
Scalability of Decision Models for Dynamic Product Lines

Gunnar Brataas, Svein Hallsteinsen

SINTEF ICT
7465 Trondheim, Norway

Gunnar.Brataas@sintef.no
Svein.Hallsteinsen@sintef.no

Romain Rouvoy, Frank Eliassen
University of Oslo
0316 Oslo, Norway
Rouvoy@ifi.uio.no
Frank@ifi.uio.no

Abstract

Product lines need decision models that guide the
derivation of product variants satisfying specific
requirements. In dynamic product lines, whose
requirements vary during runtime, these decision
models are also required to support automatic product
reconfigurations in response to changing
requirements. However, because of the combinatorial
explosion of variants, such automatic decision making
suffers from poor performance with many variants. In
this paper, we introduce a mathematical formulation of
this scalability problem. Based on the formulation, we
discuss the limitations of existing approaches to
support variants scalability. These limitations are
addressed by our modular approach whose decision
model combines (1) the use of utility functions, and (2)
various optimisations of the search space. The analysis
is supported by experience with the QuA and MADAM
middleware, which apply this approach to supports
self-adaptation based on dynamic product lines.

1. Introduction

Variation points and decision models are central

concepts in software product lines. Variation points
encode the variability of the product line and make
possible the derivation of different variants from a
common code base. The decision model guides the
derivation of a variant that meets given requirements.
The derivation of a product variant can be seen as a
design effort within a constrained design space given
by the product line architecture. The decision model
encodes design knowledge relevant to this constrained
design space. Basically, the process has three main
steps: i) decide the requirements, ii) resolve the
variation points, and iii) build the variant from the
selected parts.

In classical applications of software product lines,
the derivation of product variants has typically been
done by engineers before delivery. Automation in the
form of tool support has been leveraged to cut cost and
calendar time, but one could always rely on human
beings to agree with the customer on the requirements
and to handle possible conflicts, ambiguities or lack of
completeness in the decision model and to sort out
build problems.

In our research we attempt to apply product lines to
support the development of self-adapting applications
for mobile use. Mobile settings are characterized by
dynamic variation in both user needs and resource
constraints and therefore need applications that are
capable of adapting to such changes at runtime. The
idea is to build self adapting applications as product
lines with explicit variability and to achieve self
adaptation by automating the product derivation
process.

Utilizing product lines in the way explained above
poses particular requirements both on the kind of
variation points that can be used and on the decision
model.

Firstly, the decision model must lend itself to
automatic resolution of variation points that represents
a good solution for a given set of requirements.
“Good” in this connection means respecting the
resource constraints and satisfying the user needs.

Secondly, we must be able to find a solution in
sufficiently short time that the operation of the
application is not disturbed in an unacceptable way.

Finally, on a mobile device we must be able to
handle the coordinated adaptation of a dynamically
varying set of applications competing about the
available computing and communication resources.
Although mobile devices are typically resource poor,
most of them are multitasking units that supports the
use of several applications concurrently and the user
will stop and start applications to suit the task at hand.

This means that the decision models must be
automatically combinable.

In this paper, we focus on the decision model and
the automation of the process of finding a resolution of
variation points that gives a variant that best fits a
given set of requirements. Ideally, we want the best
solution, but we may be willing to trade goodness for
speed to some extent. The contribution of this paper is
threefold:
• A precise description of the variant scalability

problem illustrated with realistic scenarios
• An set of heuristics for reducing the search space of

variants
• A modular decision model framework that

combines the above heuristics achieving a greater
reduction of the search space than each of them can
achieve alone

The contributions in this paper represent ongoing
research work, and we plan to do more extensive
validation later on.

The rest of the paper is organized as follows. In
Section 2, we present alternative approaches to
representing decision models for dynamic product
lines and discuss their merits. Then, in Section 3, we
examine the approach based on utility functions in
more detail focusing on the scalability issue. Section 4
reports experiences with a middleware platform for
dynamic product lines based on utility functions.
Section 5 describes some new propels and finally
Section 6 offers some conclusions and suggestions for
further work.

2. Alternative approaches

There are basically three main approaches which

have been proposed for the description of decision
models for self-adaptation: (i) situation-action
approaches where adaptation rules specify exactly
what to do in certain situations [1], (ii) goal-based
approaches where goals describe high-level objectives
that the self-adapting system should attempt to fulfill
[2], and (iii) utility functions-based approaches where
utility functions assign a utility value to each
application variant as a function of application
properties, context and goals [3][4].

