increasing range. Note also that the
density of range measurements decreases with increasing
distance from the camera, limiting the useful distance range.
From the camera and up to a range of 1.25 meters a conic
shape can be clearly discerned.

Both the cylinder model and the cone model were fit to
the data captured. During data fitting, data points with an
intensity below 3000 and a range beyond 1.5 meters were
ignored. The hard threshold t2 for outlier data in the opti-
mization criterion in Equation 1 was set to one cm in both
cases.

Illustrated in Figure 4a is the best cylinder fit for the mea-
sured data points. The cylinder fit points slightly off axis.
Visual inspection of Figure 4b indicates that the cone model
is a better fit for the region of interest up to one meter.

In particular, the cone model is much better able to esti-
mate the correct pipeline axis when landmarks are present.
Landmarks cause a lack of points on at least one side of
the pipeline, resulting in a cylinder aligned only along the
opposite pipeline wall. Due to the conic shape of the mea-
surements, the alignment will be off-axis. The cone model
has an additional degree of freedom that better represents
the captured data, and thus allows for more accurate axis
alignment even in the presence of landmarks.

3.2. Extraction of Y- and T-junction landmarks

Deviations from the cone model of the range image were
used for segmentation and tracking of landmarks. Reported
from the feature tracker is distance to all plausible land-
marks in the frame.

−0.3

−0.2

−0.1

0

0.1

0.2

0.3

0.4

0.5

0.5 1 1.5 2 2.5

(a)

−0.3

−0.2

−0.1

0

0.1

0.2

0.3

0.4

0.5 1 1.5 2 2.5

(b)

Figure 4: Cylinder (a) and cone (b) fit to the TOF range im-
age of pipeline with opening, top-view. Camera positioned
at B in Figure 1, looking towards C. Opening towards pipe
D visible at approximately 0.75-1.25 m distance. All units
in meters. Fitted model indicated with solid points. Only
data up to one meter is used for further deviation measure-
ments. Unevenly distributed data measurement points result
in a best fitting cylinder slightly off-axis. The cone model
handles this better and estimates the pipeline axis more ac-
curately.

In the experiment, TOF images were captured at a rate of
13 frames per second while the robot was following a pre-
programmed path. Speed varied during the experiment, but
was assumed constant in the part where the robot was mov-
ing toward the Y- and T-junctions. Hence, the measured
distance to detected landmarks should decrease roughly lin-
early with time.

The cone model was fit to the range in each frame in the
video sequence. If the estimated cone converged to a point
closer than two meters ahead of the camera, a fitted cylinder
model was used instead. The data set was subsampled by a
factor ten to speed up processing. As illustrated in Figure 2,
deviations were measured as the projected distance of the
observed range onto the fitted cone axis. Deviations above
20 cm from the cone fit were classified as landmark candi-
dates, and segmented out. The feature was classified as a
landmark if the pixel area of the deviating segment totaled
more than 300 pixels and its compactness was less than four.
Landmarks more than one meter from the camera were ig-
nored. These parameters were derived experimentally.
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(a) Raw TOF range image of Y-junction, indicating measured distance, i.e.
the h-coordinate, in each pixel in meters. Observe that the landmark is
clearly discernible in the right of the image.
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(b) Deviation measure image of Y-junction obtained by subtracting ex-
pected range measurements of a synthesized cone from the raw TOF range
image measurements. The Y-junction in the right of the image clearly de-
viates from the fitted cone.

Figure 5: Distance and deviation measure images of the Y-
junction.

A range image showing the Y-junction can be seen in
Figure 5a. In each pixel measured distance, i.e. the h-
coordinate, is indicated in meters. The junction is clearly
distinguishable in the right part of the image. By subtract-
ing the cone fit from the observed data, a deviation measure
for each pixel can be obtained. This is shown in Figure 5b.
For pixels where we observe the pipeline walls, deviations
would be expected to be close to zero.

Figure 6a illustrates the range image of the T-junction
as seen from a distance of approximately 0.7 meters. The
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(a) Raw TOF range image of T-junction, from a distance of roughly 0.7
meters, indicating measured distance, i.e. the h-coordinate, in each pixel
in meters. Note that the crossing pipe wall can be observed as a large area
with a distance of roughly one meter in the center of the image.
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(b) Deviation measure image of the T-junction, obtained by subtracting
expected range measurements of a synthesized cone from the raw TOF
range image measurements. The left and right turns of the pipe are easily
discernible. Note the occurrence of negative deviation in the center of the
image, this is due to the cone model penetrating the crossing pipe wall.

