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ABSTRACT Different methods of sensitivity analysis for thermal design and monitoring
problems are described and applied on furnace lining problems. The methods used in this work
are based on utilizing finite differences and sensitivity equations ; the former being code non-
invasive while the latter class of methods is code invasive. Due to this fact, finite differences were
chosen for the main analysis of the present work. However, on selected modeling parameters,
sensitivity equations were used for comparison purposes and showed good agreement with
finite differences. The main objective of the work is to determine the location of sensors;
e.g., thermocouples, in nonhomogeneous heat conducting materials such that the sensors are
as sensitive as possible to thermal changes at positions some distance away from the sensors.
Both simplified examples as well as realistic design and monitoring problems of refractories are
studied. The results of this study are used in the development of industrial furnace monitoring
systems based on the solution of inverse heat conduction problems. Due to the nature of these
problems, it is of great importance to determine optimal or near-optimal sensor locations, with
respect to modeling parameters like the parameters of a critical isotherm and heat transfer
coefficients associated with unknown transfer of heat to the surroundings.

NOMENCLATURE

Ta scaled sensitivity coefficient, = a∂T/∂a [K]
C volumetric heat capacity, = ρcp [J/m3K]
T i
∞

bulk temperature of surrounding fluid i (i = 1, 2) [K]
Tcrit critical temperature (monitoring temperature) [K]
ai parameter of critical temperature curve (i = 0, . . . , 4)
kc thermal conductivity of material c [W/mK]
h1/h2 heat transfer coefficient for cooling mechanism 1/2, = a5/a6 [W/m2 K]
Γi boundary curve segment i (i=0,. . . ,4)
R furnace radius [m]
H height of monitoring region of furnace (vertical intersection) [m]
r space coordinate, radial direction [m]
z space coordinate, height direction [m]
b dependent variable, = (a4 − H)/(a3 − R)
s variable curve parameter (0 ≤ s ≤ 1)
Ω space region (monitoring intersectional region)



INTRODUCTION

To analyze the behavior of a thermal system, a number of parameters must be specified to char-
acterize the system. These parameters include material properties (e.g., thermal conductivity),
geometry (e.g., shape parameters of a free boundary), and boundary conditions (e.g., heat trans-
fer to the surroundings). During the design phase, some of the parameters may change. Often
parameters are not known with a high degree of accuracy. A designer may also be free to choose
among different materials. Alternative materials and/or conditions might work equally well and
could be used interchangeably. There may even be manufacturer-to-manufacturer variability
as well as product variability from a single manufacturer. Therefore, we need to play what if
scenarios with regard to the material properties, geometry and boundary conditions in order
to find out about the consequences.

Usually, these scenarios have been set up on an ad hoc basis. Selected parameter values were
changed and the analysis repeated. Without a computer, only a limited number of parameter
studies could be performed. Computers make it possible to perform a wide range of parameter
studies. However, even with a computer these parameter studies still tend to be performed on
an ad hoc basis. Based on intuition, the most important parameters would be varied over some
range. However, it is possible for even an experienced analyst to miss an important parameter.
It is also time consuming to study parameters in an ad hoc manner. Consequently, a more
formal procedure needs to be developed. This is where sensitivity analysis comes in.

A goal of thermal design and monitoring system development is to produce robust solutions that
function over a wide range of operating conditions. This is particularly true for furnace linings.
Wearline monitoring of furnace linings should be capable of functioning for both short distance
to long distance travelling of ”signatures” given to remote sensors (e.g., thermocouples), caused
by varying conditions (e.g., lining wear caused by mechanical and/or chemical processes) on
the inside of the lining. In addition, the sensors should not be exposed to mechanical loads and
high temperatures over long time periods, in order to maximize their functioning life time.

The quality and robustness of a thermal monitoring design can be investigated by means of
sensitivity analysis, which is introduced and applied in the sections to follow. First, the concepts
of sensitivity analysis are given. Then, different methods of performing sensitivity analysis are
described. Finally, these methods are applied to the analysis of furnace lining monitoring
problems.