We have chosen to apply utility functions in our
MADAM approach [5] for several reasons. Firstly, the
analysis of mobile scenarios shows that the selection of
the “best configuration” is complex as it requires
reasoning on dependencies between context elements,
adaptation forms and concurrent forms. Utility
functions enable us to express such dependencies.

Secondly, unlike situation-action approaches, the
actions needed to reconfigure to a new configuration
are not explicitly described, but derived at runtime by
the middleware. Thirdly, as will be discussed in more
detail in the next section, a decision model for a set of
applications competing for shared resources can be
built from the model fragments associated with the
components making up the applications at runtime.

The drawback however, is that the computational
complexity of finding a variant is exponential in the
number of variation points. In the following we
investigate possible approaches to handle this.

3. Scalability of utility based decision

models

3.1. The MADAM decision model

In MADAM [5], four types of variation points are
supported:
• Several variants of each software component.
• Configuration parameters for software components,

e.g. buffer size.
• Distribution or the deployment of software

components on different computers in a distributed
computing environment.

• Hardware variation points, e.g. (a) Alternative
processor clock frequencies, affecting response
times and power consumption. (b) Alternative
display colour schemes for different light
conditions. (c) Alternative communication
technologies (e.g., UMTS uses more power
compared to GSM, but will also offer more
bandwidth).

In addition, the middleware may choose to stop one
or more applications if this increases the combined
utility of the remaining applications.

Variation points are characterized by properties
which may vary between their variants. These
properties express functional and/or QoS properties of
the provided service. In addition, software variants
differ in terms of the computing and communication
resources they need in order to execute. Hardware
variants differ in terms of battery consumption.

The properties and the resource needs of an
application variant are computed from the properties
and resource needs of the component variants. The
properties and resource needs of component variants
are built by means of associated property predictor
functions.

More formally, the basic concepts in the MADAM
approach are represented in Figure 1.

Rm+1,1 Rm+2,1

ri,(n+1),m

 Pk

AiAiAiV(i+1),1

 Pk+1 Pk+2

User

fk fk+1
fk+2

AiVi,1

pi,1,(k+2) Ai+1Ai

ri,(n+2),m

Resources:

Variants:

Properties:

Utility:

Rm+1Rm,1

ri,n,m

p i
,1

,k

AiAiAiRm+3,1

r(i+1),1,(m+3)

Figure 1. Relation between basic concepts.

In Figure 1, there are I applications Ai…,Ai+I. Each

application Ai has N(i) variants Vi,1,…,Vi,N(i). Each
variant Vi,j requires ri,j,m resources of resource type m.
In total, there are M resource types σ1,…,σM For each
resource type σm there are Q(m) hardware variants.
Each hardware variant q of resource type σm has its
resource limitation Rm,q.

Examples of resource dimensions are processing
requirements in terms of average instructions per
second, disk and memory storage requirements, and
network bandwidth requirements. For each resource
type σm, the total resources consumed must be less than
or equal to the available resources Rm:

MmRxr m

I

i

iN

n
inmni K,1,

1

)(

1
,, =≤⎥

⎦

⎤
⎢
⎣

⎡∑∑
= =

In this equation Rm, is the total amount of available

resources of resource type σm for the selected hardware
variant. xi,n is a decision variable which is set to 1 if
this application variant n is used for application type i.
At most one variant should be selected for each
application type. However, we may not use any
application types for an application:

{ }⎥
⎦

⎤
⎢
⎣

⎡
∈⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
∀ ∑

=
=

1,0
)(

1
,1

iN

n
ni

I

i
x

Each of the application variants satisfies one or

more varying properties, but must in addition also
satisfy fixed properties. There are K varying properties
Pk, and each application variant Vi,n has the properties

pi,n,k. The user weights the importance of the varying
properties according to the preference function fk.

Based on the amount of varying properties and the
user preferences, a utility ui,n,k is calculated for each
property for each application variant. This utility is a
number between 0 and 1. The total utility for all
application variants selected shall be maximized:

∑ ∑ ∑
= = =

I

i

iN

n

K

k
kninii uxe

1

)(

1 1
,,,max

This sum is normalised based on the user

preferences for each application, ei,…, eI, where

1
1

=∑ =

I

i ie . This last equation should be optimised,

using the first two equations as constraints.
The weights on properties will in general differ

between applications, and the functional properties
will of course be different. If we take also this into
consideration, then the equations will become more
complex, but they will basically be similar.

3.2. Scalability

The algorithm for automating the selection of the

best combination of application and resource variants
works by going through all possibilities and selecting
the one with the highest utility which also respect the
resource constraints. If all variants could be combined
freely, the number of possibilities S will be:

[] ∏∏
==

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
−+=

M

m

I

i

mQiNS
11

)(11)(

The possibility to stop applications is accounted for

by adding one variant to the N(i) combinations of
components for each application. We have to run at
least one application, accounted for by “- 1”.

