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ABSTRACT: This paper presents a novel concept for calculation of optimal maintenance strategies for 
equipments that degrade over time. The concept is based on a dynamic mathematical model that is used in a 
look-ahead strategy to assess the effect of different future operational strategies. The optimum is given with 
respect to minimum costs for maintenance and the costs for not performing maintenance. The main idea is to 
illustrate that given these costs; the optimal strategy might be to wait a certain time before maintenance is per-
formed. By this, considerable costs might be saved compared to performing the maintenance immediately or 
wait too long time before the maintenance is performed. In practice, rough estimates are often satisfactory for 
such decisions. Hence, the accuracy of the model behind the calculations might not be critical. The methodol-
ogy is illustrated for a case of internal leakage in anti-surge valves for compressor control. 

1 INTRODUCTION  

Most off-shore process plants perform periodic 
scheduling of maintenance, also called preventive 
maintenance. E.g. valves are taken out for service 
even if no signs of fault are detected. In one case, 
during a maintenance shutdown about 600 valves 
were received for periodic maintenance. Out of 
these, only about 30% of them needed repair. For the 
remaining 420 valves it was not necessary to take 
them out of the plant for maintenance. The schedules 
are deliberately conservative because unscheduled 
outages are expensive. Moreover, periodic schedul-
ing may not detect valves that will fail before their 
planned service date if signs of deterioration are not 
clearly visible in the maintenance. Consequently, in 
recent years, better maintenance practices of process 
valves have received considerable attention by the 
petroleum industry.  

Various maintenance policies under different sce-
narios have been investigated in the literature. The 
main objective of these policies is to determine 
when and how to perform maintenance actions to 
improve the performance of the system. Extensive 
reviews of such research were made by Valdez-
Flores & Feldman (1989), Lam & Yeh (1994) and 
Dekker (1996). Moustafa et al. (2004) described a 
maintenance model for a multi-state semi-
Markovian deteriorating system. Their model allows 
one of three maintenance decisions; do-nothing, 
minimal maintenance and replacement to be taken at 
each state of the system. Often, the Weibull distribu-

tion for the failure rate of the system is used, see e.g. 
Banjevic et al. (2001). Wu & Clements-Croome 
(2005) developed maintenance policies for situations 
including time varying costs of failures, where the 
maintenance time influences the costs. Dynamic 
simulation models were discussed by van Houten et 
al. (1998) and applied by Hesham (2002) for a de-
tergent-packing line. 

Condition monitoring and maintenance based on 
justifiable priority-of-need in terms of cost-benefit 
calculations is expected to be cost effective. This is 
known as condition based maintenance. When pre-
diction models are involved, this is known as predic-
tive maintenance. Moubray (1997) includes this con-
cept in what is known as reliability-centred 
maintenance (RCM).  

In the present paper, the concept from predictive 
control is used in order to develop a novel concept 
for predictive maintenance. Predictive control is a 
scheme for real-time optimization of control actions 
(see e.g. Maciejowski (2002)). Adapted to mainte-
nance, predictive maintenance control (PMC) is a 
scheme for real-time optimization of maintenance 
actions. The idea is that optimization is performed 
on a prediction horizon and re-optimized with a re-
ceding (i.e. moving) horizon as soon as new infor-
mation is available. PMC means: 

 
1. Provide an estimate of the current state of 

the equipment to be maintained. The state 
is described by a process condition and/or 
a technical condition of the equipment. An 



estimate of the current state is computed 
using real-time data, historical data, 
and/or a mathematical model of the sys-
tem.  

1. When maintenance is finished, the equip-
ment is returned in a state without degra-
dation. This is a good assumption as long 
as the maintenance procedure is made 
properly.  2. Use a dynamic mathematical model in a 

look-ahead strategy to assess the effect of 
different future maintenance strategies.  

2. When maintenance is finished, the equip-
ment immediately continuous to degrade. 
This will happen when the equipment is 
re-installed in the same environment as 
before the maintenance was made. How-
ever, the degradation rate does not neces-
sarily have to be same as before. 

3. Select the optimal maintenance action 
based on an optimization criterion. 

4. Re-run the decision process, with a reced-
ing horizon, when new information is 
available, i.e. do not wait until the end of 
the prediction horizon. 3. Maintenance is performed only once 

within the prediction horizon. This as-
sumption is fulfilled when the re-run of 
the decision process is made immediately 
after maintenance is finished. 