SENSITIVITY ANALYSIS

Sensitivity analysis is defined as the study of how variations in input parameters of a com-
putational model cause variations in output. In general, input parameters include geometry,
material properties, boundary conditions and initial conditions. Output variables for thermal
systems like the ones we are considering here, are temperatures. A measure of this sensitivity is
termed the sensitivity coefficient and is defined as the partial derivative of the output variable
with respect to the parameter of interest. For a general discussion of sensitivity coefficients, see
Beck and Arnold [1] and Beck, et al. [2]. Since the focus of this work is on thermal problems,
let us define the scaled first order sensitivity coefficient of the temperature field with respect to
a general parameter a

Ta(x, t; a) ≡ a
∂T

∂a
(x, t; a) (1)

where all parameters other than this parameter are fixed during the differentiation. In Equation
(1), x and t denote space and time coordinates, respectively; and T denotes the temperature.
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Figure 1: A 1D two-layer slab problem.

Let us also define the scaled and non-dimensionalized sensitivity coefficient of the temperature
field with respect to a general parameter a

T̃a(x, t; a) ≡

{
∂T

∂a
(x, t; a) − min

x,t
[
∂T

∂a
(x, t; a)]

}
/

{
max
x,t

[
∂T

∂a
(x, t; a)] − min

x,t
[
∂T

∂a
(x, t; a)]

}
(2)

which implies that the values are scaled between 0 and 1. In some cases it is more convenient
to use this definition instead of the definition of Equation 1.

The sensitivity coefficient, Ta, is also a field variable in that it depends on position and time just
like temperature. In order to understand how one might use the sensitivity coefficient to predict
how a system responds if one perturbs the given parameter (e.g., the thermal conductivity), let
us expand the temperature field in a Taylor series about a mean value, a, of the parameter a

T (x, t; a) = T (x, t; a) +
∂T

∂a

∣∣∣∣
a

(a − a) +
1

2

∂2T

∂a2

∣∣∣∣
a

(a − a)2 + . . . (3)

One can see that the first order sensitivity coefficient is needed for a first order analysis and that
higher order sensitivity coefficients are required for higher order analysis. The present work will
focus on first order sensitivity analysis as the computational load scales approximately linearly
with the number of parameters. For a second order analysis, the computational load scales
as the square of the number of parameters. This may become prohibitive for problems with
hundreds of parameters. If the system response and first order sensitivity coefficients are known
for the nominal parameter values, equation (3) with higher-order terms neglected, can be used
to compute the response at a neighboring point in parameter space. If higher order sensitivity
coefficients are required, an initial approach might be to compute second order sensitivity co-
efficients only for those selected parameters that have large first order sensitivity coefficients.

Sometimes, only the sign of the sensitivity coefficient is important. If for example, the length
of a system is increased, does the critical temperature go up or down? In many instances,
the sensitivity coefficient is often required as an intermediate step in the solution of parameter
estimation, function estimation, uncertainty propagation, and optimization problems. The
emphasis of this work is on calculating sensitivity coefficients because they have importance
themselves as opposed to just numbers that are fed into a parameter estimation or optimization
process.

METHODS OF SENSITIVITY ANALYSIS

Different methods exist for computing the sensitivity coefficients. Here we present three meth-
ods; based on differentiation of analytical solutions, finite differences and the sensitivity equa-
tion. Other and related methods exist as well (see [3, 6]). In [7] a review of different methods
for sensitivity and uncertainty analysis is given.

Differentiation of analytical solutions This method involves differentiating an analytical
solution with respect to the parameters of interest. Obviously, this approach is limited to
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Figure 2: Profiles of temperature and conductivity sensitivity coefficients for the two-layer slab
problem.

problems in which analytical solutions are available. However, the method may serve as a tool
to verify approximate numerical methods. In order to demonstrate the method consider a 1D
configuration that might be used in determination of thermal conductivity. The geometry is
shown in Figure 1. On the two ends temperatures are kept fixed (Ta and Tb), while the steady
state temperature profile is measured. The conductivity of one of the layers is known and the
other is to be determined. The analytical expression for the temperature profile is

T (x) =





kaLbTa+kbLaTb

kaLb+kbLa
−

kbLa(Ta−Tb)
kaLb+kbLa

x
La

, −La ≤ x ≤ 0

kaLbTa+kbLaTb

kaLb+kbLa
−

kaLb(Ta−Tb)
kaLb+kbLa

x
Lb

, 0 ≤ x ≤ Lb

(4)