We also need to express the number of variants per
application based on the number of variants per
component C(z) for all the Z(i) components for
application I, to get an expression for N(i)
()(1 iZz ≤≤):

⎥
⎦

⎤
⎢
⎣

⎡
=∀ ∏=

)(

1
)()(

iZ

z

I

i
zCiN

Combining the last two formulas we see how S

grows exponentially with the total number of variation
points.

SatMotion
(120+7+1 =

128)

TwoWay
(6*1*4*5

=120)

OneWay
(7*1*1=7)

TwoWay UI
(1+1+4=6)

TwoWay
Math

Processor (4)

TwoWay
Controller

Recorder
(1+4=5)

Present
(1+3=4)Absent

OneWay UI
(1+1+4+1=7)

OneWay
Controller

Application
Type

Application
Implementation

Component
Type

Component
Implementation TwoWay UI TwoWay

Accurate UI OneWayUI OneWay
Accurate UI

HandsFree
Accurate UI

(1+3=4)

AND-graph

OR-graph

Legend

TextMode UI

Local
HandsFree

Accurate UI

Distributed
HF Accurate

UI (3)

Local
Recorder

Distributed
Recorder (3)

Offline
(1*1*1=1)

Back Player
UI

Back Player
Math

Processor

Back Player
ControllerRecorder

Component
Location

HandsFree
Accurate UI

(1+3=4)

Local
HandsFree

Accurate UI

Distributed
HF Accurate

UI (3)

TwoWay
Math

Processor (4)

Local Math
Processing

Distributed
Math Pro-
cessing (3)

Figure 2. Variants in SatMotion using architectural constraints.

These two formulas are the worst case. In practice,

there will typically be dependencies between variation
points constraining allowable combinations. Within an
application, the developer will introduce architectural
constraints, effectively limiting the feasible combi-
nations of component variants within one application,
because some variants of a component depend on
specific variants of other components. This effectively
reduces the potential permutation of component
variants. Also not all sets of application variants will
depend on all resource types. Nevertheless, we still
have an exponential growth of the number of
possibilities with the total number of variation points.

Although this is not a pleasant property of our
solution, it will only be a problem if the number of
possibilities to consider exceeds what can be processed
in the available time in typical cases. To get an idea
about the size, in the next section we analyse two
scenarios based on our experience with the MADAM
middleware [5].

3.3. Scenario 1: SatMotion

The SatMotion application is used to align satellite

antennas for satellite-based wireless communication.
It consists of a client part running on a handheld
device used by the installer during the alignment
procedure, and a server part running on a server
located at the installer company headquarters and
controlling some signal analysis equipment connected
to an antenna. The handheld sends a test signal through
the antenna being aligned. The test signal is picked up

by the antenna at the headquarters and analysed. The
analysis result is sent back to the handheld via a
separate internet connection. This application can be
used in three different modes, OneWay, TwoWay and
Offline, with different requirements regarding the
internet connection to the headquarter. Furthermore,
some components can be deployed either on the
handheld or on other computers to which the handheld
has network connections. For this scenario, let us
assume that the four alternatives are the installers own
laptop, a server at the customer site, in addition to an
even more powerful server.

Assuming SatMotion is the only application of
interest, and taking dependencies between variation
points into account, there are 128 alternatives to
consider as shown in the AND/OR graph in Figure 2.
In this graph, AND means that all elements below an
element in the tree have to be selected. In this case we
multiply the number of variants. With OR in the graph,
only one element needs to be chosen and we add the
number of variants in the tree.

Without architectural constraints we will have 1260
variants, as each component has the number of variants
as shown in Table 1. With architectural constraints we
are then able to reduce the number of variants from
1260 to 128.

The total adaptation time consists of three elements:
• Detection of context changes: depending on the

complexity of the context and on the filtering of
context changes.

• Reasoning about changes and making adaptation
decisions.

• Implementing the selected alternative — i.e., to
reconfigure. This time will depend on the number
of components necessary to change, with increasing
time for more component changes.

Of the above factors, only the middle one, the decision
algorithm, depends on the number of variants. Under
some conditions, the first and final may be considered
to be fixed.

An ideal response time for the complete adaptation
is less than 1 second. Less than 4 - 5 seconds is
acceptable, and more than 10 seconds is in general
unacceptable, but this depends on the utility increase.
If the system is currently not usable, the user may be
willing to wait for as long as one minute. On the other
hand, when he only gets a marginal improvement, even
3 seconds may be too much (under the assumption that
the user is not able to work simultaneously, in which
case the adaptation time does not matter that much).

