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Abstract

We present an implementation of a novel foveating 3D
sensor concept, inspired by the human eye, which intends
to allow future robots to better interact with their surround-
ings. The sensor is based on a time-of-flight laser scanning
technology, where each range distance measurement is per-
formed individually for increased quality. Micro-mirrors
enable detailed control on where and when each sample
point is acquired in the scene. By finding regions-of-interest
(ROIs) and mainly concentrating the data acquisition here,
the spatial resolution or frame rate of these ROIs can be sig-
nificantly increased compared to a non-foveating system.

Foveation is enabled through a real-time implementation
of a feed-back control loop for the sensor hardware, based
on vision algorithms for 3D scene analysis. In this pa-
per, we describe and apply an algorithm for detecting ROIs
based on motion detection in range data using background
modeling. Heuristics are incorporated to cope with cam-
era motion. We report first results applying this algorithm
to scenes with moving objects, and show that the foveation
capability allows the frame rate to be increased by up to 8.2
compared to a non-foveating sensor, utilizing up to 99% of
the potential frame rate increase. The incorporated heuris-
tics significantly improves the foveation’s performance for
moving camera scenes.

1. Introduction

Future robotics must, to a greater extent, handle com-
plex and unorganized scenes. This requires better cogni-
tive abilities to get a higher degree of autonomy. 3D sen-
sors providing depth perception are regarded as particularly
well suited for improving situational awareness and interac-
tion, since depth perception is necessary to construct high-
quality models on the structure, shape and boundaries of the
robot’s surroundings.

Thielemann et al. [20] have introduced a novel 3D sen-
sor concept that addresses this challenge. The sensor con-
cept is based on an innovative hardware solution combined
with attention analysis in order to foveate in 3D. A system
has foveation if it can acquire data with coarse resolution,
apply fast object detection and then concentrate data acqui-
sition in these regions-of-interest. The foveation concept is
inspired by the human eye, which moves its sharp central
vision region, fovea centralis, in saccadic motions towards
objects it finds interesting.

The sensor under development provides one million 3D
data samples per second, which is not itself an impres-
sive data rate compared to other 3D sensors. However, the
sensor will be able to control where these measurements
are done. This foveation capability makes it possible to
increase both spatial and temporal resolution significantly
in regions-of-interest by concentrating the data acquisition
within these regions.

Detailed sensor control is possible due to a computer vi-
sion based foveation system. This foveation system soft-
ware works as a feed-back loop for the sensor hardware and
controls the data acquisition based on detected regions-of-
interest. Attention analysis of the scene is used to detect
these regions, where the focus for attention can be e.g. mo-
tion, 3D edges or 2D edges. A sketch of the complete sen-
sor system, with the 3D sensor hardware and its foveation
software, is shown in Figure 1.

The major contribution of this paper is an implemen-
tation of the foveation software for the foveating 3D
TACO sensor concept. We present an algorithm for mov-
ing object detection, and apply this algorithm in a real-
time sensor control loop, enabling foveation. The benefits
of foveation we demonstrate through quantifiable metrics
for region-of-interest detection and the successive enhanced
sensor frame rate achieved with our foveation system, com-
pared to a sensor without foveation. Since the complete
sensor is under construction, our results are based on sim-
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Figure 1. System sketch of the foveating 3D TACO sensor. The
system can roughly be split in two parts: the 3D sensor hardware
(green) and the foveation software (violet). The foveation software
applies computer vision algorithms to detect regions-of-interest,
defined by input from the user (yellow). The data flow is indicated
by arrows. 3D data from the scene is acquired by the sensor and
sent to the foveation system, where it undergoes attention analysis.
The detected regions-of-interest are used to control the sensor dur-
ing the subsequent data acquisition, while the 3D data is forwarded
to the end user through the network interface.

ulated hardware, while the foveation software is an actual
real-time implementation.

1.1. Related work

This paper is funded on four technical fields: Optical
3D sensors, foveating sensors, attention mechanisms, and
algorithms for motion detection.