The goal in the design of this experiment is to have a large sensitivity to the unknown thermal
conductivity and a small sensitivity to the known thermal conductivity. For this simple setup
the two thermal conductivity sensitivity coefficients can be computed analytically and are given
by

Tka
≡ ka

∂T

∂ka

=
kaLbkbLa

(kaLb + kbLa)2
(Ta − Tb) ·

{
(1 + x

La
), −La ≤ x ≤ 0

(1 − x
Lb

), 0 ≤ x ≤ Lb
(5)

Tkb
≡ kb

∂T

∂kb

= −ka

∂T

∂ka

≡ −Tka
(6)

The profiles of the temperature and the conductivity sensitivity coefficient are shown in Figure
2. The profiles consist of two straight line segments. Observe that the sensitivity coefficient
Tka

is positive throughout, which implies that increasing ka increases the temperature. The
sensitivity coefficient Tkb

is negative throughout, which implies that increasing kb decreases the
temperature. The location of maximum thermal conductivity sensitivity Tka

is at the interface
between the two layers. Note that the two conductivity sensitivity coefficients are correlated.
This means that we can not estimate both thermal conductivities from the same experiment.

The above sensitivity coefficients can be used to choose both the layer thicknesses as well as
sensor locations.

The finite difference method In general, analytical solutions to thermal problems of the
kind we are studying are not available. However, numerical solution techniques and software
are developed to solve realistic thermal problems. The techniques include finite difference,
finite volume and finite element methods. We can compute sensitivity coefficients by running



the software for two different values of a parameter and use a first-order forward difference or a
second-order central difference. Sensitivity coefficients, Tai

, i = 1, . . . , n, are then determined
from

Tai
= ai

T (a1, . . . , ai + ∆ai, . . . , an) − T (a1, . . . , an)

∆ai

+ O(∆ai), (7)

or

Tai
= ai

T (a1, . . . , ai + ∆ai, . . . , an) − T (a1, . . . , ai − ∆ai, . . . , an)

2∆ai

+ O(∆a2
i ), (8)

respectively. This approach requires n + 1 solutions for the temperature field and will be first
order accurate in ∆ai. If a second order accurate central difference is used instead, then 2n
solutions of the temperature field will be required. An advantage of this approach is that you
numerically solve the problem with different inputs. Since no source code modification is re-
quired, the software development costs for this method will be minimal. Any relevant software
can be used to accomplish this, provided the computational results are available with sufficient
precision.

Numerical experiments are recommended to determine an acceptable value for the finite differ-
ence step size ∆a. If it is too large, the truncation errors will be unacceptable. On the other
hand, if it is too small, computational round-off errors may become a problem. The importance
of the latter issue is studied in the following computation of boundary temperature sensitivity
coefficients. The problem is given by

1

r

∂

∂r

(
rk

∂T

∂r

)
+

∂

∂z

(
k
∂T

∂z

)
= 0, r0 < r < r1, z0 < z < z1 (9)

T (r0, z) = a, z0 ≤ z ≤ z1 (10)

T (r1, z) = 0, z0 ≤ z ≤ z1 (11)

∂T

∂z
(r, z0) = 0, r0 ≤ r ≤ r1 (12)

∂T

∂z
(r, z1) = 0, r0 ≤ r ≤ r1 (13)

This problem was solved numerically using a finite element code. Double precision on a 32-
bit machine was utilized. The dimensionless boundary temperature sensitivity coefficients at
locations close to the outer wall were computed, utilizing a range of values for ∆ai = ai−a, i =
1, . . . , n, for a forward difference approximation

Ta ≡ a
∂T

∂a
≈ a

T (ai) − T (a)

∆ai

(14)

where a denotes the reference value. The results are presented in Figure 3.

Slab-wise uniform grids of totally 15 × 15, 30 × 30 and 60 × 60 elements were used. Focusing
on the right-hand side of Figure 3, as the relative finite difference step size (∆a/a) is decreased
down to almost 10−6, the sensitivity coefficients are practically kept constant in each grid case.
A further decrease results in deviations for all the three cases. Therefore, roundoff-errors are
not a matter of concern in this simple (practically) 1D case. More complicated cases, geomet-
rically and/or property-wise, may easily behave in a different manner, resulting in a step-size
dependency for much larger values of the step-size.

