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Abstract 
 

Product lines need decision models that guide the 
derivation of product variants satisfying specific 
requirements. In dynamic product lines, whose 
requirements vary during runtime, these decision 
models are also required to support automatic product 
reconfigurations in response to changing 
requirements. However, because of the combinatorial 
explosion of variants, such automatic decision making 
suffers from poor performance with many variants. In 
this paper, we introduce a mathematical formulation of 
this scalability problem. Based on the formulation, we 
discuss the limitations of existing approaches to 
support variants scalability. These limitations are 
addressed by our modular approach whose decision 
model combines (1) the use of utility functions, and (2) 
various optimisations of the search space. The analysis 
is supported by experience with the QuA and MADAM 
middleware, which apply this approach to supports 
self-adaptation based on dynamic product lines. 
 
1. Introduction 

 
Variation points and decision models are central 

concepts in software product lines. Variation points 
encode the variability of the product line and make 
possible the derivation of different variants from a 
common code base. The decision model guides the 
derivation of a variant that meets given requirements. 
The derivation of a product variant can be seen as a 
design effort within a constrained design space given 
by the product line architecture. The decision model 
encodes design knowledge relevant to this constrained 
design space. Basically, the process has three main 
steps: i) decide the requirements, ii) resolve the 
variation points, and iii) build the variant from the 
selected parts. 

In classical applications of software product lines, 
the derivation of product variants has typically been 
done by engineers before delivery. Automation in the 
form of tool support has been leveraged to cut cost and 
calendar time, but one could always rely on human 
beings to agree with the customer on the requirements 
and to handle possible conflicts, ambiguities or lack of 
completeness in the decision model and to sort out 
build problems. 

In our research we attempt to apply product lines to 
support the development of self-adapting applications 
for mobile use. Mobile settings are characterized by 
dynamic variation in both user needs and resource 
constraints and therefore need applications that are 
capable of adapting to such changes at runtime. The 
idea is to build self adapting applications as product 
lines with explicit variability and to achieve self 
adaptation by automating the product derivation 
process.  

Utilizing product lines in the way explained above 
poses particular requirements both on the kind of 
variation points that can be used and on the decision 
model.  

Firstly, the decision model must lend itself to 
automatic resolution of variation points that represents 
a good solution for a given set of requirements. 
“Good” in this connection means respecting the 
resource constraints and satisfying the user needs.  

Secondly, we must be able to find a solution in 
sufficiently short time that the operation of the 
application is not disturbed in an unacceptable way. 

Finally, on a mobile device we must be able to 
handle the coordinated adaptation of a dynamically 
varying set of applications competing about the 
available computing and communication resources. 
Although mobile devices are typically resource poor, 
most of them are multitasking units that supports the 
use of several applications concurrently and the user 
will stop and start applications to suit the task at hand. 



This means that the decision models must be 
automatically combinable. 

In this paper, we focus on the decision model and 
the automation of the process of finding a resolution of 
variation points that gives a variant that best fits a 
given set of requirements. Ideally, we want the best 
solution, but we may be willing to trade goodness for 
speed to some extent. The contribution of this paper is 
threefold: 
• A precise description of the variant scalability 

problem illustrated with realistic scenarios 
• An set of heuristics for reducing the search space of 

variants  
• A modular decision model framework that 

combines the above heuristics achieving a greater 
reduction of the search space than each of them can 
achieve alone 

The contributions in this paper represent ongoing 
research work, and we plan to do more extensive 
validation later on.  

The rest of the paper is organized as follows. In 
Section 2, we present alternative approaches to 
representing decision models for dynamic product 
lines and discuss their merits. Then, in Section 3, we 
examine the approach based on utility functions in 
more detail focusing on the scalability issue. Section 4 
reports experiences with a middleware platform for 
dynamic product lines based on utility functions. 
Section 5 describes some new propels and finally 
Section 6 offers some conclusions and suggestions for 
further work. 

 
2. Alternative approaches 

 
There are basically three main approaches which 

have been proposed for the description of decision 
models for self-adaptation: (i) situation-action 
approaches where adaptation rules specify exactly 
what to do in certain situations [1], (ii) goal-based 
approaches where goals describe high-level objectives 
that the self-adapting system should attempt to fulfill 
[2], and (iii) utility functions-based approaches where 
utility functions assign a utility value to each 
application variant as a function of application 
properties, context and goals [3][4]. 