1.1.1 Optical 3D sensors

Current optical principles for 3D sensors include stereo-
vision, structured light, laser scanners and time-of-flight
cameras. None of these provide simultaneous high spatial
and temporal resolution. Structured light systems1 and laser
scanners2 give high spatial resolution images, but are slow
and typically need seconds to capture a complete mapping

1e.g. www.gom.com/metrology-systems/system-overview/atos.html
2e.g. www.sick.com/group/EN/home/products/product news/

laser measurement systems/Pages/lms100.aspx

of the scene. Time-of-flight cameras3, stereo-systems4 and
the novel structured light based Kinect camera5 provide 3D
frames at video rate. However, their spatial resolution is low
or incomplete.

Our measurement principle is based on time-of-flight
laser scanner technology. Due to their narrow laser spot il-
lumination, time-of-flight laser scanners allow an effective
suppression of background signals and multiple-reflection
artifacts otherwise known to be problematic in time-of-
flight cameras [13]. Compared to stereo cameras, time-of-
flight systems have fewer problems with occlusions, due to
their on-axis detection principle. They are also able to pro-
vide full-field 3D data even for objects with little or no sur-
face texture.

1.1.2 Foveating sensors

Existing foveating sensors are mainly realized by macro
hardware movements or pixel grouping on CMOS sensors.
Early foveating sensors [2] mimicked the human eye by us-
ing a log polar mapping of the imaging sensor area. Bimbo
and Pernici [4] present a system that foveates by position-
ing a 2D camera with an external pan/tilt device. Bailey and
Bouganis [1] adaptively control which sensor areas to read
with high resolution in a high resolution CMOS imaging
sensor, in order to enable on-chip storage and processing of
image sequences. In a similar way Constandinou et al. [3]
group or do not group pixels in a CMOS sensor to alter the
spatial resolution. Automatic foveation has previously been
developed for video compression and unpacking of images
for low bandwidth data transfer. A foveated wavelet trans-
form with a fixed fovea is used to control a camera in Wei
and Li [23].

These approaches for foveating sensors in 2D provide
more limited variation in the spatial resolution, compared
to the foveation capabilities of the TACO sensor. To our
knowledge, none of the foveating sensors in the literature
provide range or 3D data — they are all 2D sensors.

1.1.3 Attention mechanisms

Automatic attention mechanisms often try to mimic pri-
mate’s attention [11]. We can divide attention methods into
bottom-up [9], [10] and top-down [22] approaches. Bottom-
up is attention based on simple features in the scene, e.g.
assuming that interesting areas are where intensity varies
rapidly. Top-down saliency takes into account the context
or the intentions of the observer. Goferman et al. de-
scribes in [5] a system that finds top-down, or context based,
saliency without specific a priory knowledge of the user’s
intentions.

3e.g. www.mesa-imaging.ch/
4www.ptgrey.com/products/bbxb3/bumblebeeXB3 stereo camera.asp
5www.xbox.com/kinect
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In our work, we use a context based saliency approach
that is dependent on knowledge of the user’s intentions.
E.g. for moving obstacle avoidance, motion detection is
essential, while for grasping objects on a table, surface nor-
mals might be a feature of interest. The attention algorithms
combine computer vision features relevant for the task and
can easily be exchanged in the system. In this paper we will
present and use motion detection as an example of attention
mechanism.

1.1.4 Algorithms for motion detection

Background subtraction methods for 2D intensity images
usually define background as the parts of a scene that are at
rest, often by assuming a stationary camera. Moving objects
can then be detected by filtering out pixels that deviate sig-
nificantly from some model averaged over time. The most
popular method is by Stauffer et al. [19], which models the
background as a weighted moving average.

To compensate for camera motion, several approaches
have been suggested. Some papers do proactive motion
compensation, bootstrapping the background modeling in
areas where motion is due to the camera motion. Examples
of such research is [7] that expands a static camera motion
detection model with an additional classifier step. Feature
based homography calculations between successive frames
has been studied extensively [8],[17],[24]. A final class of
motion detection algorithms are focused on clustering point
trajectories into areas of coherent motion, for example dis-
cussed in [21], as well as a recent paper [18].