 
In this paper, focus is made on formulation of the 

model and optimization criterion required in the 
PMC scheme 1-4 above. The idea is that optimal 
maintenance strategies are given with respect to the 
minimum total costs for operating equipments. The 
concept is in principle applicable to any degrading 
equipment. In order to illustrate the concept, degra-
dation in terms of internal leakage in anti-surge 
valves for compressor control is examined. The 
work has been financed by Statoil, Norsk Hydro, 
ConocoPhillips and BP. 

4. The direct maintenance cost rate and the 
lost income from production during the 
maintenance are considered as being fixed 
within the prediction horizon. This means 
that the prices for the product from the 
operation of the equipment, energy and 
spare parts etc. are fixed within this time 
period. 

The paper is organized as follows.  Section 
2 describes the concept for PMC.  Section 3 illus-
trates an application on a case with leakage in an 
anti-surge valve. An analysis of the sensitivity with 
respect to maintenance costs, leakage at the decision 
time instance and degradation rate is included. Sec-
tion 4 contains conclusions and a discussion about 
the application of the concept.  

 
These assumptions are made for the sake of sim-

plicity. The concept can be generalized to be applied 
without them. 

2.2 Optimal strategy decision in a prediction 
horizon 

First, optimization of the time instance for mainte-
nance within the prediction horizon P is considered. 
This horizon should be chosen at least as long as it 
takes to exceed the accept criterion for the perform-
ance of the equipment such that maintenance is nec-
essary. Otherwise, there is no need to plan any main-
tenance. In the case of a non-integrating degradation 
model, the horizon should also exceed the 1.order 
time constant for the model. The following optimi-
zation criterion (i.e. objective) is defined: 

2 THE CONCEPT FOR PREDICTIVE 
MAINTENANCE CONTROL 

2.1 System description and assumptions 
The concept of PMC is based on finding the optimal 
time instance for maintenance within a certain forth-
coming time period, the prediction horizon. This 
strategy is given with respect to the minimum total 
costs. Basically, there are two groups of costs for 
this problem: (1) costs of running with degradation, 
and (2) costs for maintenance. Running with degra-
dation means continuing the operation without per-
forming maintenance. This normally leads to more 
degradation with time. The relative values of these 
costs act as weighting factors for the optimization.  

(
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where Cl is the cost rate for running with degra-
dation, Cm is the cost rate for performing mainte-
nance, tc is the current time instance (i.e. when the 
decision for the maintenance strategy is made) and tThe maintenance decisions include two options; 

do-nothing and do maintenance. Input variables for 
the optimization also include constraints such as ac-
ceptable time instances for maintenance and accept 
criterions for the performance of the equipment. The 
prediction horizon and the sampling time for the re-
run of the decision process are other input parame-
ters for the optimization. 

p 
is the prediction time given by the prediction hori-
zon as t = tp c + P. The optimal time instance for 
maintenance to is found by minimizing this objec-
tive. 

The choice of maintenance action at time instance 
k can be regarded as a Boolean valued decision vari-
able, uk, i.e. with two optional feasible values 0 and 
1. The decision “do maintenance” is defined by The following assumptions are made: 



1k , and “do not maintenance” (i.e. running with 
degradation) by . This gives a mixed integer 
optimization problem. By parameterizing u

u =
0ku =

k, the 
maintenance strategy can be described by the vector: 

[ ... ... ]c i nU u u u=  (2) 

where c  is the maintenance action at the current 
time instance t

u
c, un is the maintenance action at the 

last acceptable time instance where maintenance can 
be performed within the prediction horizon tn, and ui 
is a maintenance action at an acceptable time in-
stance ti between tc and tn. Table 1 illustrates these 
three maintenance strategy options.  

 
Table 1. Three optional maintenance strategies with three ac-
ceptable time instances tc, ti and tn, given by the vector element 
number, for performing maintenance.  

Strategy U 
c [1 0 0] 
i [0 1 0] 
n [0 0 1] 

 
This means that e.g. ku  at the time instance k 

=  t
1=

u =

t

c and k  at the time instances k = t0 i and k =  
tn  for maintenance strategy c. Referring to assump-
tion 3 above, only one of the elements in the vector 
U is always 1, i.e.: 

1=∑
=

=

n

c

tk

tk
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When the operation is continued without mainte-
nance the degradation generally increases with time. 
This degradation is described by a prediction model 
Lp(t), which gives the predicted degradation at time 
t. By including assumption 1 above, the relation be-
tween choice of maintenance action and degradation 
is described by a discontinuous model: 
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  (4) 

For this optimization, it is only necessary to con-
sider the costs relative to the case of no degradation. 
The cost rate for running with degradation, Cl, is the 
sum of the rate of lost income from lost production 
and the rate of lost (i.e. unnecessary) energy cost. 
These are time dependent functions of the prediction 
model Lp(t) for the degradation. 