We have chosen to apply utility functions in our 
MADAM approach [5] for several reasons. Firstly, the 
analysis of mobile scenarios shows that the selection of 
the “best configuration” is complex as it requires 
reasoning on dependencies between context elements, 
adaptation forms and concurrent forms. Utility 
functions enable us to express such dependencies. 

Secondly, unlike situation-action approaches, the 
actions needed to reconfigure to a new configuration 
are not explicitly described, but derived at runtime by 
the middleware. Thirdly, as will be discussed in more 
detail in the next section, a decision model for a set of 
applications competing for shared resources can be 
built from the model fragments associated with the 
components making up the applications at runtime. 

The drawback however, is that the computational 
complexity of finding a variant is exponential in the 
number of variation points. In the following we 
investigate possible approaches to handle this. 
 
3. Scalability of utility based decision 

models 
 

3.1. The MADAM decision model 
 

In MADAM [5], four types of variation points are 
supported: 
• Several variants of each software component. 
• Configuration parameters for software components, 

e.g. buffer size.  
• Distribution or the deployment of software 

components on different computers in a distributed 
computing environment.  

• Hardware variation points, e.g. (a) Alternative 
processor clock frequencies, affecting response 
times and power consumption. (b) Alternative 
display colour schemes for different light 
conditions. (c) Alternative communication 
technologies (e.g., UMTS uses more power 
compared to GSM, but will also offer more 
bandwidth). 

In addition, the middleware may choose to stop one 
or more applications if this increases the combined 
utility of the remaining applications. 

Variation points are characterized by properties 
which may vary between their variants. These 
properties express functional and/or QoS properties of 
the provided service. In addition, software variants 
differ in terms of the computing and communication 
resources they need in order to execute. Hardware 
variants differ in terms of battery consumption. 

The properties and the resource needs of an 
application variant are computed from the properties 
and resource needs of the component variants. The 
properties and resource needs of component variants 
are built by means of associated property predictor 
functions. 

More formally, the basic concepts in the MADAM 
approach are represented in Figure 1. 
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Figure 1.  Relation between basic concepts. 
 
In Figure 1, there are I applications Ai…,Ai+I. Each 

application Ai has N(i) variants Vi,1,…,Vi,N(i). Each 
variant Vi,j requires ri,j,m resources of resource type m. 
In total, there are M resource types σ1,…,σM  For each 
resource type σm there are Q(m) hardware variants. 
Each hardware variant q of resource type σm has its 
resource limitation Rm,q.  

Examples of resource dimensions are processing 
requirements in terms of average instructions per 
second, disk and memory storage requirements, and 
network bandwidth requirements. For each resource 
type σm, the total resources consumed must be less than 
or equal to the available resources Rm: 
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In this equation Rm, is the total amount of available 

resources of resource type σm for the selected hardware 
variant. xi,n is a decision variable which is set to 1 if 
this application variant n is used for application type i. 
At most one variant should be selected for each 
application type. However, we may not use any 
application types for an application: 
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Each of the application variants satisfies one or 

more varying properties, but must in addition also 
satisfy fixed properties. There are K varying properties 
Pk, and each application variant Vi,n has the properties 

pi,n,k. The user weights the importance of the varying 
properties according to the preference function fk. 

Based on the amount of varying properties and the 
user preferences, a utility ui,n,k is calculated for each  
property for each application variant. This utility is a 
number between 0 and 1. The total utility for all 
application variants selected shall be maximized: 
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This sum is normalised based on the user 

preferences for each application, ei,…, eI, where 

1
1

=∑ =

I

i ie . This last equation should be optimised, 

using the first two equations as constraints. 
The weights on properties will in general differ 

between applications, and the functional properties 
will of course be different. If we take also this into 
consideration, then the equations will become more 
complex, but they will basically be similar. 

 
3.2. Scalability 

 
The algorithm for automating the selection of the 

best combination of application and resource variants 
works by going through all possibilities and selecting 
the one with the highest utility which also respect the 
resource constraints. If all variants could be combined 
freely, the number of possibilities S will be: 
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The possibility to stop applications is accounted for 

by adding one variant to the N(i) combinations of 
components for each application. We have to run at 
least one application, accounted for by “- 1”.  

We also need to express the number of variants per 
application based on the number of variants per 
component C(z) for all the Z(i) components for 
application I, to get an expression for N(i) 
( )(1 iZz ≤≤ ): 
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Combining the last two formulas we see how S 

grows exponentially with the total number of variation 
points.
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Figure 2.  Variants in SatMotion using architectural constraints. 

