
Can Graph Transformation Make Aspect Languages for BPEL Redundant?

Roy Grønmo
SINTEF, Oslo, Norway
roy.gronmo@sintef.no

Abstract—The aspect language AO4BPEL has been intro-
duced as a way to modularize cross-cutting concerns in Web
service compositions that are specified in BPEL. AO4BPEL can
be difficult to understand and to write for non-XML experts.
This paper explores if algebraic graph transformation rules
can be used to specify BPEL aspects at the modeling level, and
make new aspect languages like AO4BPEL redundant. Three
AO4BPEL examples, taken from the literature, are used to test
the suitability of graph transformation as a means to simulate
BPEL aspects.

Keywords-Web service composition; graph transformation;
aspect-oriented; BPEL; business process; workflow; UML ac-
tivity model; AO4BPEL;

I. Introduction

Aspect-orientation has been introduced as a way to modu-
larize cross-cutting concerns in programming, modeling and
specification languages. AspectJ [13] is the most famous
aspect-oriented language to date. AspectJ allows program-
mers to specify aspects for Java programs and AspectJ
syntax is based on the Java syntax. In this tradition, the
AO4BPEL XML language [3] has been proposed as an
aspect language to modularize cross-cutting concerns in
BPEL [11]. BPEL is an XML language to specify executable
Web service compositions.

An aspect language typically defines a joinpoint model to
denote the possible structures or element types that can be
matched by aspects in the target language. An aspect con-
tains a pointcut to select joinpoints, and an aspect contains
an advice to specify the action to take at the joinpoints, i.e.,
the so called weaving.

An XML-based representation can be difficult to under-
stand and to write for non-XML experts. This is why several
proposals (e.g., [21], [17]) suggest to specify a Web service
composition via a graphical modeling language, e.g., by
UML activity models or BPMN, instead of directly in BPEL.
Then a BPEL document can be generated from such a model.

In the following we assume that the user has access to
such an automated transformation from UML activity mod-
els to BPEL. This gives the opportunity to define aspects at
the modeling level as an alternative to AO4BPEL, have these
aspects statically woven into a model, and then generate a
woven BPEL document. From the user perspective, the effect
of the model weaving is the same as with weaving at the
BPEL level. With a model weaving approach we can freely

switch to another execution language or execution engine,
without having to change our aspects.

This paper explores if the well-established algebraic
graph transformation (GT) [14] can be used to express
BPEL aspects at the modeling level. If the GT approach
is successful, then it is questionable if there is a need to
invent new aspect languages for BPEL. Instead an existing
GT tool like AGG [23] can perform the weaving. AGG can
also perform a confluence and termination analysis of the
weaving process for a fixed set of aspects.

As our case study we examine if and how GT rules
can express three AO4BPEL aspects given in a previous
paper by Charfi and Mezini [3]. These three examples are
intentionally chosen since they together cover the most
important parts of AO4BPEL, which are the different advice
and joinpoint types. AO4BPEL and GT are compared with
respect to expressiveness and user-friendliness as the two
main requirements. The case study shows that an aspect that
inserts new behaviour before some existing behavior may be
problematic to simulate by GT in certain situations, and we
discuss how this can be solved.

The expressiveness requirement is about the kind of struc-
tures that can be matched by the language, which is restricted
by the pointcut expressiveness and the joinpoints that are
allowed. Also, we consider the advice expressiveness, i.e.,
the kind of structures that can be inserted and the ways that
we can change the existing structures.

The user-friendliness requirement means that it should
be easy to express the most common types of aspects,
and such aspect definitions should be easy to maintain
and understand. There should be a low risk that the user
accidentally expresses incorrect aspects.

This paper is structured as follows. Section II describes
the preliminaries about BPEL and UML activity models in
a Web service composition context, and about AO4BPEL
and graph transformation to express BPEL aspects. Section
III investigates three AO4BPEL examples to see if they can
be expressed as graph transformation rules to simulate the
same effect. Section IV discusses different weave strategies
and compares AO4BPEL against graph transformation with
respect to the two main requirements of expressiveness and
user-friendliness. Section VI describes related work. Finally,
section VII concludes the paper.