The contributions from these costs to the objec-
tive J are given by: 

( ( )) ( ( ))
pk

c d

tt
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J C L t dt C L t d= +∫ ∫  (5) 

where tk is the start time instance for maintenance 
and td is the time instance when the equipment again 
starts to degrade, see Figure 1. According to as-

sumption 2 above, the time period between tk and td 
is equal to the time M needed for maintenance. 

C (L (t )) = Cl p c c is the cost rate given by the current 
degradation. C (L (t )) = 0l p d  is the cost rate at the start-
up after maintenance, c.f. Equation 4. When tk is the 
current time tc, the first term of Equation 5 is zero. 
This corresponds to strategy c in Table 1. Note that 
the costs in the time period after the maintenance is 
performed until tp are given by the costs of running 
with degradation starting from zero. This gives a 
benefit by increased income from production in this 
time period due to zero degradation at start-up after 
maintenance.   

The cost rate in the time period when performing 
maintenance, Cm, is the sum of the direct mainte-
nance cost rate and the lost income from production 
during the maintenance. According to assumption 4 
above, these costs are constant with the maintenance 
time M. Thus, the contributions from these costs to 
the objective function in Equation 1 are given by: 

m mJ C M= ⋅   (6) 

The objective J is given by the sum of the areas 
below the cost rate lines as illustrated in Figure 1:  
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In Figure 1, the 0-line denotes the case of no deg-
radation. The width of the rectangular area is equal 
to the maintenance time M and the height is the 
maintenance cost Cm. In the figure, it is assumed a 
linear integrating prediction model for the degrada-
tion as illustrated in Figure 2, and a linear relation-
ship between the degradation and the costs. These 
assumptions are made only for illustration. Note, 
however, that the optimization problem is not linear 
in this case due to the integer constraint in Equation 
3 and the discontinuous function in Equation 4.  

 
 

 
td 

Cost rate 

Cc

tp tk tc 
time 0 

Figure 1. The costs for the strategy i in Table 1.  
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Figure 2. A linear prediction model Lp(t) for the degradation. 
AC is the accept criterion.  

2.3 Periodic strategy decision by receding horizon 
optimization 

In the description above, the optimization is made 
within one time period P. In practice, this procedure 
has to be repeated periodically in order to take into 
account continuous process changes, like sudden se-
vere changes in degradation and measurement noise. 
Thus, the prediction horizon is periodically moved 
and the optimal maintenance strategy is thereby up-
dated, i.e. possibly altered. This is called receding 
horizon optimization and is an established method-
ology in control engineering, often denoted as model 
predictive control. The procedure is illustrated in 
Figure 3. The sampling of valve leakage and calcula-
tion of a new maintenance action are made periodi-
cally at a certain decision interval. 
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Figure 3. Receding horizon strategy decision of maintenance 
with respect to valve leakage.  

2.4 Solution issues and constraint handling 
Due to the integer constraint in Equation 3, the op-
timization problem is characterized as a so-called 
mixed integer dynamic optimization problem.  Re-
cent numerical optimization methods are used for 
such advanced applications (see e.g. Bansal et al. 
(2003)). Such methods are necessary in applications 
where there is not enough time available to calculate 
the whole range for the solution and finding the op-
timal solution by simply selecting the optimal value 
in this range. 

As will be illustrated in the next section, a key 
question is what the most important constraints are. 
Are they the time instances for maintenance action, 

ti, the accept criterion for degradation, AC, or are 
there no constraints? As illustrated, the answer in-
fluences considerably the optimal strategy and the 
resulting minimum costs.  

Another question is whether the constraints are 
so-called hard or soft. Hard constraints are normally 
associated with the optimization decision variables, 
uk. Equation 3, i.e. the sum of the decision variables 
is 1, and the fact that there are only the two feasible 
values 0 and 1 describe the hard constraints for this 
problem. A hard constraint related with the opti-
mized variable is 100% degradation. This constraint 
is of course of little practical concern. 