 
These two formulas are the worst case. In practice, 

there will typically be dependencies between variation 
points constraining allowable combinations. Within an 
application, the developer will introduce architectural 
constraints, effectively limiting the feasible combi-
nations of component variants within one application, 
because some variants of a component depend on 
specific variants of other components. This effectively 
reduces the potential permutation of component 
variants. Also not all sets of application variants will 
depend on all resource types. Nevertheless, we still 
have an exponential growth of the number of 
possibilities with the total number of variation points.  

Although this is not a pleasant property of our 
solution, it will only be a problem if the number of 
possibilities to consider exceeds what can be processed 
in the available time in typical cases. To get an idea 
about the size, in the next section we analyse two 
scenarios based on our experience with the MADAM 
middleware [5]. 

 
3.3. Scenario 1: SatMotion  

 
The SatMotion application is used to align satellite 

antennas for satellite-based wireless communication.  
It consists of a client part running on a handheld 
device used by the installer during the alignment 
procedure, and a server part running on a server 
located at the installer company headquarters and 
controlling some signal analysis equipment connected 
to an antenna. The handheld sends a test signal through 
the antenna being aligned. The test signal is picked up 

by the antenna at the headquarters and analysed. The 
analysis result is sent back to the handheld via a 
separate internet connection. This application can be 
used in three different modes, OneWay, TwoWay and 
Offline, with different requirements regarding the 
internet connection to the headquarter. Furthermore, 
some components can be deployed either on the 
handheld or on other computers to which the handheld 
has network connections. For this scenario, let us 
assume that the four alternatives are the installers own 
laptop, a server at the customer site, in addition to an 
even more powerful server. 

Assuming SatMotion is the only application of 
interest, and taking dependencies between variation 
points into account, there are 128 alternatives to 
consider as shown in the AND/OR graph in Figure 2. 
In this graph, AND means that all elements below an 
element in the tree have to be selected. In this case we 
multiply the number of variants. With OR in the graph, 
only one element needs to be chosen and we add the 
number of variants in the tree. 

Without architectural constraints we will have 1260 
variants, as each component has the number of variants 
as shown in Table 1. With architectural constraints we 
are then able to reduce the number of variants from 
1260 to 128.  

The total adaptation time consists of three elements: 
• Detection of context changes: depending on the 

complexity of the context and on the filtering of 
context changes. 

• Reasoning about changes and making adaptation 
decisions.  



• Implementing the selected alternative — i.e., to 
reconfigure. This time will depend on the number 
of components necessary to change, with increasing 
time for more component changes. 

Of the above factors, only the middle one, the decision 
algorithm, depends on the number of variants. Under 
some conditions, the first and final may be considered 
to be fixed. 

An ideal response time for the complete adaptation 
is less than 1 second. Less than 4 - 5 seconds is 
acceptable, and more than 10 seconds is in general 
unacceptable, but this depends on the utility increase. 
If the system is currently not usable, the user may be 
willing to wait for as long as one minute. On the other 
hand, when he only gets a marginal improvement, even 
3 seconds may be too much (under the assumption that 
the user is not able to work simultaneously, in which 
case the adaptation time does not matter that much). 

Experience with the MADAM middleware indicates 
that the capacity of the decision algorithm is in the 
order of 1000 alternatives per second. 

Considering also that handheld devices on the 
market today do not have capacity to run much more 
than one application of this size at the time it may 
seem that we do not have a problem. However, the 
capacity of handheld devices increases and in the 
future more complex scenarios are likely. 
 

Table 1 Component permutations in SatMotion. 
 

Component Variants 
UI 6+7+1=14 
Controller 1+1+1=3 
Math processing 4+0+1=5 
Recorder 5+1+0=6 
PRODUCT 14× 3×5×6 =1260 

 
3.4. Scenario 2: Several applications 

 
In this scenario the satellite installer in addition to 

using SatMotion also uses an IP telephony application 
and an email application to communicate with 
headquarters about future assignments, and also listens 
to music provided by a player on the device. Finally, a 
virus checking program is running in the background. 
If we assume that the additional applications have 10 
variants each, we will in total get 129×11×11×11×11−1 

 permutations of the application variants. 
We may assume that the CPU has five different clock 
frequencies and that we can choose between four types 
of internet connection: WLAN, UMTS, GSM and 

Bluetooth. The grand total of variants is then 

688.888.1=

1.888.688×5× 4 760.773.37= . 
 