For range images, work has been done for static cameras
using Mixture-of-Gaussians [6], optical flow [14] or range
histogram segmentation [15] for motion detection. Opris-
escu [14] concludes that range images are too noisy for op-
tical flow estimation, and we think that range histograms are
not sufficiently specific to provide robust tracking. Hence,
we have chosen to focus our work on the use of Gaussian
background models.

1.2. Paper organization

In the remaining of this paper we will present the
foveation concept behind the TACO sensor in Section 2
and the real-time constraints related to control of such a
sensor in Section 3. Section 4 explains a motion detec-
tion algorithm used as attention mechanism for foveation,
and in Section 5 we present quantifiable metrics for region-
of-interest detection and enhanced sensor frame rate. The
TACO sensor’s benefits due to foveation are demonstrated,
and benchmarks that state the real-time performance of the
foveation software are reported in Section 6. In Section 7
we discuss the results and conclude the paper.

2. Foveating 3D sensor concept

The operation of the foveating 3D sensor is built on three
key technologies: Controllable micro-mirrors, 3D time-of-
flight hardware and 3D foveation. The controllable micro-
mirrors and time-of-flight hardware enable the scene to be
sampled with varying spatial and temporal resolution. The
foveation algorithms employed enable the control of spatial
and temporal resolution to happen in an intuitive fashion. In
combination, this sensor concept can provide significantly
better data than existing sensors, partly because of the mea-
surement principle in itself, and also due to the foveation
capability.

2.1. Micro-mirrors and 3D time-of-flight hardware

The TACO hardware is an adaptive 3D sensor based
on a laser scanning technique that uses lightweight, ro-
bust micro-mechanical scanning elements for flexible two-
dimensional beam-steering of fast single point time-of-
flight distance measurements. Figure 2 outlines the hard-
ware of the TACO sensor.

The pulsed laser beam and time-of-flight hardware will
be capable of measuring up to one million 3D points per
second. To build up images from these single measure-
ments, the laser beam must be swept across the scene. This
is accomplished by using controllable micro-mirrors that al-
low for very precise and rapid control of the beam direction.

Current laser scanners use large mirrors that move in
fixed patterns (i.e. constant oscillation or rotation). This
means that an extraordinary amount of power is required to
enable rapid shifts of scanning patterns, effectively prohibit-
ing them from such an approach. The use of novel quasi-
static MEMS scanning mirrors [12] enables the system to
provide foveation — i.e. rapidly controlling the beam direc-
tion and thus adjusting the spatial and temporal resolution
of the acquired data.

2.2. 3D foveation

3D foveation enables the sensor to go beyond simply
providing data with high spatial or temporal resolution —
it allows the sensor to adjust the resolution according to the
scene at hand.

In principle, the use of controllable micro-mirrors would
allow arbitrary scanning patterns to be pursued. However,
any arbitrary scanning pattern could not realistically be re-
constructed into data resembling 3D range images. Repre-
senting 3D data as range images, ease later analysis of the
data e.g. on the robot. We have thus chosen to constrain
the scanning patterns to be raster scans. More precisely,
we scan the scene horizontally with a constant frequency
sinusoidal motion, and use foveation to adjust the vertical
sampling density. The raster scans make it easy to recon-
struct the acquired data into images. Furthermore, a wider
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Figure 2. Hardware concept of the 3D sensor. The emitted mod-
ulated (1) laser beam (2) is scanned by a master mirror (3) on the
target. The light scattered on the measured surface (4) is collected
by a segmented receiving mirror (5) (driven synchronized to the
master mirror), reaches the single element detector (7) via collect-
ing optics (6). The distance to the target point follows from the
traveling time of received (8) with respect to the emitted signal
(1). [16]

field-of-view can be provided by limiting the mirror to one-
dimensional foveation only.