The degradation might, however, be subjected to 
soft constraints associated with the accept criterion 
when minimum costs are more important than the 
accept criterion. A soft constraint in this case means 
that the accept criterion might be exceeded in cases 
where this criterion can be relaxed in order to reduce 
the total maintenance costs if possible. This means 
that when L (t) > AC, then up k = 0 for a limited period 
of time. In practice, it might be valuable to have a 
lower soft constraint for warning and an upper hard 
constraint for alarm calls.  

3 CASE STUDY OF A SINGLE STAGE 
COMPRESSOR LINE 

Anti-surge valves are used extensively in the petro-
leum industries for compressor protection. One of 
the main faults with these valves in offshore opera-
tions in the North Sea is internal leakage. Mechani-
cal wear and erosion from sand and other solid parti-
cles in the flow medium is the main cause to such 
leakage. One consequence of increased leakage, 
when the anti-surge valve shall be closed, is signifi-
cantly reduced gas production and profit. Another 
consequence of increased leakage in this case is in-
creased energy consumption from the unnecessary 
circulation and cooling of the leakage gas. 

Simulations have been made based on a model of 
a typical single-stage compressor line in off-shore 
operation, see Figure 4. These are documented in an 
internal report. 
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Figure 4. A single-stage compressor line. 
 



First, optimal maintenance for nominal conditions 
are analyzed. Then, sensitivity of the optimal solu-
tion is examined with respect to three important 
conditions; (i) the relation between the maintenance 
costs, Cm, and the total costs, J, (ii) the current (ini-
tial) leakage, Lp(tc), and (iii) the degradation rate, i.e. 
characteristic of the prediction model. For simplic-
ity, the slope of a linear model, i.e. the leakage coef-
ficient kL, is examined.  

3.1 Nominal conditions 
The cost of lost production corresponding to a lost 
income in NOK/h is given by:  

10 lp g S S
lp

S

k L c R T Z
C

MW p
⋅ ⋅ ⋅ ⋅ ⋅ ⋅

=
⋅

 (9) 

where 10 is a conversion factor, klp is the mean 
gradient in the loss of produced mass flow with re-
spect to leakage 6.3 ton gas / h / % leakage, L is the 
degradation [%], cg is the gas price 1.0 NOK / Sm3, 
R is the molar gas constant 8.314 J / (mol K), MW is 
the molar weight of the gas 17.6 g/mol, and ZS, TS 
and pS are the compressibility [-], temperature [K] 
and pressure [bar a] defined as 1.0, 288.66 K and 
1.01 bar a at standard gas conditions.  

The cost of lost energy corresponding to a lost in-
come in NOK / h is given by:  

le le e eC k L c k= ⋅ ⋅ ⋅  (10) 

where kle is the mean compressor speed gradient 
with respect to the leakage 0.42 % rpm / % leakage, 
ce is the energy price 1.0 NOK / kWh and ke = 1.0 
kW / % rpm is the coefficient for linear energy de-
pendency with the compressor speed.  

At current time tc, the leakage is Lp(tc). Then, the 
leakage increases linearly by: 

( ) ( ) ( )P P c L cL t L t k t t= + ⋅ −  (11) 

where the coefficient kL = 1 % / d and the current 
leakage Lp(tc) = 2 %. The associated direct costs 
with maintenance and the lost income from produc-
tion during the maintenance are 10 NOK / h, i.e. 
relatively small compared to the other costs. The 
discretization time for the simulations is 1 day, the 
maintenance period M is one day and the prediction 
horizon P is 30 days.  

The maintenance actions are restricted to be per-
formed at the first, 10th or 22nd day. This means that 
the time instances for maintenance action, tk, is a 
constraint for the optimization. 

Figure 5 shows the total costs J and leakage L as 
functions of time and maintenance strategy U. Solid, 
dashed and dashed-dotted lines correspond respec-
tively to the three strategies in Table 1. The dotted 
lines denote the case of no maintenance and the 0-
lines denote the case of no leakage. The figure 
shows that the optimal maintenance strategy is to 

perform maintenance at the 9th day (dashed line). 
Note that the optimal strategy is neither at current 
time (solid line), nor at the last acceptable time in-
stance (dashed-dotted line) within the prediction ho-
rizon. 

 

 
Figure 5. Total costs J and leakage L as functions of time and 
maintenance strategy U.  