3.5. Concluding on problem size 

 
With in the order of tens of million alternatives and 

a reasoning capacity of in the order of 1,000 
alternatives per second we are not able to complete 
within a reasonable time. We therefore need ways of 
dealing with the scalability problem. Our experience 
from the MADAM project seems to indicate that it is 
the number of simultaneous running applications 
which primarily causes the scaling problems, and not 
that each application has very many variants.   

 
4. Existing solutions 

 
Before we combine all possible variants for all 

variation points, we are in some ways in a linear 
domain. In the linear domain, we have some explicit 
information, which is lost when we do the expansion 
into the exponential domain. A clever approach will 
try to use this explicit information in the linear domain. 
As a simple example, suppose we have altogether 
1,000,000 variants. If by using explicit information we 
are able to eliminate one variation point in the linear 
domain having 10 variants, then we reduce the 
problem to 100,000 variants.  
 
4.1. Brute force approach 

 
The brute force approach simply traverses the tree 

of all alternative variants and always keeps the best 
variant visited. The execution time is proportional to 
the number of variants, and grows exponentially with 
the number of variation points. It maintains indexed 
collections of variants for each variation point while 
recursively traversing the tree. The memory 
requirement will therefore be proportional to the 
number of variation points, i.e. it will not grow 
exponentially with the number of variants points, but 
will grow linearly.  

 
4.2. Greedy approach 

 
In addition to the brute force approach, MADAM  

also provides a greedy approach were the utility for all 
application variants of all applications are stored in a 
sorted table [6]. The applications with the highest 
potential utility are selected first. However, this choice 
can influence the available resources, which means 
that the variant utilities of the remaining applications 
need to be updated. Assuming that we have 3 



applications containing 10 variants, we may have to 
evaluate the utility of all the 10+10+10 variants when 
selecting the application variant with the best utility for 
the first application. In the worst case, we have to 
update the application variant utilities for the 
remaining 10+10 application variants when selecting 
the variant for the second application and finally we 
may have to evaluate the best variant for the third 
application. Altogether, we will need to evaluate 60 
application variant utilities in the worst case. Using the 
brute force approach, we will need to evaluate 
(10+1)3–1 = 1330 variants, when running at least one 
of the three applications.  

In this greedy approach, the selected application 
variants may quickly exhaust the available resources. 
Thus, the user will generally be able to run fewer 
applications than with an optimal brute force approach. 
A potential refinement of this approach is to select 
variants which have the highest ratio of utility to 
resource consumption [7]. 

 
4.3. Bellman-Ford algorithm 

 
The Bellman-Ford planning heuristic in [7] 

considers components which have both a fixed utility 
and a fixed resource consumption, regardless of its 
relation to other components and their resource 
consumption. We may therefore replace their concept 
of components with our application concept. 

A digraph is generated when searching for the 
combination of components with the best utility. In the 
x-axis, each variation point has its own position so that 
each possible component variant for the first variation 
point is placed at x-position 1, and each variant for 
both variation point 1 and 2 are placed at x-position 2. 
The y-position is the resource consumption for all 
combinations of variants. For each vertex, we find the 
edge with the best utility. With no resource constraints, 
there may theoretically be as many edges leading to the 
vertices with the highest x-coordinate as the possible 
permutation of all component variants, and the 
complexity will be even worse than using brute force. 
However, if there are resource constraints making 
many combinations invalid, then this approach 
becomes advantageous. Moreover, the digraph can be 
reused and updated when the components resource 
consumption and utility is unchanged or when only the 
available resources change. 

We have to store the complete digraph for the 
permutations of all component variants. Hence, the 
memory requirement for this approach grows 
exponentially with the number of variation points. If a 
server is available, then this can be used as a digraph 
repository, but in a mobile setting, we cannot always 

assume network connection to a server. Besides, to 
access a server always consumes both energy and time. 
 
4.4. Aura and Q-CAD 

 
Compared to MADAM, components are not explicit 

in Aura [8], which focuses on selecting completely 
different variants of applications for each service. A 
natural consequence of the absence of components is a 
static application without any internal adaptation.  

The utility function in Aura consists of two parts, 
the functional preferences and the QoS preferences. 
Using functional preferences, the user ranks all 
applications offering a particular service (e.g., for 
editing, I prefer MS Word slightly more than Emacs, 
while Wordpad is close to unacceptable, modelled by 
the utility values 1.0, 0.9 and 0.2, respectively). In 
Aura, we know the application variant preferences 
before we need to evaluate the QoS utility functions. 
The application variant preferences then become an 
upper bound on the combined utility function. If we 
have two possible variants for each of the applications 
a and b, we may term four resulting application variant 
combinations: (1) a1 + b1, (2) a1 + b2,, (3) a2 + b1 and 
(4) a2 + b2. Let us assume that the application variant 
preferences for these four variants are 0.8, 0.6, 0.4 and 
0.2. If we find a combined application utility which is 
better than 0.6 when evaluating the QoS utility 
functions for the configuration a1 + b1, then we do not 
need to search the QoS utility functions for the other 
configuration variants, since the overall utility cannot 
be better than 0.6 in any of them. 