We have chosen a foveation regime as outlined in Fig-
ure 3. In this regime, every second frame is acquired as
a normal range image with uniform sampling. This range
image is analyzed using attention algorithms to estimate
regions-of-interest. Regions-of-interest are represented in
a saliency map, which is a two-dimensional map that in-
dicates the relative importance of each region in the range
image. Based on the saliency map, the alternating second
frame is ”zoomed”, i.e. acquired with increased spatial res-
olution and highlighting the most salient parts of the range
image. The number of data points is equal for both frames
to maintain frame rate, and the full field-of-view is kept.

3. Real-time sensor control

The foveation regime for sensor control poses clear real-
time constraints on the foveation system. This is best ex-
plained by Figure 3 where the sensor, foveation system and
robot threads from Figure 1 are represented in a Gantt dia-
gram for time consumption. To allow the sensor to run at
e.g. 25 frames per second, no more than 80 ms may pass
from an uniform image is acquired until control informa-
tion for the corresponding zoomed image is returned to the
sensor and processed.

3.1. Benchmarks for real-time operation

Due to its modular architecture, the attention algorithms
are easily replaceable in the foveation software. We have

reserved a fixed amount of time for attention computa-
tions, such that each attention algorithm can be individu-
ally benchmarked and either accepted or rejected for use
in a real-time system. For a 25 Hz frame rate we have re-
served 50 ms for attention algorithms, as shown Figure 3.
This allows the remaining 30 ms to be used for various data
processing and sensor control computations.

In the current implementation of the foveation system we
employ solutions for multi-threading, queues and latency
hiding to enable the complete system to run in real-time.
We have benchmarked time-critical parts of the system to
ensure its real-time performance. The measurement points
for the time benchmarks are indicated in Figure 3.

4. Attention algorithm for motion detection
Motion is a strong hint for attention and foveation. The

motion segmentation algorithm applied in this paper is
based on Stauffer’s [19] background model, which is popu-
lar in the field of visual surveillance. The algorithm builds
a per-pixel Gaussian model, which is updated according to
a per-pixel learning-rate. In this case, we use range data as
input to the algorithm.

The benefit of modeling range images is that pixel
changes relate directly to motion in the scene, both due to
camera and object movement. By modeling the expected
range in each pixel (termed the background), objects mov-
ing in the scene can be detected at pixel level as a deviance
from this background model.

The original algorithm by Stauffer has a strong assump-
tion that the camera is static. We extend this background
model by using auxiliary data to separate camera motion
from object motion. Our algorithm applies five main steps
to each newly acquired image: Initial motion detection, sep-
aration of camera and object motion, motion classification,
detection of overall scene motion, update of background
model, and saliency estimation.

Initial motion detection is done by detecting those pixels
in the new image that fail to fit the model of the background
in the range image. This is done by per-pixel differencing
of range measurements, and comparison with the underly-
ing statistical distribution. At each pixel we thus have an
approximation of perceived motion.

Separation of camera and object motion is done by com-
paring the motion estimates with auxiliary odometry data.
In the original algorithm, these pixels would be wrongly
classified as motion due to camera translation. We correct
for per-pixel detected camera motion by disregarding mo-
tion estimates being close to the speed suggested by the
odometry, and instantly relearn the background.

Detected motion is further classified into pixels being
closer or farther away than our background range model in-
dicates. With the exception of moving strong depth edges,
pixels closer than the background model can be expected to
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Figure 3. The sensor (green box) outputs alternating images of uniform resolution and images zoomed in on the detected regions-of-interest.
The foveation system (violet boxes) receives the uniform resolution frames (green arrows), calculates regions-of-interest using attention
mechanisms, and submits mirror control information back to the sensor (red arrows). At the same time, the foveation system provides
sensor data and attention information to the robot (yellow arrows). Zoomed frames are transmitted more or less directly to the robot (dark
blue arrows). The blue boxes constitute a Gantt diagram, indicating the time consumed by each thread. While analysis of ”Uniform 1” is
performed, the sensor acquires ”Zoom 1” and ”Uniform 2”. A sensor control plan for acquisition of ”Zoom 2” based on ”Uniform 1” must
be computed before the sensor has finished acquiring ”Uniform 2”. At 25 Hz frame rate, the sensor needs 40 ms to produce one frame, thus
maximum 80 ms may pass from an uniform image is acquired until control information for the corresponding zoomed image is returned
to the sensor. Benchmarks for real-time operation are measured between dots of equal color. Green: Conversion time from raw sensor
data to images. Red: Cycle time between submission of two mirror plans (uniform and zoomed). Yellow: Transfer time for range data and
attention information to the robot. Black: Maximum time for attention computations.

be foreground objects. Pixels farther away than our back-
ground model suggest actual change in background. The
latter is a strong cue for rapid relearning of the background,
whereas the former indicates that background relearning
should be halted.