Experience with the MADAM middleware indicates
that the capacity of the decision algorithm is in the
order of 1000 alternatives per second.

Considering also that handheld devices on the
market today do not have capacity to run much more
than one application of this size at the time it may
seem that we do not have a problem. However, the
capacity of handheld devices increases and in the
future more complex scenarios are likely.

Table 1 Component permutations in SatMotion.

Component Variants
UI 6+7+1=14
Controller 1+1+1=3
Math processing 4+0+1=5
Recorder 5+1+0=6
PRODUCT 14× 3×5×6 =1260

3.4. Scenario 2: Several applications

In this scenario the satellite installer in addition to

using SatMotion also uses an IP telephony application
and an email application to communicate with
headquarters about future assignments, and also listens
to music provided by a player on the device. Finally, a
virus checking program is running in the background.
If we assume that the additional applications have 10
variants each, we will in total get 129×11×11×11×11−1

 permutations of the application variants.
We may assume that the CPU has five different clock
frequencies and that we can choose between four types
of internet connection: WLAN, UMTS, GSM and

Bluetooth. The grand total of variants is then

688.888.1=

1.888.688×5× 4 760.773.37= .

3.5. Concluding on problem size

With in the order of tens of million alternatives and

a reasoning capacity of in the order of 1,000
alternatives per second we are not able to complete
within a reasonable time. We therefore need ways of
dealing with the scalability problem. Our experience
from the MADAM project seems to indicate that it is
the number of simultaneous running applications
which primarily causes the scaling problems, and not
that each application has very many variants.

4. Existing solutions

Before we combine all possible variants for all

variation points, we are in some ways in a linear
domain. In the linear domain, we have some explicit
information, which is lost when we do the expansion
into the exponential domain. A clever approach will
try to use this explicit information in the linear domain.
As a simple example, suppose we have altogether
1,000,000 variants. If by using explicit information we
are able to eliminate one variation point in the linear
domain having 10 variants, then we reduce the
problem to 100,000 variants.

4.1. Brute force approach

The brute force approach simply traverses the tree

of all alternative variants and always keeps the best
variant visited. The execution time is proportional to
the number of variants, and grows exponentially with
the number of variation points. It maintains indexed
collections of variants for each variation point while
recursively traversing the tree. The memory
requirement will therefore be proportional to the
number of variation points, i.e. it will not grow
exponentially with the number of variants points, but
will grow linearly.

4.2. Greedy approach

In addition to the brute force approach, MADAM

also provides a greedy approach were the utility for all
application variants of all applications are stored in a
sorted table [6]. The applications with the highest
potential utility are selected first. However, this choice
can influence the available resources, which means
that the variant utilities of the remaining applications
need to be updated. Assuming that we have 3

applications containing 10 variants, we may have to
evaluate the utility of all the 10+10+10 variants when
selecting the application variant with the best utility for
the first application. In the worst case, we have to
update the application variant utilities for the
remaining 10+10 application variants when selecting
the variant for the second application and finally we
may have to evaluate the best variant for the third
application. Altogether, we will need to evaluate 60
application variant utilities in the worst case. Using the
brute force approach, we will need to evaluate
(10+1)3–1 = 1330 variants, when running at least one
of the three applications.

In this greedy approach, the selected application
variants may quickly exhaust the available resources.
Thus, the user will generally be able to run fewer
applications than with an optimal brute force approach.
A potential refinement of this approach is to select
variants which have the highest ratio of utility to
resource consumption [7].

4.3. Bellman-Ford algorithm

The Bellman-Ford planning heuristic in [7]

considers components which have both a fixed utility
and a fixed resource consumption, regardless of its
relation to other components and their resource
consumption. We may therefore replace their concept
of components with our application concept.

A digraph is generated when searching for the
combination of components with the best utility. In the
x-axis, each variation point has its own position so that
each possible component variant for the first variation
point is placed at x-position 1, and each variant for
both variation point 1 and 2 are placed at x-position 2.
The y-position is the resource consumption for all
combinations of variants. For each vertex, we find the
edge with the best utility. With no resource constraints,
there may theoretically be as many edges leading to the
vertices with the highest x-coordinate as the possible
permutation of all component variants, and the
complexity will be even worse than using brute force.
However, if there are resource constraints making
many combinations invalid, then this approach
becomes advantageous. Moreover, the digraph can be
reused and updated when the components resource
consumption and utility is unchanged or when only the
available resources change.