II. Preliminary
This section is divided into two subsections. The first

subsection describes how BPEL and UML activity models
both can be used to specify a Web service composition. The
second subsection introduces AO4BPEL and GT that both
can be used to modularize cross-cutting concerns for a Web
service composition specified by BPEL or a UML activity
model respectively.

A. BPEL and UML activity models

BPEL is an XML language that is used to specify a Web
service composition. The composite Web service takes some
input data and produces some output data, which is reflected
in its interface and captured in a WSDL description. A
BPEL document describes the internal process of a Web
service, which consists of control flow, data flow, data
transformations and calls to other Web services.

UML 2 activity models can be used to specify the
same information as described by a BPEL document. In
order to use activity models, we need to define a UML
profile, i.e., extensions tailored for Web service information.
UML provides standard extension mechanisms as tagged
values, stereotypes and OCL constraints. Tagged values for
portType, operation, WSDL file etc. can be associated with
a UML activity element to precisely denote a call to a Web
service operation.

Figure 1 gives an overview of a possible mapping between
BPEL and activity models. The composite Web service is
represented by the outermost activity in the activity model.
UML input pins of the composite Web service correspond
to the receive activity in BPEL, and output pins of the
composite Web service correspond to the reply activity in
BPEL. A pin is placed on the boundary of its owner activity.
We use arrows to distinguish input pins from output pins.
A Web service takes a single XML document as input and
returns a single XML document as output. The different parts
in an input/output XML document correspond to pins, and
the set of input/output pins correspond to the input/output
XML document.

UML data flow from one pin/data object to another
corresponds to an assign element with a nested copy element
in BPEL. Pins and data objects correspond to variables in
BPEL. A UML control flow corresponds to sequence in
BPEL. Contained activities in the outermost UML activity
correspond to internal calls to other Web services, for which
BPEL uses the invoke elements.

In Figure 2 we show a travel package service as an activity
model, which corresponds to a BPEL example from Charfi
and Mezini [3] (the BPEL code is omitted due to space
restrictions). The service takes the relevant cities (fromCity
and toCity) and the travel dates as input, and returns
information about possible flights and hotels. Internally, this
composite Web service calls a flight service and a hotel
service, sequentially one after the other. These could also

Mapping between BPEL and UML

Outermost Activity

receive replysequence
variable

assign/copy
invoke

Figure 1. Mapping from UML activity model to BPEL

Listing 1 of a Travel Service –
BPEL in UML

Flight Service
{portType=“LufthansaPT“, ...

operation=“findAFlight"}

flightResponse

Hotel Service
{portType=“HotelPT“, ...
operation=“findARoom"}

hotelResponse

fromCity toCity fromDate toDate

flightInfo hotelInfo

Figure 2. BPEL travel package service represented as a UML activity
diagram

have been called in parallel, but we keep the same process
as given in the original example.

In the following we assume that each activity has exactly
one incoming and one outgoing control flow. This can be
ensured by using explicit control flow constructs such as
fork, join, decision and merge whenever necessary. Such a
condition is considered good practice, and it will simplify
the specification of appropriate graph transformation rules.

B. AO4BPEL and Graph Transformation

AO4BPEL has a joinpoint model that allows to match
receive, reply and invoke activities in addition to messages
(soapmessagein and soapmessageout). The pointcut is ex-
pressed by using the XPath language, which is a general
language to select elements within XML documents.

There are three advice types (before, after and around)
in AO4BPEL that correspond to those available in AspectJ.
The advice type defines where to place the new advice
code in relation to the matched joinpoints. The advice code
is specified as pure BPEL.