The sensitivity equation method The sensitivity coefficient is a field variable just like
temperature and have its own governing equation. In some cases it is easy to formulate, in
other cases it is not. In this section we demonstrate how to derive the field equations for specific



Boundary temperature sensitivity coefficients (k1=10, k2=40, k3=1)

∆
T

 /
 ∆

a

∆a / a

221.6

221.7

221.9

222.0

222.2

222.3

10-8 10-7 10-6 10-5 10-4 10-3 10-2 10-1

15 x 15 grid
30 x 30 grid
60 x 60 grid

Figure 3: Boundary temperature sensitivity close to the outer wall as a function of ∆a/a (a is
boundary temperature) for three different grid resolutions.

sensitivity coefficients. The formulation involves the differentiation of the governing equation,
along with associated initial and/or boundary conditions, with respect to the parameters of
interest. These sensitivity equations are then solved numerically, using the same algorithm (and
software) used to solve the heat equation. To demonstrate the formulation process, consider a
1D planar slab with a temperature boundary condition on one face and heat transfer boundary
condition on the other side. This problem is shown schematically in Figure 4. The heat equation
and boundary conditions can be written as follows:

C
∂T

∂t
−

∂

∂x

(
k
∂T

∂x

)
= 0 , 0 < x < L , 0 < t ≤ T (15)

T = Tb , x = 0 , 0 < t ≤ T (16)

−k
∂T

∂x
= h(T − T∞) , x = L , 0 < t ≤ T (17)

T = T0 , 0 ≤ x ≤ L , t = 0. (18)

The parameters of this problem are given by the vector

pT = [ C k Tb h T∞ T0 ] . (19)

We differentiate Equations (15)-(18) with respect to each element in this parameter vector.

Volumetric heat capacity sensitivity coefficient of the example. Starting with the volumetric

x

T = T0
q = h ( T-Tinf )

L

Figure 4: Schematic of 1D problem with temperature and heat transfer boundary conditions.



heat capacity sensitivity coefficient, differentiating Equation (15) with respect to C gives

∂T

∂t
+ C

∂

∂t

(
∂T

∂C

)
−

∂

∂x

{
k

∂

∂x

(
∂T

∂C

)}
= 0 (20)

where it has been assumed that the order of differentiation can be interchanged. We introduce
the scaled sensitivity coefficient by multiplying Equation (20) through by C to obtain

C
∂T

∂t
+ C

∂

∂t

(
C

∂T

∂C

)
−

∂

∂x

{
k

∂

∂x

(
C

∂T

∂C

)}
= 0 (21)

which is valid if C is independent of T . Note that for phase change problems, utilizing the
enthalpy method, this is not the case. The volumetric heat capacity sensitivity coefficient is
easily identified in Equation (21), and its governing equation can be written as

C
∂TC

∂t
−

∂

∂x

(
k
∂TC

∂x

)
= −C

∂T

∂t
. (22)

Equation (22) is the partial differential equation that describes the field variable TC . Note that
the left hand side of this equation is identical in form to that of the original heat equation.
However, there is a source term on the right hand side that was not present in the heat equation.
If the temperature field is known, then this source term is a known function of position and time.

We continue the development of the equations governing the behavior of TC by differentiating
the boundary and initial conditions with respect to C. Differentiating Equations (16)-(18) with
respect to C, we have

TC = 0 , x = 0, 0 < t ≤ T (23)

−k
∂TC

∂x
= hTC , x = L, 0 < t ≤ T (24)

TC = 0 , 0 ≤ x ≤ L, t = 0. (25)

This assumes again that the temperature field is known prior to the computation of the sensi-
tivity field and that C is independent of x.

The formulation of the field equation and associated boundary and initial conditions for TC

is complete and is given by Equations (22)-(25). Due to the similarities in form of the heat
equation and the volumetric heat capacity sensitivity equation, the same technique can be used
to numerically solve these equations. It does not matter if the discretization algorithm is finite
difference, finite volume or finite element. In fact, the existing software coding used to include
the effects of capacitance, diffusion and source terms for the heat equation can be used to
form the analogous terms for the sensitivity equation. The computational procedure is first
time marching the heat equation one time step and then to solve the sensitivity equation. The
source term for TC in Equation (22) is known from the temperature solution.

