SSI Dresden 2011

Interconnects based on metal coated polymer spheres for improved reliability

Maaike M.V. Taklo¹, Andreas Larsson¹, Knut Aasmundtveit² and Helge Kristiansen³

¹ SINTEF ICT, 0314 Oslo, Norway

The presented project, ReMi, is sponsored by the BIA program of The Norwegian Research Council

² Vestfold University College, 3103 Tønsberg, Norway

³ Conpart AS, 2013 Skjetten, Norway

Outline

- Motivation: Reliability challenges in harsh environments
- Basic properties of metal coated polymer spheres
- Isotropic conductive adhesive
- Anisotropic conductive adhesive
- Ball Grid Array assembly
 - With case studies for each
- Outlook and summary

ReMi: Fine Pitch Interconnect of Microelectronics and Microsystems for use in Rough Environments

- Fine pitch
- Harsh environment
 - Thermal cycling
 - Thermal storage
 - Vibrations
- Project duration 2008 2012
- Project size ~0.85 MEUR

Large stresses during firing of missiles

Brittle IMC formed in a SnAg microbump (Johannessen et al., IEEE Trans. Adv. Packag. 2009)

Challenges with reliability

- Thermal mismatch of substrate, chip, interconnect and fill materials
 - Thermo mechanical stress during cycling can lead to failures
- Brittle intermetallic phases in interconnects
 - Mechanical stress from shocks/vibrations can lead to failures
- Fine pitch
 - Lack of process control can lead to failures

Ag Epoxy dispensed on fine pitch MEMS device

How can reliability be improved by introducing metal coated polymer spheres?

Metal Coated Polymer Spheres (MPS)

- Polymer core
 - Dimension controllable by Conpart to <2%
 - "Small" 4-30 μm: Mixed into matrixes at certain volume concentrations
 - "Large" $250-800 \, \mu \text{m}$: Positioned as single balls like regular BGA balls
 - Elastic properties controllable by adjusting chemical contents
 - Collapse or stiff
- Metal coating
 - "Small": Ni and Au or Ag (20-80 nm layers)
 - "Large": Cu and Sn (10-25 μm layers)
- Advantages
 - Significantly reduced metal consumption
 - Optimise mechanical properties and electrical conductivity independently
 - Optimise T_q of polymer with respect to matrix
 - Match CTE to that of the matrix
 - Use cure shrinkage to increase particle-particle contact area

Percolation

- Continuous (electrical) network
- Particle to particle interaction
- Strongly dependent on "characteristic length"
 - L/d
- Dependent on "orientation" of particles (non-spherical)

Kristiansen et al., Pan Pacific 2009

Rheology: Handling of adhesive

- Viscosity increases as volume % is increased
 - Lubricants
 - Solvents
- Shear-flow induced orientation

Mechanical properties of MPS

 Measurements performed with nanoindentation at NTNU in Trondheim, Norway

H. Kristiansen, Seminar at HiVe., Vestfold University College, Des 03 2010

Isotropic conductive adhesives (ICA)

Silver epoxy, a traditional ICA

- Used in electronics pack-aging and interconnect for decades
 - Composite material
 - Adhesive resin
 - Conductive particles (metals)
- Typically known as silver epoxies
 - Epoxy adhesive loaded ≈ 30% Ag (volume %)
 - Matrix and fillers are very different materials
 - E-modulus ratio: 2-orders of magnitude
 - Large CTE miss-match
 - Micro-cracking between filler and matrix
- Brittle behaviour
 - Introduce plasticisers, reduce T_q of matrix
 - Increases CTE miss-match
- Replace Ag with MPS to improve reliability

Viscosity and LM image of ICA with MPS, H-V. Nguyen, Seminar at HiVe., Vestfold University College, Des 03 2010

ICA case study: MEMS fuse

Gakkestad et al, Journal of Micro/Nanolithography 9 (4), 041108 (2010)

- MEMS device in SOI wafer
- Assembly directly on PCB
- ICA with 3-4 and 30 μm MPS
- Stencil printing issues for 30 μm

- Thermal cycling of chips assembled in parallel on large test boards
- Thermal cycling followed by firing tests of chips assembled on smaller boards
- Electrical testing, shear strength measurements and cross section inspection: Viable technology for the purpose!

Electrical results

- ICA-A: 30 μm Ag coated MPS
- ICA-B: 4 μm Ni and Au coated MPS

ICA type	Board number	Number of temp cycles	$R_{ m average}~(\Omega)$ after temp cycling (std dev)	$R_{ m average}~(\Omega)$ after firing (std dev)	Percent change	Number of measured resistances
ICA-A	I1	100	0.675 (0.246)	0.733 (0.326)	8.6	8
	12	10	0.224 (0.094)	0.205 (0.092)	-8.5	5
ICA-B	13	100	0.217 (0.084)	0.257 (0.105)	18.4	8
	14	10	0.082 (0.022)	0.097 (0.033)	18.3	6

Gakkestad et al, Journal of Micro/Nanolithography 9 (4), 041108 (2010)

Anisotropic conductive adhesive/film (ACA/ACF)

- Provides unidirectional electrical conductivity
- The directional conductivity \rightarrow relatively low volume loading of conductive filler (5-20 vol%)
- Fine pitch implementation
- ACF is commonly used in LCD screens

Polymeric resin

Chip

http://www.acffilm.com/

Conductive particle

www.idex.no

ACF case study: Fingerprint sensor

- MEMS onto ASIC, fine pitch
- Anisotropic conductive film (ACF)
 - Film from subcontractor (using MPS from Conpart)
 - Lamination
 - Amount of MPS below percolation limit

- Assembly (VUC/Tampere)
 - Lamination (below T_0)
 - Bonding (above T_{q})
- Cross-section & surface analysis
- Thermal analysis (T_q)
 - DSC
- Testing
 - "Reflow"
 - Thermal shock cycling
 - Humidity

Assembly at Tampere University of Technology (pressure needed)

Pads for daisy chains and 4-ponit probing

ACA on wafer scale: Bonding for MEMS

- Combining adhesive wafer level bonding (BCB) and principle of ACA
- MPS trapped in pad regions
- Applicable e.g. for MEMS wafers requiring electrical connection to cap wafer with TSV or electrodes
- Plasma-FIB image (by FEI) showing 4 µm MPS trapped in a bonded region assuring electrical connection between the wafers

Taklo et al., Device Packaging Conference, March 2011

Ball Grid Array balls (BGA)

- Transition from SnPb to SAC has resulted in reduced cycles to failure
- Combination of
 - Thermal expansion miss-match
 - Non-compliant ball
- Causes reliability issues
 - Severe cyclic strain in solder
 - Severe stress in component
- Limits maximum size of component / Number of I/O's

Whalley, HDP Feb 2010

Replace SnPb/SAC with MPS to improve reliability

BGA case study: Ceramic package

- MPS with solder as BGA
 - Spheres from Sekisui and Conpart
- References: SnPb and SnAgCu BGAs
- Solder onto LTCC

- Mounting onto PCB
- Reliability studies

310 μm balls from Sekisui on LTCC

Outlook and summary

- Case study I, ICA for a MEMS fuse
 - Satisfactory results and the product is presently further developed
- Case study II, ACA for a Fingerprint sensor
 - Results show satisfactory resistance measurements and good reliability from stress tests
 - Closing tests are performed this spring and all results are to be compiled in a coming journal paper in 2011
- Case III, BGA with MPS for a ceramic package
 - Reliability tests to be performed
- All results achieved so far support the theory about increased reliability, in particular with regard to shock and thermal cycling, due to the increased compliance of a system with MPS

Technology for a better society