In addition to functional preferences, Aura also 
gives a special treatment to warm-up time (see Section 
5.5). The MADAM framework provides a more 
uniform and conceptually simpler treatment of these 
concerns, but then looses some flexibility. 

The two-step approach in Q-CAD [9] resembles the 
two-step approach in Aura, but where the first step in 
Aura focuses on functional requirements only, 
additionaly non-functional requirements are used in the 
first step in Q-CAD (e.g., when there is more than 30% 
battery left, then the resource must provide encryption, 
but when there is less battery, no encryption should be 
used). 

 
4.5. QuO 

 
QuO [10] models the functional relationship 

between a given context and the best variant. A good 
variant will in general be best for an area in the multi-
dimensional space of all context properties. Some 
variants will never be best for any context properties 



and can simply be discarded. To generate this mapping 
will require extensive resources, and may also 
consume much storage space. To use it will however 
be inexpensive. Nevertheless, this approach represents 
something to strive for, but may be difficult to 
implement fully. 
 
4.6.  Divide and conquer 

 
The Divide and Conquer (D&C) approach [11] is 

aimed both at adaptation scalability and at variability. 
The main goal is the immediate and quick breakdown 
of an adaptation scenario with many independent 
users, machines and applications into smaller, logical 
and physical independent sub-problems that can be 
handled separately and in parallel.  

D&C does not divide up until reaching single 
variation points. Conditions for stopping D&C can be 
that a sub-problem is small enough to be solved 
quickly by another method or that it cannot be divided 
into almost independent parts. 

D&C works if the adaptation problems of the parts 
are small and independent enough to be solved, and if 
the combined solution to these parts is good enough to 
satisfy the users. In other words, D&C does not aim at 
finding a global optimal solution to the adaptation 
problem but at a scalable one that is considered good 
enough. 
 
4.7. Genetic algorithms 

 
Genetic algorithms are another kind of algorithms 

that are concerned about planning heuristics 
performance and scalability [12]. In these approaches, 
the search space is explored randomly during a fixed 
number of steps (called generations). For each 
generation, the weakest configurations of the 
population (a constant subset of relevant 
configurations in the adaptation space) are replaced by 
stronger configurations using crossover and mutation 
operators. The strength of configurations is based on 
the computation of their associated utility function. 
Thus, depending on (1) the number of generations and 
(2) the size of the initial population considered by the 
algorithm, the quality of the result varies in terms of 
optimality since the exploration of the adaptation space 
is unpredictable and mostly depends on random (or 
probability) operators. 
 
5. New proposals 

 
As the existing approaches are far from optimal, we 

explore some novel approaches in this section. Our 

proposal is to reduce the scalability problem by 
limiting the search space of variants. We dynamically 
combine several heuristics to filter irrelevant variants 
for a given adaptation. 

 
5.1. Early filtering 
 

Early filtering approaches aim at reducing 
complexity in the linear domain. This means that they 
exploit the knowledge of variants to discard as early as 
possible those that are unlikely to be selected by the 
heuristic. This filtering process can be achieved by 
considering (1) static properties defined by variants, 
and (2) dynamic properties related to context changes. 
 
Filtering based on static properties 

 
Variants can be early filtered by comparing their 

static properties (e.g., memory consumption, network 
bandwidth required) to contextual information. This 
means that if a variant requires resources which are not 
available, it can be excluded from the search space. 
When considering the SatMotion application from 
Section 3.3, the loss of network connectivity implies 
the discarding of 127 useless variants to keep only 1 
variant supporting a disconnected execution mode. 

Early filtering can be implemented by using a 
trading service where look-up is based on required 
service properties for retrieving variants [13]. The 
variants are registered in the trading service based on 
their static properties, while the filtering of variants is 
ensured by the trading query used by the adaptation 
process to retrieve compatible variants. 

 
Filtering based on dynamic properties 

 
Variants can also be early filtered on properties of 

variants that are not registered in the trading service. 
Such filtering can be realized by associating to variants 
predicates whose variables range over context 
elements [13]. This solution complements trading 
based filtering described above and allows filtering on 
both static and dynamic properties.  