From Equation (22), the time rate of change of temperature drives the volumetric heat capacity
sensitivity field. If the temperature field is not changing with time, the volumetric heat ca-
pacity sensitivity will tend toward zero. For a problem with a positive temperature rise rate,
this source term is negative, suggesting a negative sensitivity to the volumetric heat capacity.
Similarly, for a body that is cooling, the source term is positive which suggests a positive sen-
sitivity to the volumetric heat capacity. As one can see, insight into the thermal response can
be gained by simply studying the describing equation for the sensitivity coefficients. In some



cases, trends may be determined without actually solving the sensitivity equations. However,
it is best to continue the process and numerically solve the sensitivity equations in order to
gain maximum insight.

Thermal conductivity sensitivity coefficient of the example. The next component of the param-
eter vector, the thermal conductivity, is now considered. Following the same procedure as
described above, the governing equation for Tk can be written as

C
∂Tk

∂t
−

∂

∂x

(
k
∂Tk

∂x

)
=

∂

∂x

(
k
∂T

∂x

)
. (26)

Again, the left hand side of the Tk equation is identical in form to the heat equation; the right
hand side has a fictitious source term that is equal to the negative of the gradient of the heat
flux; i.e., gradients in local heat flux drive the thermal conductivity sensitivity field.

Differentiating the boundary and initial conditions with respect to k, we get the following
conditions

Tk = 0 , x = 0 , 0 < t ≤ T (27)

−k
∂Tk

∂x
= hTk + k

∂T

∂x
, x = L , 0 < t ≤ T (28)

Tk = 0 , 0 ≤ x ≤ L , t = 0. (29)

Among the components of the parameter vector in Equation (19), the volumetric heat capacity
C and the thermal conductivity k are special in that they both appear in the governing differ-
ential equation for the temperature. For their respective sensitivity equations, inhomogeneous
terms are present. For all other parameters that do not appear in the heat equation, their
sensitivity governing equation can be written as

C
∂Ta

∂t
−

∂

∂x

(
k
∂Ta

∂x

)
= 0, a 6= C, k (30)

where Ta is the sensitivity coefficient for parameter a; note that this is a homogeneous equation.

The boundary conditions for the remaining parameters of the example. The boundary condi-
tions for the four remaining parameters in Equation (19) will now be addressed. Differentiating
the x = 0 boundary condition given by Equation (16) with respect to these parameters results
in

Ta =

{
Tb, a = Tb

0, otherwise (a = h, T∞)

}
, x = 0 , 0 < t ≤ T (31)

Differentiating the x = L boundary condition given by Equation (17) with respect to these
parameters results in

−k
∂Ta

∂x
=





hTa, a = Tb

h(Ta + T − T∞), a = h
h(Ta − T∞), a = T∞



 , x = L , 0 < t ≤ T (32)

We have given the initial conditions for both TC and Tk, by Equation (25) and Equation (29),
respectively (they are both zero). It is easy to see that if the parameter of interest is anything
other than the initial temperature itself, the initial condition for Ta will be zero. The initial
conditions for the remaining parameters can be summarized as follows:

Ta =

{
a, a = T0

0, otherwise (a = Tb, h, T∞)

}
, 0 ≤ x ≤ L , t = 0 (33)
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Figure 5: Example of how sensitivity varies with material composition.

Sensitivity coefficients related to temperature (Tb, T∞, T0), may need to be scaled by a tem-
perature change instead of the temperature itself. This eliminates the problems with zero
temperature when absolute temperature units are not used. These reference temperatures rep-
resent a characteristic temperature change for the problem (e.g., the maximum temperature
rise of the system, Tmax − T0).

ANALYSIS OF FURNACE LININGS

Different methods of thermal sensitivity analysis have been described. The methods are utilized
to analyze the behavior of a number of industrial furnace lining designs. The main objective
of the analysis is to determine the location of sensors in a nonhomogeneous heat conducting
material such that the sensors are as sensitive as possible to thermal changes at positions some
distance away from the sensors. Both simplified examples as well as realistic design and moni-
toring problems are considered in the next sections. This work is part of the overall efforts of
improving a thermal design and monitoring system for industrial furnace linings, based on the
principle of inverse heat conduction [8,9].