Figure 6: Distance and deviation measure images of the T-
junction.

crossing pipe wall can be seen as a large area of having
roughly a distance of one meter to the camera. Comparison
of the cone model to observed data gives the deviation mea-
sure image illustrated in Figure 6b. The left and right turns
of the pipe are easily discernable, and can be detected and
tracked in the same way as the Y-junction. Note the occur-
rence of negative deviation in the center of the image since
the cone model penetrates the crossing pipe wall.



3.3. Tracking of Y- and T-junction landmarks

The proposed landmark tracking procedure was applied
to data recorded when the robot traversed the path from
waypoints 1 to 4 in Figure 1. The initial pipe segment be-
tween 1 and 2 is too short to obtain a reasonable amount
of data to model the cone fit. The landmark at waypoint 2,
a 45 degree bend cannot be reliably detected in the avail-
able experiments and is excluded from the reported results.
Detection and modeling of bends is a topic for future work.

Around three seconds into the path, the camera is aligned
along the pipeline from waypoint 2 to 4, and detection and
tracking of landmarks are performed while the robot is mov-
ing. Illustrated in Figure 7a is the measured distance to
the Y-junction landmark as a function of time, marked with
crosses. The solid line in Figure 7a is the estimated distance
to landmark, based on auxiliary speed measurement of the
traversal between waypoints in the pipeline model. Posi-
tioning of the reference line with regard to feature points
has been done using least squares, whilst ensuring preserval
of auxiliary speed measurement.

Similar results for the approach to the T-junction, along
the pipeline from waypoint 3 to 4, can be seen in Figure 7b.
The image contains two candidate landmarks to be tracked,
the left and right turn, marked with different symbols, cir-
cles and crosses. The solid line indicates estimated distance
to landmark, based on timing of traversal between way-
points. One can observe that, as the robot approaches the
wall of the crossing pipeline, relatively sparse amounts of
range data along the pipeline direction is available. In pres-
ence of sparse range data, the cone model becomes slightly
unstable and the cylindrical model is used. This is seen as a
slight jump in distance measurements observed around 14.5
seconds into the robot path.

4. Conclusions and outlook
The time-of-flight camera has been shown to be a

promising sensor for our autonomous robot navigation
needs. Landmarks necessary for navigation are demon-
strated easily detectable and trackable using a straight-
forward model.

Our current method for feature detection is sensitive to
situations where very little of the current pipe is visible, i.e.
when the camera has almost entered a T-junction or has just
started its traversal. In such cases, there are few data points
to provide a reliable estimate of cylinder parameters. Future
work will focus on improving the analysis of the deviations,
reducing the requirement for an accurate model fit, possibly
also improving the results by measuring deviation in carte-
sian as opposed to cylindrical coordinates.

An improved camera calibration would probably give
better experimental results. It is possible to improve
the model fitting and image synthetization by using more
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(a) Illustrated with crosses are tracked distances to the Y-junction in each
frame. The junction is detected around 3.5 seconds into the robot path,
and stays in the camera field of view for approximately 1.5 seconds until
distance to landmark is closer than 0.35 meters. Indicated with a solid line
is the distance to target calculated by auxiliary timing of the traversal of
the path.
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(b) The T-junction has two simultaneous targets at approximately the same
distance from the robot, first detected around 13.5 seconds into the path.
Illustrated with solid lines are distances to targets based on auxiliary timing
of the traversal of the path. The slight jump in distance measurements
around 14.5 seconds can be attributed to the feature tracker switching from
cone model to cylinder model, and a lack of reliable range data when the
robot moves increasingly closer to the pipeline wall in the T-junction.

Figure 7: Measured distances to tracked landmarks

knowledge of the imaging process. For instance, some of
the effects described in [4] could be incorporated, using a
forward model instead of the described reverse-modeling of
the effects.

The estimated range to detected landmarks or obstacles
is yet to be verified with better precision. While the mea-
sured speed of approaching features seem to be correct, fur-



ther work is necessary to verify the absolute positioning
ability of the TOF camera. Secondary sensors, such as ac-
celerometer, gyroscope, contact sensors and odometry data,
can provide additional information for tracking of compli-
cated robot movements horizontally and vertically. Fusion
of such sensor data for model verification and improvement
would be an interesting topic for further studies. A more
sophisticated algorithm for differentiation and classification
of obstacles from landmarks should also be developed.

We found that in a pipeline environment, TOF cameras
can provide continuous 3D data of sufficiently high qual-
ity. Where stereo cameras and laser range sensors provide
rather sparse data sets, the large data sets and data quality
from TOF cameras simplifies further analysis work. While
future work on robustness is necessary, basic landmark de-
tection based on TOF imagery has been demonstrated.
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