 
Figure 6 shows the total final costs J and leakage 

L at the end of the prediction horizon as functions of 
time for maintenance action. It appears that the op-
timal maintenance strategy is to perform mainte-
nance at the 14th day when there are no constraints 
for the optimization. This is the unconstrained opti-
mum (i.e. in the meaning optimum located between, 
and not at, the end points in the optimization region) 
for the costs. Since there is zero leakage immedi-
ately after maintenance, the final leakage at the end 
of the prediction horizon decreases with the time for 
the maintenance action. This means that the uncon-
strained optimal accept criterion for leakage, ACo, is 
the leakage at the end of the time period before the 
optimal maintenance action is performed. The 
dashed lines in Figure 6 show the unconstrained op-
timum: 
(to, Jo, AC ) = (14th day, 2.2 mill NOK, 16%) o

The optimum is unconstrained because (i) if there 
is no current leakage, it is not worth performing 
maintenance at current time, and (ii) the later the 
maintenance is performed, the higher are the total 
costs. 

Note that when any of the optimization con-
straints tk or AC is active, the optimum costs are 
equal or higher than in the unconstrained optimum. 
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Figure 6. Total final costs J and leakage L at the end of the 
prediction horizon as functions of time for maintenance action.  

3.2 Sensitivity analysis 

3.2.1 Sensitivity to the relation between the mainte-
nance costs and the total costs  

Figure 7 shows the total final costs J at the end of 
the prediction horizon as function of time instance 
for maintenance and the maximum cost saving in the 
prediction horizon Jmax – Jmin as function of the 
maintenance costs for Cm = 0 (solid line), 10 (dashed 
line) and 100 kNOK / h (dashed-dotted line). The 
maximum cost saving is the cost saving by choosing 
the optimum time instance for maintenance instead 
of the most unfavourable time instance, which is at 
the end of the prediction horizon. It appears that as 
long as they are constant with time, the maintenance 
costs do not influence the optimal time instance for 
maintenance or the maximum cost saving. 

3.2.2 Sensitivity to the initial leakage and the deg-
radation rate 

Figure 8 shows the total final costs J at the end of 
the prediction horizon as function of time instance 
for maintenance for different values of the current 
leakage Lp(tc) and the leakage coefficient kL. Lp(tc) = 
2 % in the lower figure, and kL = 1 % / d in the upper 
figure. Figure 9-11 show the optimal time instance 
for maintenance, to, the maximum cost saving in the 
prediction horizon Jmax – Jmin and the leakage at the 
optimum Lo as functions of Lp(tc) and kL. Lp(tc) and 
kL are shown for the ranges 0-100 % and 0-25 % / d 
respectively. 

It appears that to, Jmax – Jmin and Lo are considera-
bly influenced by Lp(tc) and kL, and they are strongly 
nonlinear in these factors. This means that the sensi-
tivities of these variables are strongly dependent of 
these factors.  

At Lp(tc) = 2 % and kL = 1 % / d, to is located at 
the 14th day, c.f. Figure 6. Increasing Lp(tc) at the 
same kL moves to closer to the current time instance 
until the optimum becomes constrained at current 

time, i.e. day 1. This means, not surprisingly, that 
the more leakage in the valve at current time, the 
sooner it is recommended to perform maintenance 
and the larger is the cost saving for performing the 
maintenance at the optimum compared to at the end 
of the prediction horizon. In other words, the eco-
nomic impact of knowing the optimal time instance 
for maintenance increases with Lp(t ) in this case.  c

Cm 

 
Figure 7. Total final costs J and the maximum cost saving as 
function of maintenance costs. 
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Figure 8. Total final costs J as function of current leakage and 
leakage rate. 

 
Figure 9. Optimal time instance for maintenance as function of 
current leakage and leakage rate. 

 



 
Figure 10. Maximum cost saving at the optimum as function of 
current leakage and leakage rate. 

 
Figure 11. Leakage at the optimum as function of current leak-
age and leakage rate.  

 
 
However, the leakage at the optima at the same kL 

is independent on Lp(tc) below a certain value of 
Lp(tc), which depends on kL (Figure 11). Figure 9 
shows that the triangular area given by (Lp(tc), kL) = 
(0, 0), (100 %, 0) and (100 %, 3 %) covers a range 
of Lp(tc) and kL where it is recommended to perform 
maintenance immediately.  