Composite materials We now considered the computation of a boundary temperature sen-
sitivity coefficient for the problem of steady 2D heat conduction within a composite material.
The objective is to find a composition that maximizes the sensitivity of temperature near one
part of the boundary, to temperature variations on the opposite side of the domain. The prob-
lem is given by Equations (9)-(13). Actually, these equations define a 1D problem, and are
chosen that way for simplicity reasons. However, the following analysis is not restricted to
such situations. Also, for simplicity reasons the composition is restricted to configurations as
shown in Figure 5, i.e. a heat conducting domain composed of three different materials placed
side-by-side, horizontally.

It is easy to show that the boundary temperature sensitivity coefficient Ta = a∂T/∂a satisfies
the same set of equations, i.e. Equations (9)-(13) (T replaced by Ta). Solving this sensitivity
equation problem numerically for three different compositions, results in the sensitivity profiles
(z = 0.5) shown in Figure 5.

If temperature sensors are to be placed on the right-hand side of the given composite material,
these results indicate that the optimal position of the sensors is at the interface between mate-
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Figure 6: A typical furnace lining with temperature sensors (marked with crosses).

rial 2 and 3 (see Figure 5), or as close as possible to that interface from any practical viewpoint.

Monitoring problems A strategy for monitoring the wear-line of a melting furnace has been
developed within an industrial framework. Temperature sensors at different locations in the
lining of the furnace, combined with an inverse heat conduction model, are utilized for mon-
itoring the state of the lining. The wear-line boundary is represented by a critical isotherm,
and the estimation of this isotherm is the crucial part of the problem. For details about this
system it is referred to [8,9,10].

For the system to function satisfactory it is of great importance that the heat conducting ma-
terial is equipped with temperature sensors in an optimal or near optimal way. The sensors
have to be located far from the critical isotherm due the high temperatures in these areas as
well as other (practical) reasons. In most practical situations the sensors are located close to
the outer walls of the linings. A typical situation is shown in Figure 6.

The inverse heat conduction is modelled by utilizing a cubic spline curve to represent the critical
isotherm. This is illustrated in Figure 7. The critical isotherm is described by a parametric
cubic curve

r(s) = c0 + c1s + c2s
2 + c3s

3, 0 ≤ s ≤ 1 (34)

where r(s) = [r(s), z(s)]T . The endpoints A and B (see Figure 7) are obtained with the
parameter values 0 and 1, respectively. The coefficients are given by

c0 = r(0) = [0, a2]
c1 = rs(0) = [a0, 0]
c2 = −3[r(0) − r(1)] − 2rs(0) − rs(1) = [−2a0 − ba1 + 3a3,−a1 − 3a2 + 3H]
c3 = 2[r(0) − r(1)] + rs(0) + rs(1) = [a0 + ba1 − 2a3, a1 + 2a2 − 2H]

(35)

The expression of b is chosen such that the tangent to the spline curve at s = 1 is normal to the
uppermost bounding line (stippled line). This way the assumption of zero heat flux through
this boundary segment is a fairly good approximation. The corresponding direct problem is



given by

1

r

∂

∂r

(
rk

∂T

∂r

)
+

∂

∂z

(
k
∂T

∂z

)
= 0, (r, z) ∈ Ω (36)

−k
∂T

∂r
= 0, on Γ0 (37)

−k
∂T

∂z
= h1(T − T 1

∞
), on Γ1 (38)

−k
∂T

∂r
= h2(T − T 2

∞
), on Γ2 (39)

−k
∂T

∂n
= 0, on Γ3 (40)

T = Tcrit, on Γ4 (41)

The Method of Finite Differences is used to compute the sensitivity coefficients Tai
, i = 0, . . . , 6.

To compare with the Sensitivity Equation Method, the results for the a5 and a5 are shown for
this method as well.