Our motion filtering approaches are approximations, and
inevitably lead to misclassifications resulting in fairly large
contiguous regions of background that is misclassified as
moving objects. This is mainly due to uncovering of new
scene regions, and due to effects that can not be handled on
a per-pixel level, e.g. rapid rotation. We remove these arti-
facts by filtering connected components by size and shape.
These pixels are marked for fast relearning of the back-
ground model.

The saliency map is calculated by comparing the newly
acquired range measurements with the now updated back-
ground model, thus calculating pixel-wise confidence that
the observed range pixels are part of a moving object.

4.1. Conversion of saliency map to mirror plan

The saliency map resulting from the range model needs
to be converted into a mirror plan controlling the sen-
sor hardware to sample the detected moving object more
densely.

We do this using a winner-takes-all approach, where

we locate the single vertical field-of-view which contains
the highest saliency values. This localization is done row-
wise by first estimating the maximum saliency per row.
This per-row saliency estimate is subsequently filtered and
thresholded, and the vertical connected region containing
the highest total saliency is chosen as the winning region-
of-interest. The available sampling lines are then distributed
over this vertical area.

5. Experiments
As the actual sensor hardware is work in progress, we

benchmark the foveation concept on data acquired by a con-
ventional 3D laser scanner. The captured scenes are from
realistic robot environments, and performance indicators
are compared to ground truths defined manually for each
scene. Our results are based on five time sequences. The
scenes show moving objects, and the 3D laser scanner is
either static or moving, as summarized in Table 1.

5.1. Data acquisition

A laser scanner is what best resembles the TACO sen-
sor hardware performance. We used a SICK LMS100-
10000 to acquire data sets for system tests and benchmark-
ing. The laser scanner was mounted on a servo, tilting
the line scanning laser time-of-flight unit to build up a 2D
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Seq. Scene description Cam. motion
0 Robot moving from left to right. Static
1 Robot moving towards the 3D sensor. Static
2 Robot moving from left to right. Moving
3 Robot moving towards the 3D sensor. Moving
4 Manipulator moving in the scene. Static

Table 1. Description of data sequences used for foveation perfor-
mance benchmarking.

raster of 3D measurement points. The data acquisition took
roughly 30 seconds per image, so stop-motion animation
techniques were used to acquire data of moving objects.

Expected field-of-view for the TACO sen-
sor, and hence of the captured test data was
90◦×62.5◦(horizontal×vertical). The optical resolu-
tion for the TACO sensor (0.082◦) is targeted to be three
times better than for the SICK sensor, and as a result, the
acquired test data sets had three times lower spatial density
than the TACO data is expected to have.

5.2. Foveation performance indicators

We demonstrate the benefits of foveation through quan-
tifiable metrics for region-of-interest detection capabilities
of the foveation system, and the successive enhanced effec-
tive sensor frame rate.

The attention algorithms’ capability to detect regions-of-
interest is quantified by comparing the saliency map pro-
duced by the attention algorithm to a manual ground truth
for the recorded sequences. The ground truth is created by
indicating the moving object’s position using a binary mask
per sequence frame (1=moving object, 0=background). To
provide quantification, we estimate the average saliency
values on the inside and the outside of the region-of-interest
defined by the ground truth. For the ideal attention algo-
rithm, this will give a number close to one for the saliency
estimate on the inside and close to zero on the outside.