An algebraic graph transformation rule is typically
displayed with a left hand side graph (LHS), a right
hand side graph (RHS), and a number of negative
application condition graphs (NACs). When using graph
transformation to simulate aspect-orientation, we should
clarify the terminology. A rule (or possibly a set of rules)
correspond(s) to an aspect, a LHS corresponds to a pointcut,
a RHS corresponds to an advice, and transformation (a
sequence of derivation steps) corresponds to weaving. Below

we provide the known formal foundation of algebraic graph
transformation [14].

Definition 1: (Graph and graph morphism) A graph
G = (GN ,GE , src, trg) consists of a set GN of nodes, a set
GE of edges, two mappings src, trg : GE → GN , assigning
to each edge e ∈ GE a source node src(e) ∈ GN and target
node trg(e) ∈ GN . A graph morphism f : G1 → G2 from one
graph to another, with Gi = (GE,i,GN,i, srci, trgi), (i = 1, 2),
is a pair f = (fE : GE,1 → GE,2, fN : GN,1 → GN,2) of
mappings, such that fN ◦ src1 = src2 ◦ fE and fN ◦ trg1 =

trg2 ◦ fE (preserve source and target).
A graph morphism f : G1 → G2 is injective if fN and

fE are injective mappings. Only injective graph morphisms
will be relevant in this paper.

Definition 2: (Rule) A graph transformation rule p : L
l
←

I
r
→ R consists of three graphs L(LHS), I(Interface) and

R(RHS) and a pair of injective graph morphisms l : I → L
and r : I → R.

Definition 3: (Match and Dangling Condition) Given a
rule p : L

l
← I

r
→ R and a graph G. Then an occurrence

of L in G, i.e., an injective graph morphism m : L → G, is
called a match. A match m for rule p satisfies the dangling
condition if no node in m(L \ l(I)) is incident to an edge in
G \ m(L \ l(I)).

Definition 4: (Derivation Step) Given a graph G, a graph
transformation rule p : L

l
← I

r
→ R, and a match m : L→ G,

then there exists a derivation step from the graph G to the
graph H if and only if the dangling condition is satisfied. H
is constructed as follows:

1) Remove the image of the non-interface elements of L
in G, i.e., H′ = G \ m(L \ l(I)).

2) Add the non-interface elements of R into H, i.e., H =

H′ ∪ (R \ r(I)).
A graph transformation rule can also have an arbitrary

number of negative application condition graphs [14]. Such
a graph is an extension of the LHS which prevents matches
from being applied in a derivation step. In addition to the
above, we adopt the theory of typed attributed graphs [10],
where graphs are extended by assigning types to nodes and
edges, and by assigning a set of named attributes to each
node type. A graph morphism must now also preserve the
node and edge types, and the attribute values.

In the graph transformation rules throughout this paper
we only explicitly display the LHS and the RHS graphs,
while the interface graph is given by shared identifiers of
elements in the LHS and the RHS. Such identifiers are
displayed next to its element.

We intend to specify the rules based on the concrete
syntax of UML activity models, which we believe will
make the rules more user-friendly to specify. Such concrete
syntax-based rules are mapped to traditional abstract
syntax-based rules for transformation in an existing graph

transformation tool.
The AO4BPEL weave strategy is to identify all matches

in the base BPEL statically, but to apply the advice code
at runtime. This means that the number of matches is finite
and the weaving process will always terminate. Currently,
AO4BPEL does not support multiple aspects that are de-
pendent.

Unlike AO4BPEL a set of GT rules is applied as long as
possible. A set of GT rules can be non-terminating such as
when the RHS of a rule contains a match of the rule’s LHS.
The AO4BPEL weave strategy can however be simulated
by GT if we mark all the RHS elements to indicate that
these can no longer take part in any matches. The LHS
elements must then also be extended to check that none of
its elements have such a RHS marking. One alternative is
to extend all nodes and edges by a meta attribute exclude
of type boolean. As the initial marking, the value of all the
exclude attributes are set to false in the source graph and
all the LHSs, while the exclude attributes are set to true in
all the RHSs.