We have to store the complete digraph for the
permutations of all component variants. Hence, the
memory requirement for this approach grows
exponentially with the number of variation points. If a
server is available, then this can be used as a digraph
repository, but in a mobile setting, we cannot always

assume network connection to a server. Besides, to
access a server always consumes both energy and time.

4.4. Aura and Q-CAD

Compared to MADAM, components are not explicit

in Aura [8], which focuses on selecting completely
different variants of applications for each service. A
natural consequence of the absence of components is a
static application without any internal adaptation.

The utility function in Aura consists of two parts,
the functional preferences and the QoS preferences.
Using functional preferences, the user ranks all
applications offering a particular service (e.g., for
editing, I prefer MS Word slightly more than Emacs,
while Wordpad is close to unacceptable, modelled by
the utility values 1.0, 0.9 and 0.2, respectively). In
Aura, we know the application variant preferences
before we need to evaluate the QoS utility functions.
The application variant preferences then become an
upper bound on the combined utility function. If we
have two possible variants for each of the applications
a and b, we may term four resulting application variant
combinations: (1) a1 + b1, (2) a1 + b2,, (3) a2 + b1 and
(4) a2 + b2. Let us assume that the application variant
preferences for these four variants are 0.8, 0.6, 0.4 and
0.2. If we find a combined application utility which is
better than 0.6 when evaluating the QoS utility
functions for the configuration a1 + b1, then we do not
need to search the QoS utility functions for the other
configuration variants, since the overall utility cannot
be better than 0.6 in any of them.

In addition to functional preferences, Aura also
gives a special treatment to warm-up time (see Section
5.5). The MADAM framework provides a more
uniform and conceptually simpler treatment of these
concerns, but then looses some flexibility.

The two-step approach in Q-CAD [9] resembles the
two-step approach in Aura, but where the first step in
Aura focuses on functional requirements only,
additionaly non-functional requirements are used in the
first step in Q-CAD (e.g., when there is more than 30%
battery left, then the resource must provide encryption,
but when there is less battery, no encryption should be
used).

4.5. QuO

QuO [10] models the functional relationship

between a given context and the best variant. A good
variant will in general be best for an area in the multi-
dimensional space of all context properties. Some
variants will never be best for any context properties

and can simply be discarded. To generate this mapping
will require extensive resources, and may also
consume much storage space. To use it will however
be inexpensive. Nevertheless, this approach represents
something to strive for, but may be difficult to
implement fully.

4.6. Divide and conquer

The Divide and Conquer (D&C) approach [11] is

aimed both at adaptation scalability and at variability.
The main goal is the immediate and quick breakdown
of an adaptation scenario with many independent
users, machines and applications into smaller, logical
and physical independent sub-problems that can be
handled separately and in parallel.

D&C does not divide up until reaching single
variation points. Conditions for stopping D&C can be
that a sub-problem is small enough to be solved
quickly by another method or that it cannot be divided
into almost independent parts.

D&C works if the adaptation problems of the parts
are small and independent enough to be solved, and if
the combined solution to these parts is good enough to
satisfy the users. In other words, D&C does not aim at
finding a global optimal solution to the adaptation
problem but at a scalable one that is considered good
enough.

4.7. Genetic algorithms

Genetic algorithms are another kind of algorithms

that are concerned about planning heuristics
performance and scalability [12]. In these approaches,
the search space is explored randomly during a fixed
number of steps (called generations). For each
generation, the weakest configurations of the
population (a constant subset of relevant
configurations in the adaptation space) are replaced by
stronger configurations using crossover and mutation
operators. The strength of configurations is based on
the computation of their associated utility function.
Thus, depending on (1) the number of generations and
(2) the size of the initial population considered by the
algorithm, the quality of the result varies in terms of
optimality since the exploration of the adaptation space
is unpredictable and mostly depends on random (or
probability) operators.

5. New proposals

As the existing approaches are far from optimal, we

explore some novel approaches in this section. Our

proposal is to reduce the scalability problem by
limiting the search space of variants. We dynamically
combine several heuristics to filter irrelevant variants
for a given adaptation.

5.1. Early filtering

Early filtering approaches aim at reducing
complexity in the linear domain. This means that they
exploit the knowledge of variants to discard as early as
possible those that are unlikely to be selected by the
heuristic. This filtering process can be achieved by
considering (1) static properties defined by variants,
and (2) dynamic properties related to context changes.

Filtering based on static properties

Variants can be early filtered by comparing their

static properties (e.g., memory consumption, network
bandwidth required) to contextual information. This
means that if a variant requires resources which are not
available, it can be excluded from the search space.
When considering the SatMotion application from
Section 3.3, the loss of network connectivity implies
the discarding of 127 useless variants to keep only 1
variant supporting a disconnected execution mode.