In our foveation regime, the benefit of foveation is to pro-
vide high spatial resolution in detected regions-of-interest,
while maintaining the overall frame rate. A non-foveating
system that uses the same underlying hardware would by
comparison have to provide the same high spatial resolution
in the whole scene, and due to the constant sampling rate,
this would result in a net lower frame rate for the system.
We therefore quantify foveation as the increase in sensor
frame rate compared to a non-foveating system.

The chosen foveation regime keeps a constant number
of data points per range image. Therefore, the maximum
achievable frame rate increase is limited by the field-of-
view covered by the object-of-interest. As a result, the
foveated system becomes equal to a non-foveated system if
the object covers the full field-of-view. We report on the av-
erage frame rate increase enabled by the foveation system
both in absolute numbers compared to the sensor without

Seq. Obj.sal Bckgr.sal Fr.r.incr Max %w %wo
0 .6 (.2) .03 (.02) 8.2 (0.5) 9.2 89 91
1 .5 (.2) .04 (.02) 6.4 (2.3) 6.4 99 98
2 .3 (.2) .05 (.02) 2.7 (1.3) 5.4 50 36
3 .6 (.2) .04 (.02) 2.0 (2.2) 6.7 30 16
4 .5 (.3) .04 (.02) 5.3 (4.2) 5.4 97 17

Table 2. Table indicating the attention algorithms’ capability to de-
tect regions-of-interest, quantified as average saliency (range 0-1)
for object (col. 2) and background (col. 3). The sensor system’s
foveation ability is quantified as the increase in frame rate com-
pared to a non-foveating sensor (col. 4). The numbers are the
average (standard deviation in brackets) over the time series. Max-
imum achievable frame rate increase (col. 5) depends on the object
size in the scenes. Columns 6 and 7 show how well the foveation
system performs relative to the theoretically potential increase in
frame rate, with and without camera motion heuristics.

Figure 5. Maximum possible (red) and actually achieved (green)
frame rate increase due to foveation, for all the frames in Sequence
1, where an object moves towards a static 3D scanner. As the
object moves closer it covers a larger part of the full field-of-view.
This makes the foveated sensor work more as a regular 3D sensor,
and it samples a gradually larger field-of-view with higher density.
From frame no. 84 the object starts to move out of the scene, i.e.
it covers a smaller part of the full field-of-view.

foveation, and relative to the maximum achievable frame
rate increase. To quantify the effect of the heuristics in-
corporated in the motion detection algorithm, we report the
foveation performance both with and without heuristics.

6. Results

In this section we present examples that demonstrate
how the foveation software controls where in the scene the
sensor hardware captures data. We show the foveation sys-
tem’s capability to detect moving objects and account for
camera motion, and how much the sensor frame rate in-
crease by using foveation. We also summarize the time
benchmarks for real-time performance of the implemented
foveation system for sensor control.

6.1. Foveation performance

As an example of the foveation software’s effect on the
sensor hardware, a time series for the foveation process of
one frame in Sequence 1 is shown in Figure 4. In the se-
quence, an object localized in the center moves towards
the camera. The moving object is detected as a region-of-
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Figure 4. Time series showing how the foveation software uses saliency analysis of a uniform image from the scene to capture an image
zoomed in at the region-of-interest. A sinusoidal mirror plan (1) is used to capture the uniform intensity (2) and range images (intensity
image is shown to ease visual scene interpretation). The motion detection algorithm is applied on the captured data, resulting in a saliency
map (3) where salient regions are close to 1 and non-salient regions close to 0. For illustration purposes, the saliency map is overlaid
with the ground truth (green) for the object detection algorithm and the vertical sampling density function (yellow) in 1D, computed based
on the saliency. A mirror plan for zoomed data acquisition (4) is computed from the sampling density function. This results in zoomed
intensity (5) and range images, where the region-of-interest appears magnified due to the increased spatial sampling density.

interest and the spatial line sampling density is increased,
making the object appear magnified in the zoomed image.

The attention algorithms’ capability to detect regions-of-
interest based on motion detection is reported in Table 2.
The average saliency values on the moving objects are 0.3-
0.6 for all sequences, and approximately ten times lower for
the background. This indicates that the algorithm detects
and tracks moving objects well in all the sequences.