Since our rules are based on the concrete syntax with
a mapping to abstract syntax-based rules (c2a), the initial
marking can be part of this mapping. Hence, the rule
specifier does not need to clutter the rules by all these
exclude attributes. Furthermore, we may switch between
different transformation strategies, by defining different c2a
mappings, without having to change the rules on concrete
syntax. We assume that AO4BPEL’s weave strategy is sim-
ulated by the marking solution discussed above when we
in the next section specify GT rules to simulate the same
effects as achieved by some AO4BPEL code examples.

We have developed a proof-of-concept implementation of
the c2a mapping for activity model-based rules available for
download at [19], and further described in [8], [9], [20].

III. Simulating BPEL Aspects by Graph Transformation

In this section we investigate three AO4BPEL aspects,
given by Charfi and Mezini [3], and we try to re-specify
these aspects as GT rules that have the same effect. Due
to limited space, we have removed the partnerLinks and
variables sections from the AO4BPEL listings and do not
discuss these details.

A. Example: Advice of type ’after’

An aspect to count the number of calls to Lufthansa’s
findAFlight service is taken from Charfi and Mezini
[3]. The need to count these calls is because Lufthansa is
assumed to charge clients depending on the number of calls
to their service. Such calls occur in two different processes
and can be counted by adding a counting service after each
of these two calls. However, it is better to modularize this
counting service into a single aspect. With the counting
aspect, we can check if the bills we receive from Lufthansa
are correct.

<pointcut...>
//process//invoke[@portType="LufthansaPT" and

@operation="findAFlight"]
</pointcut>
<advice type="after">

<sequence>
<assign><copy><from expression="1"/>

<to variable="increaseRequest" part="increaseBy"/>
</copy></assign>
<invoke partnerLink="CounterWS" portType="CounterPT”

operation="increaseCounter”
inputVariable="increaseRequest”
outputVariable="increaseResponse"/>

</sequence>
</advice>

{porttype=”LufthansaPT,”
operation=”findAFlight”}

LHS

RHS

id=1

id=1
Count Lufthansa findAFlight

{partnerLink="CounterWS“,
portType="CounterPT“,

operation="increaseCounter"}”1”
increaseRequest increaseResponse

id=2

id=2

AO4BPEL aspect
GT rule

Figure 3. The counting aspect represented by AO4BPEL

AO4BPEL. An extract of the AO4BPEL aspect is shown
in Figure 3. The XPath expression in the pointcut selects
a set of all the invoke elements that are used to call the
findAFlight service.

The advice is of type after, which means that the advice
content shall execute immediately after the execution of each
joinpoint. When the execution of the advice content has
terminated, then the BPEL engine executes the behavior that
originally came after the joinpoint.

The body of the advice element adds two new BPEL
actions. The first action is a copy element which assigns
the fixed value 1 to a variable. This variable is used as input
parameter by the second action, which is an invoke element
for the new counter service.

GT. The counter aspect can also be specified with a
single GT rule as shown in Figure 4. The rule’s LHS
matches an activity with portType and operation values
that correspond to calls to the Lufthansa service. We also
need to match the outgoing control flow of the Lufthansa
activity (id=2), so that the new behavior can be connected
properly to the existing control flow graph.

<pointcut...>
//process//invoke[@portType="LufthansaPT" and

@operation="findAFlight"]
</pointcut>
<advice type="after">

<sequence>
<assign><copy><from expression="1"/>

<to variable="increaseRequest" part="increaseBy"/>
</copy></assign>
<invoke partnerLink="CounterWS" portType="CounterPT”

operation="increaseCounter”
inputVariable="increaseRequest”
outputVariable="increaseResponse"/>

</sequence>
</advice>

{porttype=”LufthansaPT,”
operation=”findAFlight”}

LHS

RHS

id=1

id=1
Count Lufthansa findAFlight

{partnerLink="CounterWS“,
portType="CounterPT“,

operation="increaseCounter"}”1”
increaseRequest increaseResponse

id=2

id=2

AO4BPEL aspect
GT rule

Figure 4. The counting aspect represented by GT

The RHS inserts the activity representing the counter
service with a new control flow after the Lufthansa service,
and uses the matched control flow (id=2) as its outgoing
control flow. This ensures that we make a proper control flow
graph without dangling activities and where the new activity
has exactly one incoming and one outgoing control flow. The

copy element from AO4BPEL becomes an incoming data
flow for the input parameter of the counter service activity.
This is an implicit control flow that can start at any time as
long as it happens before the counter service.

