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Parametric and Implicit Representations

We will address rational parametric surfaces

SP =
�
p(s1, s2) 2 R3 : (s1, s2) 2 Ω � R2	 ,

where p(s1, s2) = (p1(s1, s2), p2(s1, s2), p3(s1, s2)), and p1(s1, s2),
p2(s1, s2), and p3(s1, s2) are bivariate polynomials or rational
functions with the same denominator of degree n.

We will approximate these with implicit surfaces de�ned as
the zero set of a nontrivial trivariate polynomial q of degree m > 0:

SI =
�
(x , y , z)2R3 : q(x , y , z) = 0

	
.



Exact and Approximate Implicitization

A nontrivial polynomial q gives an exact implicitization of p(s) if

q(p(s)) = 0, for all s 2 Ω.

A nontrivial polynomial q gives an approximate implicitization of
p(s) within the tolerance ε if there exists g(s) such that

q(p(s) + g(s)) = 0, for all s 2 Ω,

and
max
s2Ω

kg(s)k � ε.



Applications of the Implicitization

Applications:

I Intersection algorithms - detecting self-intersections,
I Ray tracing,
I Classi�cation - is a given point above, below or on the surface.

Approaches Approximate Implicitization:

I Dokken 1997 (Strong form),
I Sederberg et al. 1999 (Monoids),
I Wurm and Jüttler 2003 (Point based curves),
I Dokken and Thomassen 2006 (Weak form),
I Barrowclough and Dokken 2010 (Triangular Bézier, General
Point Based).



Barycentric coordinates

Barycentric coordinates allow us to express any point x 2 Rl as,

x =
l+1

∑
i=1

βiai ,

where ai 2 Rl are points de�ning the vertices of a non-degenerate
simplex in Rl under the condition that ∑l+1

i=1 βi = 1,

I In R2 the simplex is a triangle
I In R3 the simplex is a tetrahedron

In the reminder of the presentation we assume that the Bézier
curves and surfaces are inside the simplex so all vertices expressed
in barycentric coordinates are positive.



Multi index and vector notation

I We will use a vector and multi index notation for describing
the rational parametric objects

I This allows us to describe the approach in a generic way

p(s) = ∑
i2In

ciBi,n(s), s 2 Ω,

I where the basis functions Bi,n(s), i 2 In, satisfy the partition
of unity property

∑
i2In

Bi,n(s) = 1, s 2 Ω, with

Bi,n(s) � 0, s 2 Ω, i 2 In.

I The coe¢ cients are represented in projective space ci 2 P ,
i 2 In, to also support rational parametrization.



Barycentric coordinates and Bernstein bases over Simplices

For bivariate barycentric coordinates s = (s1, s2, s3), the triangular
Bernstein basis polynomials of degree n are:

Bni (s) =
�

n
i1, i2, i3

�
s i11 s

i2
2 s

i3
3 , jij = i1 + i2 + i3 = n.

For trivariate barycentric coordinates u = (u1, u2, u3, u4); the
tetrahedral Bernstein basis polynomials of degree m are:

Bmi (u) =
�

m
i1, i2, i3, i4

�
ui11 u

i2
2 u

i3
3 u

i4
4 , jij = i1 + i2 + i3 + i4 = m.

Multinomial coe¢ cients:�
n

i1, i2, i3

�
=

n!
i1!i2!i3!

.



Example: Bézier Curves and Surface

I For 2D Bézier curves l = 2, n = n, i = i , ci = (ci ,x , ci ,y , ci ,h)
and I = f0, . . . , ng , giving

p(s) =
n

∑
i=0
ci

�
n
i

�
(1� s)n�i s i .

I For tensor product Bézier surfaces l = 3, n = (n1, n2),
i = (i1, i2), ci = (ci,x , ci,y , ci,z , ci,h) and
I = f(i1, i2) j 0 � i1 � n1 ^ 0 � i2 � n2g , giving,

p(s) =
n1

∑
i1=0

n2

∑
i2=0

ci1,i2

�
n1
i1

��
n2
i2

�
(1� s1)n1�i1s i11 (1� s2)n2�i2s

i2
2 .