The foveation system’s effect on the sensor performance
is also presented in Table 2. The upper bound for these num-
bers is related to the object’s size relative to the full field-
of-view and the available number of lines used to sample
the scene. With our foveation scheme a small object has a
potential to increase the frame rate more than a larger ob-
ject. This is illustrated in Figure 5, where the field-of-view
covered by the object changes over time in Sequence 1. The
average achievable frame rate increase for each of the data
sequences is reported in Table 2.

The results show that foveation makes it possible to in-
crease the frame rate by 2.0-8.2 in the sequences, compared
to an equal system without foveation. For a static camera
we achieve 89-99% of the potential frame rate increase,
whereas for a moving camera we achieve 30-50% of the
potential when using camera motion heuristics.

For a moving camera, use of heuristics doubles the
foveation achieved. Use of heuristics also improves the per-
formance for the static camera in Sequence 4 significantly.

6.2. Real-time performance

The time benchmarks for the foveation system shown in
Figure 3 are in Table 3 summarized and compared to the
time constraints posed by the sensor concept. The measured
time consumptions are within limits for real-time operation
of the sensor, hence the implemented foveation system is
shown to be applicable to control the sensor hardware.

During the benchmark experiments, the foveation soft-

Time-critical operation Constraint Benchmark
Data receiver 40 12
Sensor control 80 75
Attention computation 50 21-26*
Network interface 40 31

Table 3. Table indicating the time constraints posed on the
foveation system, and the results from benchmarking the current
implementation for a frame rate of 25 Hz. All times in millisec-
onds. Measured time consumptions are within limits for real-time
operation, hence the implemented foveation system is shown to be
applicable to steer the sensor hardware. *Average time consump-
tion varies for the sequences.

ware was run on a 2.0 GHz Intel Core i7-920XM Quad
Core Extreme CPU with 8 GB RAM. To simulate the sensor
hardware we used a sensor simulator running on an exter-
nal computer that provided the test data. A client was set up
on a third computer, simulating the robot for data reception.
Communication was done using TCP/IP over Gigabit Ether-
net, as targeted for the final foveation system. The reported
times for the Data receiver, Sensor control and Network in-
terface are averaged over 500 frames, while the reported
times for Attention computation are averaged over the com-
plete time sequences with 60-90 frames.

7. Discussion and conclusions
There is a need in advanced robotics for a flexible 3D

image sensor that can be used in a wide range of robotic
challenges, e.g. navigation and grasping. The intelligent
foveation properties of the TACO sensor under develop-
ment allow a robot to obtain 3D images with high temporal
and spatial resolution in regions-of-interest. The regions-
of-interest are directly determined by the internal attention
algorithms of the sensor, thereby also reducing the compu-
tational cost for the system using the TACO 3D sensor.

The foveation software presented and demonstrated in
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this paper is essential to make the most out of the hardware.
Our experiments indicate that for static camera scenarios,
our background model based algorithm detects moving ob-
jects well. Furthermore, experiments show that employing
the algorithm in the foveation software provides up to 8.2
times increased frame rate, compared to a non-foveating
sensor with equal spatial resolution. Three different scenes
with moving objects and a static 3D sensor give 89-99% of
the potential frame rate increase when using foveation.

For moving camera scenarios, the frame rate can be in-
creased up to 2.7 times, and 30-50% of the potential frame
rate increase is achieved. This reduced performance for a
moving camera is partly due to worse saliency estimates
at depth edges when the camera is moving. However, the
heuristics for camera motion applied in the algorithms dou-
bles the foveation performance compared to not using any
heuristics. The use of heuristics improves the performance
for the last static camera sequence significantly. This is be-
cause the heuristics seem to filter out noise due to vibrations
in the camera.

The hardware is still under construction. However, we
have shown that the implemented real-time foveation soft-
ware has the capability to provide 3D data at a signifi-
cantly higher spatial resolution within regions-of-interest,
than possible with existing, non-foveating sensor principles.
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