Early filtering can be implemented by using a
trading service where look-up is based on required
service properties for retrieving variants [13]. The
variants are registered in the trading service based on
their static properties, while the filtering of variants is
ensured by the trading query used by the adaptation
process to retrieve compatible variants.

Filtering based on dynamic properties

Variants can also be early filtered on properties of

variants that are not registered in the trading service.
Such filtering can be realized by associating to variants
predicates whose variables range over context
elements [13]. This solution complements trading
based filtering described above and allows filtering on
both static and dynamic properties.

A context dependency could e.g., express a
minimum memory requirement. Context dependencies
of component compositions must be derived from the
context dependencies of its constituent components,
and it may not be statically known which components
that will be selected.

In scalable video streaming, bandwidth
requirements depend on the configuration of the video
encoder. In many cases, it is not feasible to measure
the bandwidth for every possible configuration. One
alternative approach is to estimate the bandwidth

requirement using a suitable mathematical function
fitted to a smaller number of measured points. Consult
[14] for several examples of context dependencies
applied to adaptable video streaming which effectively
reduces the search space and ensures only feasible
variants for the current context are considered.

5.2. Utility function analysis

The utility for each application variant and for each

property k is a function Sk of the varying property and
the weight, fk, on each property:

)(,,,, knikkkni pSfu =

We then get this function for the total user utility:

∑∑∑

∑ ∑ ∑

∑ ∑ ∑

= = =

= = =

= = =

=

=

=

I

i

iN

n

K

k
knikknii

I

i

iN

n

K

k
knikknii

I

i

iN

n

K

k
kninii

pSfxe

pSfxe

uxeU

1

)(

1 1
,,,

1

)(

1 1
,,,

1

)(

1 1
,,,

)(

)(

The more combinations of variants and properties

we are able to exclude, the better. Less important
applications will contribute very little to the overall
utility and can therefore be discarded in the scalability
exploration. Similarly, less important properties can
also be discarded. We can therefore look at weights of
the product of application importance and quality
utility functions, and focus on some of them. In the
table below, we have four applications with four
properties.

Table 2 Combing applications with properties

 App 1,
e1 = 0.5

App 2,
e2 = 0.3

App 3,
e3 = 0.1

App 4,
e4 = 0.1

Property a,
fa = 0.4 0.2 0.12 0.04 0.04

Property b,
fb = 0.3 0.15 0.09 0.03 0.03

Property c,
fc = 0.2 0.1 0.06 0.02 0.02

Property d,
fd = 0.1 0.05 0.03 0.01 0.01

From Table 2, we observe that the product of App 1

and Property a is 20 times larger than the product of
App 4 and Property d. One way of using this
information, is to only focus on App 1 and 2, with
properties a, b and c, in a first approximation.
Reducing the number of applications to look at, is in

the linear domain as defined in the taxonomy in
Section 4, and will exponentially reduce the number of
application variants. Inspired by the Aura heuristic, if
we find a utility above a certain threshold, we can stop
the search. Otherwise, we must also consider both
property d and App 3 and 4, in a step-wise fashion.

Issues for further work in this context are:
• Priorities of applications and properties will change

depending on the context, but it may also be
considered as stable for some time. They will
probably change based on the situation the user is in
e.g., he/she is sitting quietly in a waiting room of
the train station, or he/she is operating some quick
tasks when walking to the train.

• We should define how many applications and
properties to consider for each step. When we only
consider some properties, several variants will
differ in utility only with the properties which are
not considered, and may be combined.

Even if we are not able to consider low priority
applications together with high priority applications, it
is still possible to consider them after the high priority
applications. As an example, if we have 9 applications
with 10 variants each, and there are 3 high priority
applications and 6 low priority applications, then the
number of variants to consider in the first iteration will
not be 1 billion, but 1,000. In the second iteration, we
consider only 1,000 variants, and in the third iteration
we may consider the remaining 1,000 variants, if at all
necessary.

In some ways, focusing on the most important
applications first is a generalisation of the greedy
approach in Section 4.2, because in the greedy
approach we always consider one application at a time,
whereas we here may consider several applications
simultaneously. The utility function analysis may
produce a better utility for the user, but will also cost
more in terms of computing resources.

5.3. Utility function decomposition

To generalise the Aura heuristic [8] two conditions

have to be met: (1) The application utility function
itself must be decomposable, and (2) it must be
possible to estimate one part of the utility function in
advance (also known as early binding/fixing).