Example: Triangular Bézier Surface
For triangular Bézier surfaces l = 3, n = n, i = (i1, i2, i3),
ci = (ci,x , ci,y , ci,z , ci,h) and

In= f(i1, i2, i3) j 0 � i1, i2, i3 � n ^ i1 + i2 + i3 = ng ,

giving,

p(s) = ∑
i1+i2+i3=n

ci1,i2,i3

�
n

i1 i2 i3

�
s i11 s

i2
2 s

i3
3 ,

with (s1, s2, s3)barycentric coordinates in Ω � R2.



Implicit Surfaces and Algebraic Distance

The intention is to �nd a polynomial q describing an implicit
surface that approximates p(s) in the tetrahedral Bernstein basis
of degree m

q(u) = ∑
jij=m

biB
m
i (u).

The task is to �nd the unknown values bi for jij = m that satisfy
the approximation criteria.

The algebraic distance between an implicitly de�ned surface and a
point u0 2 P3 is the value q(uo ).



Implicitization and exact degrees

I A rational parametric 2D curve of degree n has an implicit
degree of at most m = n.

I A parametric surfaces of bi-degree (n1, n2) has an implicit
degree of at most m = 2n1n2.

I A parameter surface of total degree n has an implicit degree
of at most m = n2.

Approximate implicitization allows algebraic curve and surface
approximations with lower degrees than the exact degree m while
using �oating point arithmetic.



Approximate Implicitization
We attempt to minimize the algebraic distance, given p(s) and a
chosen degree m of q:

I Original Approach: Minimize the algebraic distance point wise:

min
kbk=1

max
s2Ω

jq(p(s))j ,

I Weak Approach: Minimize the integral of the squared
algebraic distance:

min
kbk=1

Z
Ω
(q(p(s)))2 ds,

I Point based approach: Minimize the squared algebraic
distance for a set of points p(sk ), k = 1, . . . ,N

min
kbk=1

N

∑
k=1

(q(p(sk )))
2 .



Original Approach

De�ne a matrix D by the values (di,j)jij=m,j2Jm,n , a vector
Bmn(s) = (Bmn(s))j2Jm,n and a vector b = (bi)jij=m .

q(p(s)) = ∑
jij=m

biB
m
i (p(s))

= ∑
jij=m

bi

 
∑

j2Jm,n
di,jB

mn
j (s)

!
= ∑

j2Jm,n
Bmnj (s)

 
∑
jij=m

di,jbi

!
= Bmn(s)TDb.

Let σmin be the smallest singular value of D.

min
kbk=1

max
s2Ω

jq(p(s))j � max
s2Ω

kBmn(s)k2 minkbk=1
kDbk2 � σmin.



Original Approach
I For 2D curves Jm,n= J m,n= f1, . . . ,mng
I For triangular Bézier surfaces Jm,n = Jm,n= fj : jjj = mng,
I For tensor Bézier surfaces

Jm,n= J m,(n1,n2) = f(j1, j2) : 1 � j1 � mn1 ^ 1 � j2 � mn2g .

To summarize the approach:

I To produce D multiply out the coordinate functions of p(s)
according to

Bmi (p(s)) =

 
∑

j2Jm,n
di,jB

mn
j (s)

!
.

I Perform SVD on D = (di,j)jij=m,j2Jm,n .
I Choose the coe¢ cients bmin = (bi)jij=m corresponding to the
smallest singular value σmin in the SVD as the solution to the
approximation problem.



Weak Approach

Z
Ω
(q(p(s)))2 ds = bTDT

�Z
Ω
Bmn(s)Bmn(s)T ds

�
Db.

= bTDTADb
= bTDTUTΣΣUDb
= kΣUDbk22 .

with A = UTΣΣU the singular value decomposition of A. For the
triangular Bézier surface A looks like.

ai ,j =
Z

Ω
Bmni (s)Bmnj (s)ds =

(mni )(
mn
j )

(2mni+j )

Z
Ω
B2mni+j (s)ds

=
(mni )(

mn
j )

(2mni+j )

1
(2mn+ 1)(2mn+ 2)

.