A context dependency could e.g., express a 
minimum memory requirement. Context dependencies 
of component compositions must be derived from the 
context dependencies of its constituent components, 
and it may not be statically known which components 
that will be selected. 

In scalable video streaming, bandwidth 
requirements depend on the configuration of the video 
encoder. In many cases, it is not feasible to measure 
the bandwidth for every possible configuration. One 
alternative approach is to estimate the bandwidth 



requirement using a suitable mathematical function 
fitted to a smaller number of measured points. Consult 
[14] for several examples of context dependencies 
applied to adaptable video streaming which effectively 
reduces the search space and ensures only feasible 
variants for the current context are considered. 
 
5.2. Utility function analysis 

 
The utility for each application variant and for each 

property k is a function Sk of the varying property and 
the weight, fk, on each property: 
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The more combinations of variants and properties 

we are able to exclude, the better. Less important 
applications will contribute very little to the overall 
utility and can therefore be discarded in the scalability 
exploration. Similarly, less important properties can 
also be discarded. We can therefore look at weights of 
the product of application importance and quality 
utility functions, and focus on some of them. In the 
table below, we have four applications with four 
properties.  

 
Table 2 Combing applications with properties 

 App 1, 
e1 = 0.5 

App 2, 
e2 = 0.3 

App 3, 
e3 = 0.1 

App 4, 
e4 = 0.1 

Property a, 
fa = 0.4 0.2 0.12 0.04 0.04 

Property b, 
fb = 0.3 0.15 0.09 0.03 0.03 

Property c, 
fc = 0.2 0.1 0.06 0.02 0.02 

Property d, 
fd = 0.1 0.05 0.03 0.01 0.01 

 
From Table 2, we observe that the product of App 1 

and Property a is 20 times larger than the product of 
App 4 and Property d. One way of using this 
information, is to only focus on App 1 and 2, with 
properties a, b and c, in a first approximation. 
Reducing the number of applications to look at, is in 

the linear domain as defined in the taxonomy in 
Section 4, and will exponentially reduce the number of 
application variants. Inspired by the Aura heuristic, if 
we find a utility above a certain threshold, we can stop 
the search. Otherwise, we must also consider both 
property d and App 3 and 4, in a step-wise fashion. 

Issues for further work in this context are: 
• Priorities of applications and properties will change 

depending on the context, but it may also be 
considered as stable for some time. They will 
probably change based on the situation the user is in 
e.g., he/she is sitting quietly in a waiting room of 
the train station, or he/she is operating some quick 
tasks when walking to the train. 

• We should define how many applications and 
properties to consider for each step. When we only 
consider some properties, several variants will 
differ in utility only with the properties which are 
not considered, and may be combined. 

Even if we are not able to consider low priority 
applications together with high priority applications, it 
is still possible to consider them after the high priority 
applications. As an example, if we have 9 applications 
with 10 variants each, and there are 3 high priority 
applications and 6 low priority applications, then the 
number of variants to consider in the first iteration will 
not be 1 billion, but 1,000. In the second iteration, we 
consider only 1,000 variants, and in the third iteration 
we may consider the remaining 1,000 variants, if at all 
necessary. 

In some ways, focusing on the most important 
applications first is a generalisation of the greedy 
approach in Section 4.2, because in the greedy 
approach we always consider one application at a time, 
whereas we here may consider several applications 
simultaneously. The utility function analysis may 
produce a better utility for the user, but will also cost 
more in terms of computing resources. 

 
5.3. Utility function decomposition 

 
To generalise the Aura heuristic [8] two conditions 

have to be met: (1) The application utility function 
itself must be decomposable, and (2) it must be 
possible to estimate one part of the utility function in 
advance (also known as early binding/fixing).  

Thus, this heuristic decomposes the utility function 
into a stable part and an unknown part. The stable part 
of the utility function may be used as a basis for 
sorting variants, and may be also used to ignore many 
variants. Consequently, the unknown part of the utility 
function does not need to be evaluated for the excluded 
variants. For example, the variants whose stable part is 



below the utility of the variant currently deployed can 
be automatically discarded to keep only the promising 
variants. Then, when evaluating these promising 
variants, the resulting utility is computed as the 
product of the stable part and the unknown part. If the 
unknown part of the utility function is 0.8 and its 
stable part is 0.9, then the total utility of the variant V1 
is 0.72. Since the unknown part of the utility function 
cannot exceed 1.0, no other variant can give a total 
utility above 0.7. Consequently, we can select the 
variant V1 and stop the search for the best utility. 