Thus, this heuristic decomposes the utility function
into a stable part and an unknown part. The stable part
of the utility function may be used as a basis for
sorting variants, and may be also used to ignore many
variants. Consequently, the unknown part of the utility
function does not need to be evaluated for the excluded
variants. For example, the variants whose stable part is

below the utility of the variant currently deployed can
be automatically discarded to keep only the promising
variants. Then, when evaluating these promising
variants, the resulting utility is computed as the
product of the stable part and the unknown part. If the
unknown part of the utility function is 0.8 and its
stable part is 0.9, then the total utility of the variant V1
is 0.72. Since the unknown part of the utility function
cannot exceed 1.0, no other variant can give a total
utility above 0.7. Consequently, we can select the
variant V1 and stop the search for the best utility.

Variants V1 V2 V3 V4 V5 V6 V7

Stable part 0.9 0.7 0.6 0.5 0.3 0.2 0.1

U
til

ity

Unknown part x1 x2 x3 x4 x5 x6 x7

There is a trade-off between how often the first part

of the utility function changes and how efficient this
heuristic is. This means that the stability of the first
part of the utility function is the keystone of the
heuristic. We must then know the frequency of
adaptations —i.e., changes in the execution context, or
changes in the set of applications— because some of
these changes can affect the first part of the utility
function.

Aura uses the user’s perceived utility of the
functional properties as the stable part of the utility
function. However, in a mobile environment, a user
may have different functional requirements depending
on his situation. For some situations, the user will
benefit from more sophisticated functionalities.

The stable part of the utility function can also be
adjusted dynamically by balancing it with the history
of the unknown parts computed during the previous
adaptations of the system. In this case, the early
ranking of variants can evolve dynamically, based on
the experience collected during the life cycle of the
system. Thus, the adaptation heuristic will learn and
memorise the best variants.

5.4. Distribution

Part of the planning may be delegated to more

powerful servers, which may increase the feasible
number of variants for example by a factor of 100.
These servers may in the extreme case be Grid
infrastructures, which may increase the factor by an
additional factor of 1,000. The cost for the latter option
will of course make this infeasible in the general case.
Delegation to a more powerful server is only relevant
if we have a network connection, but as described

above, the number of variants is higher with network
connection than without network connection.

To achieve the distribution of the planning process,
the adaptation mechanism should deploy a planning
engine on a remote server (or delegate to a running
one) together with the variants and the parameters
required to operate the adaptation heuristic.

If the current utility is fairly acceptable, the
planning may be spread out in time and run as a
background process, holding memory resources for a
longer time.

5.5. Warm-up time

The time to reconfigure after deciding which

variant to go for is also termed warm-up time [8]. In a
distributed environment, the warm-up time will not be
constant. If the new variant requires components
currently residing on a server, it will take some time to
acquire and install these components. Similarly, a
configuration where only a few components are
changed may be easier to configure than when all
components are new. Also the user’s tolerance for
warm-up time will differ. If the current application
variant can no longer run (e.g., because the required
network connection is no longer available), then the
user is simply unable to do anything useful. In this
situation the warm-up time should of course be as
short as possible. On the other hand, in this case there
is no real alternative to adaptation.

The cost of warm-up time could be modelled as one
varying property. This serves to deflate the utility of a
new potential configuration compared to the utility of
the existing application. With only a marginal utility
improvement the user is not willing to wait —i.e., if
the utility improvement is below a certain threshold,
then we will not trigger an adaptation. In this way,
warm-up time may be treated as a stable part of the
utility function of a variant.

The inflation of the utility for the running
application variants means that under some
circumstances it is not needed to look for potential new
application variants.
• If the utility of the running application variants have

a quite high utility, then many alternative variants
can simply be discarded. In the extreme case, no
alternatives will manage to compete with the exist-
ing application variants, given the warm-up time.

• We know using one of the two decomposition
heuristics that the utility of some application
variants may never climb above the level required
to beat the existing utility value giving the warm-up
time deflation.

5.6. Decision model framework

The MADAM middleware defines a decision model
framework (left part of Figure 3) that can be extended
with the five heuristics described above that all in
combination reduce the variants search space.

The heuristics introduced (right part of Figure 3)
operate at different steps of the decision model to
gradually reduce the size of the search space. By
exploiting different forms of meta-data (e.g.,
static/dynamic properties, dominating factors), these
heuristics discard the variants that are not likely to be
selected by the decision model.

The meta-data variety exploited by our approach
does not imply that the application variants have to
exhibit all the necessary meta-data to be efficient.
Nevertheless, the performance of our approach directly
depends on the amount and the quality of meta-data
available.