Interestingly, as opposed to the sensitivity to 
Lp(tc), for Lp(tc) = 2 %, to increases from tc, i.e. con-
strained at day 1, with kL in the range 0 to 1.5 % /d. 
For kL in the range 1.5 to 7.0 % /d, to is constant at 
the 15th day, while for larger values of kL, to de-
creases stepwise down to day 1 at very high values. 
This means that, within a certain lower range for kL 
(i.e. 0 to 1.5 % /d in this case), the faster the valve 
degrades with respect to leakage, the later it is rec-
ommended to perform maintenance. Further, above 
a certain value of kL (i.e. 7.0 % /d in this case), the 
faster the valve degrades with respect to leakage, the 
sooner it is recommended to perform maintenance. 
While the leakage at the optimum increases linearly 
with kL (below a certain value of Lp(tc), which de-
pends on k ), the maximum cost saving increases for 

kL in the range 0 to 5 % /d, and decreases for lager 
k  shows that the range of k. Figure 10L L, in which the 
cost saving is increasing with L (tp c), decreases with 
L (t ). p c

Not shown here, the surfaces in Figures 9 and 10 
flatten out for k  larger than 25 % / d such that tL o is 
day 1 at (L (t

L

p c), k ) = (0, 100 %). L

4 CONCLUSIONS 

The example with increasing valve leakage illus-
trates that by considering costs for maintenance and 
the costs for not performing maintenance, the opti-
mal strategy might be to wait a certain time before 
maintenance is performed. By this, considerable 
costs might be saved compared to performing the 
maintenance immediately or wait too long time be-
fore the maintenance is performed. When time in-
stance for maintenance or accept criterion for degra-
dation constraints the optimal solution, the optimum 
costs are equal or higher than at the unconstrained 
optimum. 

The calculations also show that as long as main-
tenance costs are constant with time, they do not in-
fluence the optimal time instance for maintenance. 
Further, the larger degradation at current time, the 
sooner it is recommended to perform the mainte-
nance. Interestingly, within a certain lower range for 
the degradation rate, the faster the equipment de-
grades, the later it is recommended to perform the 
maintenance. At higher degradation rates, however, 
the faster the equipment degrades, the sooner it is 
recommended to perform maintenance. This means 
that the economic impact of knowing the optimal 
time instance for maintenance is largest at a certain 
degradation rate depending on the current degrada-
tion. In the example, the latest optimal time instance 
for performing maintenance is in the middle of the 
prediction horizon. Hence, the prediction horizon is 
also an important parameter which must be chosen 
in accordance with the time scale in question. 

The simple illustrative example with valve leak-
age is meant to illustrate the concept. A more rele-
vant business case will include a set of costs that is 
considerably more complex than in this example. 
Some main contributions may include reduced in-
come from oil production, when this is a part of the 
processing plant, environmental costs with flaring 
off the reduced gas production, and high shut down 
costs outside regular stops. 

As a model based application, the precision of the 
proposed method is sensitive to the accuracy of the 
prediction model for degradation. For illustration in 
this study, a linear deterministic model is used, and 
the degradation continues immediately from zero at 
start-up after maintenance. The accuracy of the es-
timates of the initial degradation and the degradation 
rate should be determined by the worst case in the 



relevant range of these factors. Hence, methods for 
deriving appropriate models might be critical. In 
many applications, development of degradation 
models is a comprehensive research topic. Often, a 
statistical (typically the Weibull) distribution for the 
lifetime of equipments is used. A stochastic model 
might improve the accuracy of the model in cases 
where stochastic phenomena are relevant. Improved 
degradation models might be useful as model errors 
might lead to corrective maintenance actions when 
an excess of the accept criterion is not predicted by 
the model.  

In practice, however, maintenance decisions are 
often made conservative meaning that wide limits 
and rough estimates are applied. Hence, the sensitiv-
ity of the proposed method to the accuracy of the 
model may not be critical. In some cases when deg-
radation is detected, maintenance is made in any 
case at the next opportunity. In these cases the main-
tenance engineers find no need to calculate such de-
cisions with high accuracy. This practice is accept-
able as long as it is based on a reasonable cost-
benefit analysis similar to that described by the pro-
posed method.  

The method is, however, fairly generic. It may be 
valuable for other types of equipment than anti-surge 
valves, and it can be extended for a set of equip-
ments like multistage compressor lines as well as for 
multiple process sections, e.g. several separate com-
pressor lines. 
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