 
Variants V1 V2 V3 V4 V5 V6 V7

Stable part 0.9 0.7 0.6 0.5 0.3 0.2 0.1

U
til

ity
 

Unknown part x1 x2 x3 x4 x5 x6 x7

 
There is a trade-off between how often the first part 

of the utility function changes and how efficient this 
heuristic is. This means that the stability of the first 
part of the utility function is the keystone of the 
heuristic. We must then know the frequency of 
adaptations —i.e., changes in the execution context, or 
changes in the set of applications— because some of 
these changes can affect the first part of the utility 
function. 

Aura uses the user’s perceived utility of the 
functional properties as the stable part of the utility 
function. However, in a mobile environment, a user 
may have different functional requirements depending 
on his situation. For some situations, the user will 
benefit from more sophisticated functionalities. 

The stable part of the utility function can also be 
adjusted dynamically by balancing it with the history 
of the unknown parts computed during the previous 
adaptations of the system. In this case, the early 
ranking of variants can evolve dynamically, based on 
the experience collected during the life cycle of the 
system. Thus, the adaptation heuristic will learn and 
memorise the best variants. 

 
5.4. Distribution 

 
Part of the planning may be delegated to more 

powerful servers, which may increase the feasible 
number of variants for example by a factor of 100. 
These servers may in the extreme case be Grid 
infrastructures, which may increase the factor by an 
additional factor of 1,000. The cost for the latter option 
will of course make this infeasible in the general case. 
Delegation to a more powerful server is only relevant 
if we have a network connection, but as described 

above, the number of variants is higher with network 
connection than without network connection. 

To achieve the distribution of the planning process, 
the adaptation mechanism should deploy a planning 
engine on a remote server (or delegate to a running 
one) together with the variants and the parameters 
required to operate the adaptation heuristic. 

If the current utility is fairly acceptable, the 
planning may be spread out in time and run as a 
background process, holding memory resources for a 
longer time. 

 
5.5. Warm-up time 

 
The time to reconfigure after deciding which 

variant to go for is also termed warm-up time [8]. In a 
distributed environment, the warm-up time will not be 
constant. If the new variant requires components 
currently residing on a server, it will take some time to 
acquire and install these components. Similarly, a 
configuration where only a few components are 
changed may be easier to configure than when all 
components are new. Also the user’s tolerance for 
warm-up time will differ. If the current application 
variant can no longer run (e.g., because the required 
network connection is no longer available), then the 
user is simply unable to do anything useful. In this 
situation the warm-up time should of course be as 
short as possible. On the other hand, in this case there 
is no real alternative to adaptation. 

The cost of warm-up time could be modelled as one 
varying property. This serves to deflate the utility of a 
new potential configuration compared to the utility of 
the existing application. With only a marginal utility 
improvement the user is not willing to wait —i.e., if 
the utility improvement is below a certain threshold, 
then we will not trigger an adaptation. In this way, 
warm-up time may be treated as a stable part of the 
utility function of a variant.   

The inflation of the utility for the running 
application variants means that under some 
circumstances it is not needed to look for potential new 
application variants. 
• If the utility of the running application variants have 

a quite high utility, then many alternative variants 
can simply be discarded. In the extreme case, no 
alternatives will manage to compete with the exist-
ing application variants, given the warm-up time. 

• We know using one of the two decomposition 
heuristics that the utility of some application 
variants may never climb above the level required 
to beat the existing utility value giving the warm-up 
time deflation. 



5.6. Decision model framework 
 

The MADAM middleware defines a decision model 
framework (left part of Figure 3) that can be extended 
with the five heuristics described above that all in 
combination reduce the variants search space. 

The heuristics introduced (right part of Figure 3) 
operate at different steps of the decision model to 
gradually reduce the size of the search space. By 
exploiting different forms of meta-data (e.g., 
static/dynamic properties, dominating factors), these 
heuristics discard the variants that are not likely to be 
selected by the decision model. 

The meta-data variety exploited by our approach 
does not imply that the application variants have to 
exhibit all the necessary meta-data to be efficient. 
Nevertheless, the performance of our approach directly 
depends on the amount and the quality of meta-data 
available. 