In the following figures are shown typical temperature distribution sensitivities with respect to
the geometry (Tai

, i = 0, . . . , 4) and heat transfer coefficient parameters (Ta5
and Ta6

). These
fields are important for the positioning of temperature sensors in the furnace to be monitored.
In general, sensors should be located in areas where the sensitivity field has large values, in
order to get a large as possible signal of the change. In most cases (for the geometry param-
eters) this implies that the sensors should be located as deep as possible into the linings. To
compute the boundary conditions on the outside (bottom and sidewall) it is preferable to have
the sensors at the interface between the cooling facility and the lining. In the Figure 8 are
also shown normalized sensitivity field of the sum of all parameter sensitivities which indicate
positions that are preferable for the complete set of model parameters. Note that the direction
of the heat flow is important with respect to the sensor locations.

Using the Sensitivity Equation Method on this problem is somewhat more complicated for the
5 curve parameters ai, i = 0, . . . , 4. For these parameters the sensitivity field problem becomes
a free boundary problem. Therefore, for ai, i = 0, . . . , 4, as well as for the a5 and a6 parameters,
the Finite Difference Method is used. The results are shown in Figures 9 to 13.
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Γ
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Γ
2
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Γ
4

Ω
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C

Figure 7: Cubic spline curve representing the critical isotherm to be monitored. The expression
of b is (a4 − H)/(a3 − R).
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Figure 8: Normalized sensitivity field of the sum of all parameter sensitivities of a0 − a6,
all computed by the Finite Difference Method. The stippled curves are levels of depth for
sensors found to be good with respect to sensitivity of model parameters, and given practical
requirements for the localization of sensors.

The two parameters a5 = h2 and a6 = h1 may be analyzed by the Sensitivity Equation Method.
The sensitivity field of a5 and a6 are shown in Figures 16 and 17 for comparison purposes. These
fields are not scaled, but show qualitatively good agreement with the scaled results of the Finite
Difference Method as shown in Figures 14 and 15.

SUMMARY

Three methods for computing sensitivity coefficients have been described, and example calcu-
lations were presented for the case of refractory lining design and monitoring. The methods
can be divided into two categories; code invasive and code non-invasive. The Finite Difference
Method is non-invasive and probably the most general; it can be applied when the source code
is not available. This means it can also be used in conjunction with commercially available
software. An objection to the finite differences approach is that for non-linear problems, such
as problems with temperature dependent properties, each perturbed parameter solution is a
non-linear solve. If the same problem is solved using the Sensitivity Equation Method, which is
code invasive, the sensitivity coefficient equations are linear equations. For complex non-linear
and multi-dimensional problems this often caused large savings in computational time com-
pared to the finite differences approach. No matter which method is chosen to be the primary
method, differentiation of analytical solutions is an important part of the process of verifying
that the equations have been implemented correctly.

The sensitivity fields shown in the Figure 8 and the Figures 9 to 14 are simplified models
and sensitivity fields as compared to models and analysis of real industrial furnace problems.
However, this type of modeling and analysis have shown to be very valuable, both with respect
to the design and monitoring of furnace refractories.
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Figure 9: Normalized sensitivity field ∂T/∂a0 of a0 (dr/ds at point A) computed by the Finite
Difference Method.
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Figure 10: Normalized sensitivity field ∂T/∂a1 of a1 (dz/ds at point B) computed by the Finite
Difference Method.
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Figure 11: Normalized sensitivity field ∂T/∂a2 of a2 (z at point A) computed by the Finite
Difference Method.
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Figure 12: Normalized sensitivity field ∂T/∂a3 of a3 (r at point B) computed by the Finite
Difference Method.
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Figure 13: Normalized sensitivity field ∂T/∂a4 of a4 (z at point C) computed by the Finite
Difference Method.
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Figure 14: Normalized sensitivity field ∂T/∂a6 of a6 (ha (bottom heat transfer coefficient) along
z = 0) computed by the Finite Difference Method.
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Figure 15: Normalized sensitivity field ∂T/∂a5 of a5 (hw (wall heat transfer coefficient) along
r = 7) computed by the Finite Difference Method.
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Figure 16: Wall heat transfer coefficient (hw = a5) sensitivity field computed by the Sensitivity
Equation Method. Included for comparison purposes.
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Figure 17: Bottom heat transfer coefficient (ha = a6) sensitivity field computed by the Sensi-
tivity Equation Method. Included for comparison purposes.
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