Distribution

Variants discovery

Variants resolution

Variants evaluation

Context change

Variant comparison

Variant deployment

Early filtering

Utility function
analysis

Utility function
decomposition

Warm-up time

Figure 3: Combination of proposed heuristics

6. Conclusion and further work

This paper has suggested a set of heuristics to

reduce the scalability issues related to the
implementation of decision models in dynamic
software product lines. In this domain, the number of
product variants to consider during a dynamic
reconfiguration can quickly exceed the capacity of the
reconfiguration system due to the phenomenon of
combinatorial explosion of variants. We also reported
on some experience of applying some of these
heuristics in the QuA and MADAM middlewares.

These are preliminary results that require further
validation. In our future work we plan to implement

and experiment with the proposed approaches in the
context of the MUSIC project and further investigate
the modeling and performance issues. This will include
gaining experience with real-life commercial
applications.

Acknowledgements

Thanks to partners of the MADAM and MUSIC
projects for valuable comments; and in particular
Ulrich Scholz, EML. This work was partly funded by
the European Commission through the project MUSIC
(EU IST 035166), see http://www.ist-music.eu/ .

References

[1] D. Garlan, S.-W. Cheng, A.-C. Huang, B. Schmerl, and

P. Steenkiste, "Rainbow: Architecture-based self-
adaptation with reusable infrastructure", IEEE
Computer, vol. 37, pp. 46-54, 2004.

[2] J. O. Kephart and D. M. Chess, "The vision of
autonomic computing", IEEE Computer, vol. 36, pp.
41-52, 2003.

[3] W. E. Walsh, G. Tesauro, J. O. Kephart, and R. Das,
"Utility Functions in Autonomic Systems," ICAC'04.

[4] T. Kelly, "Utility-directed allocation", Proc. Algorithms
& Architectures for Self-Managing Systems, 2003.

[5] Floch, J., et al. Using architecture models for runtime
adaptability, IEEE Software, 23(2), pp. 62-70, 2006.

[6] MADAM, “Theory of Adaptation - Specification of the
MADAM Core Architecture and Middleware Services”.
Deliverable 2.1, 2005. http://ist-madam.org

[7] M. Alia, et al., A Component-Based Planning
Framework for Adaptive Systems, LNCS 4276, pp. 1686
– 1704, Springer, 2006.

[8] Sousa, J.P. et al. Task-Based Adaptation for Ubiquitous
Computing, IEEE Trans. on Systems, Man, and
Cybernetics, Part C, Vol 36, No 3, May 2006

[9] Capra L., Zachariadis, S. and Mascolo, C. Q-CAD: QoS
and Context Aware Discovery Framework for Mobile
Systems, IEEE Proc. of International Conference on
Pervasive Services (ICPS'05), July 2005.

[10] Sharma, P.K. et al. Component-Based Dynamic QoS
Adaptations in Distributed Real-Time and Embedded
Systems, DOA’04, LNCS 3291, Springer, 2004.

[11] Scholz, U. and Rouvoy, R.. Divide and Conquer –
Scalability and Variability for Adaptive Middleware.
ESSPE’07, ACM Press, September 2007.

[12] Cao, L. , Li M., Cao, J. Using genetic algorithms to
implement cost-driven web service selection, Multi-
agent and Grid Systems 3(9):9-17, 2007.

[13] Amundsen Lundesgaard, S., et. al. “Utilising Alternative
Application Configurations in Context- and QoS-aware
Mobile Middleware” LNCS 4025, Springer, June 2006.

[14] Eliassen, F. ”Evolving Self-Adaptive Services using
Planning-Based Reflective Middleware”. ARM’06,
ACM Press, 2006.

http://www.ist-music.eu/
http://ist-madam.org/

	1. Introduction
	2. Alternative approaches
	3. Scalability of utility based decision models
	3.1. The MADAM decision model
	3.2. Scalability
	3.3. Scenario 1: SatMotion
	3.4. Scenario 2: Several applications
	3.5. Concluding on problem size

	4. Existing solutions
	4.1. Brute force approach
	4.2. Greedy approach
	4.3. Bellman-Ford algorithm
	4.4. Aura and Q-CAD
	4.5. QuO
	4.6. Divide and conquer
	4.7. Genetic algorithms

	5. New proposals
	5.1. Early filtering
	Filtering based on static properties
	Filtering based on dynamic properties

	5.2. Utility function analysis
	5.3. Utility function decomposition
	5.4. Distribution
	5.5. Warm-up time
	5.6. Decision model framework

	6. Conclusion and further work
	Acknowledgements
	References