Distribution

Variants discovery

Variants resolution

Variants evaluation

Context change

Variant comparison

Variant deployment

Early filtering

Utility function
analysis

Utility function
decomposition

Warm-up time

 
Figure 3: Combination of proposed heuristics 

 
6. Conclusion and further work 

 
This paper has suggested a set of heuristics to 

reduce the scalability issues related to the 
implementation of decision models in dynamic 
software product lines. In this domain, the number of 
product variants to consider during a dynamic 
reconfiguration can quickly exceed the capacity of the 
reconfiguration system due to the phenomenon of 
combinatorial explosion of variants. We also reported 
on some experience of applying some of these 
heuristics in the QuA and MADAM middlewares.  

These are preliminary results that require further 
validation. In our future work we plan to implement 

and experiment with the proposed approaches in the 
context of the MUSIC project and further investigate 
the modeling and performance issues. This will include 
gaining experience with real-life commercial 
applications. 
 
Acknowledgements 
 

Thanks to partners of the MADAM and MUSIC 
projects for valuable comments; and in particular 
Ulrich Scholz, EML. This work was partly funded by 
the European Commission through the project MUSIC 
(EU IST 035166), see http://www.ist-music.eu/ . 

References 
 
[1] D. Garlan, S.-W. Cheng, A.-C. Huang, B. Schmerl, and 

P. Steenkiste, "Rainbow: Architecture-based self-
adaptation with reusable infrastructure", IEEE 
Computer, vol. 37, pp. 46-54, 2004. 

[2] J. O. Kephart and D. M. Chess, "The vision of 
autonomic computing", IEEE Computer, vol. 36, pp. 
41-52, 2003. 

[3] W. E. Walsh, G. Tesauro, J. O. Kephart, and R. Das, 
"Utility Functions in Autonomic Systems," ICAC'04. 

[4] T. Kelly, "Utility-directed allocation", Proc. Algorithms 
& Architectures for Self-Managing Systems, 2003. 

[5] Floch, J., et al. Using architecture models for runtime 
adaptability, IEEE Software,  23(2), pp. 62-70, 2006. 

[6] MADAM, “Theory of Adaptation - Specification of the 
MADAM Core Architecture and Middleware Services”. 
Deliverable 2.1, 2005. http://ist-madam.org 

[7] M. Alia, et al., A Component-Based Planning 
Framework for Adaptive Systems, LNCS 4276, pp. 1686 
– 1704, Springer, 2006. 

[8] Sousa, J.P. et al. Task-Based Adaptation for Ubiquitous 
Computing, IEEE Trans. on Systems, Man, and 
Cybernetics, Part C, Vol 36, No 3, May 2006 

[9] Capra L., Zachariadis, S. and Mascolo, C. Q-CAD: QoS 
and Context Aware Discovery Framework for Mobile 
Systems, IEEE Proc. of International Conference on 
Pervasive Services (ICPS'05), July 2005. 

[10] Sharma, P.K. et al. Component-Based Dynamic QoS 
Adaptations in Distributed Real-Time and Embedded 
Systems, DOA’04, LNCS 3291, Springer, 2004. 

[11] Scholz, U. and Rouvoy, R.. Divide and Conquer – 
Scalability and Variability for Adaptive Middleware. 
ESSPE’07, ACM Press, September 2007. 

[12] Cao, L. , Li M., Cao, J. Using genetic algorithms to 
implement cost-driven web service selection, Multi-
agent and Grid Systems 3(9):9-17, 2007. 

[13] Amundsen Lundesgaard, S., et. al. “Utilising Alternative 
Application Configurations in Context- and QoS-aware 
Mobile Middleware” LNCS 4025, Springer, June 2006. 

[14] Eliassen, F. ”Evolving Self-Adaptive Services using 
Planning-Based Reflective Middleware”. ARM’06, 
ACM Press, 2006. 

http://www.ist-music.eu/
http://ist-madam.org/

	1. Introduction
	2. Alternative approaches
	3. Scalability of utility based decision models
	3.1. The MADAM decision model
	3.2. Scalability
	3.3. Scenario 1: SatMotion 
	3.4. Scenario 2: Several applications
	3.5. Concluding on problem size

	4. Existing solutions
	4.1. Brute force approach
	4.2. Greedy approach
	4.3. Bellman-Ford algorithm
	4.4. Aura and Q-CAD
	4.5. QuO
	4.6.  Divide and conquer
	4.7. Genetic algorithms

	5. New proposals
	5.1. Early filtering
	Filtering based on static properties
	Filtering based on dynamic properties

	5.2. Utility function analysis
	5.3. Utility function decomposition
	5.4. Distribution
	5.5. Warm-up time
	5.6. Decision model framework

	6. Conclusion and further work
	Acknowledgements
	References