Numerical Weak Approach

The integral in weak approximate implicitization can also be
evaluated numerically. Using the factorization

q(p(s)) = ∑
jij=m

biB
m
i (p(s))

Z
Ω
(q(p(s)))2 ds =

Z
Ω

 
∑
jij=m

biB
m
i (p(s))

!2
ds = bTMb

mi,,j=
Z

Ω
Bmi (p(s))B

m
j (p(s))ds =

(mi )(
m
j )

(2mi+j)

Z
Ω
B2mi+j (p(s))ds.

Exploiting symmetries within this algorithm can signi�cantly
reduce the computation time.



Point Based Approach

Let υ(i) be a lexicographical ordering such that Bmi (s) =B
m
υ(i)(s),

bi = bυ(i) and let L = (
m+3
3 ) be the number of basis functions

N

∑
k=1

(q(p(sk )))
2 =

N

∑
k=1

 
L

∑
i=1
biBmi (p(sk ))

!2

=



0BBBBBB@
Bm1 (p(s1) . . . BmL (p(s1)

...
...

Bm1 (p(sk ) . . . BmL (p(sk )
...

Bm1 (p(sN ) . . . BmL (p(sN )

1CCCCCCA b


2

2

= kCbk22 = bTCTCb.



Point Based Approach

Now looking at column ci the i th column of C

(ci )
T =

�
Bmi (p(s1)) . . . Bmi (p(sk )) . . . Bmi (p(sN ))

�
.

The polynomial Bmi (p(s)) is a polynomial B
mn
i (s) of degree mn in

the variables s. The number of basis functions K in the polynomial
space used for describing Bmni (s) depends on p(s) being a curve, a
tensor product Bézier surface or a triangular Bézier surface:

I In the curve case K = mn+ 1.
I In the tensor product Bézier surface case
K = (mn1 + 1) (mn2 + 1) .

I In the triangular Bézier surface case K = (mn+22 ).



Point Based Approach
Now choosing the number of interpolation points to N = K we can
pose interpolation problems using the basis functions Bmnj (s) from
the original approach to reproduce Bmi (p(s)) and its coe¢ cients di

Gdi = ci, with
G =

�
Bmnj (sk )

�
j2Jm,n,k=1,...,K

.

Provided G is nonsingular the rows di of the matrix D = (di) of
the original approach can be expressed

di = G�1ci.

Using this we getvuut N

∑
k=1

(q(p(sk )))
2 = kCbk2

=
GG�1Cb2 = kGDbk2 .



Relations between Approaches

Let σmin be the smallest singular value of D.

I Original Approach:

min
kbk=1

max
s2Ω

jq(p(s))j = min
kbk=1

kDbk2 � σmin.

I Weak Approach: Let λmax be the largest eigenvalue of Σ

min
kbk=1

rZ
Ω
(q(p(s)))2 ds= min

kbk=1
kΣUDbk2 � λmaxσmin.

I Point based approach: Let G be nonsingular and gmax its
largest eigenvalue

min
kbk=1

vuut N

∑
k=1

(q(p(sk )))
2 = min

kbk=1
kGDbk � gmaxσmin.



Convergence

I Curves in R2 are approximated with convergence

O(h
(m+1)(m+2)

2 ).

m 1 2 3 4 5 6
rate 2 5 9 14 20 35

I Surfaces in R3 are approximated with convergence

O(h
j
1
6

p
(9+12m3+72m2+132m� 1

2

k
).

m 1 2 3 4 5 6
rate 2 3 5 7 10 12



Singular Bézier Triangle

c200 = (0, 0, 0),
c110 = (0, 0, 1), c101 = (0, 1, 0),
c020 = (0, 0, 0), c011 = (1, 0, 0), c002 = (0, 0, 0).

Figure: Exact (left) and approximate (right) implicitization of the
parametric triangular Bézier surface (middle).



Several Patches Simultaneously

Parametric Quadratic Cubic Quartic

The original approach stacks
the matrices:

D =

0B@ D1
...
Dr

1CA .

The weak and point based
approaches sum the matrices:

M =
r

∑
i=1
Mi ,

C =
r

∑
i=1
Ci .



Conclusion

I Approximate implicitization combines algebraic geometry,
computer aided design and linear algebra to o¤er a family of
methods for the approximation of parametric curves and
surfaces by algebraic curves and surfaces.

I The methods have proven high convergence.
I The methods employ stable numerical methods.
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