B. Example: Advice of type ’around’

The second aspect (also taken from Charfi and Mezini
[3]) monitors the execution time of certain services.

AO4BPEL (Figure 5). The services to be monitored are
given by the AO4BPEL pointcut that selects all invoke
activities which call one of the two operations findAFlight
or findARoom. The aspect uses an advice of type around,
which allow us to insert a call to a start timer service before
the joinpoint, and to insert a call to a stop timer service after
the joinpoint. The proceed element (<proceed/>) is used to
position the execution of the joinpoint in between the new
BPEL code.

<pointcut...>
//invoke[@operation="findAFlight"] |
//invoke[@operation="findARoom"]

</pointcut>
advice type="around">

<sequence>
<assign><copy>

<from variable="ThisJPActivity" part="name"/>
<to variable="startTimerRequest" part="activityName"/>

</copy></assign>
<invoke partnerLink="AuditingWS" portType="AuditingPT”

operation="startTimer” inputVariable="startTimerRequest”
outputVariable="startTimerResponse"/>

<proceed/>
<assign>...</assign>
<invoke partnerLink="AuditingWS" portType="AuditingPT”

operation="stopTimer” inputVariable="stopTimerRequest”
outputVariable="stopTimerResponse"/>

</sequence></advice>

Figure 5. Monitor execution time aspect represented by AO4BPEL

GT. Figure 6 shows the first attempt at defining a cor-
responding GT rule. An or expression in the position of
an attribute value in a LHS activity is used to express
that the operation of the activity is either findAFlight or
findARoom. Our previous paper [8] describes how such or
expressions in a GT rule can be translated into multiple or
expression free GT rules.

This first version of a GT rule for the monitoring aspect
is not sufficient in some cases where we have data flow from
a branch of parallel behavior. We illustrate the problem in
Figure 7 which shows a possible woven model extract of the
monitor aspect, where the B activity is the joinpoint activity.
Due to the data flow from d1 to d2, that goes from one of
the parallel branches to the other, the A activity has to be
completed before the B activity starts. So there is an implicit
control flow dependency from the activity A to the activity
B.

Because of the implicit control flow, there is no guarantee
that the start timer activity starts immediately before the B

?WSName
{operation=”findAFlight”} OR {operation =”findARoom”}

LHS

RHS

id=1 id=3
id=2

id=2Start Timer
{portType="AuditingPT“, ...
operation="startTimer"}

startTimerRequest

?WSName

Stop Timer
{portType="AuditingPT“, ...
operation="startTimer"}

id=1

id=3startTimerResponse

stopTimerRequest

?WSName

stopTimerResponse

Figure 6. Monitor execution time aspect represented by GT - version 1

• Implicit control flow may break the timing
activities

B

Start TimerA

The problem of implicit control flow
from data flow

d1

d2

<flow>
<sequence>

<invoke name=”A”...>
<assign><copy>

<from variable=”d1”...>
<to variable=”d2”...>

</copy></assign>...
</sequence>
<sequence>

<invoke name=”Start Timer”...>
<invoke name=”B”...>...

</sequence>
</flow>

...

...

Figure 7. Data flow represents implicit control flow. Left: UML activity
model extract. Right: BPEL document extract

activity, as intended. If the A activity is still running, then
the time it takes to finish this activity is incorrectly included
in the timer that is supposed to only measure the execution
time of the B activity.

The AO4BPEL approach does not have this limitation
since the matching of a joinpoint is done at runtime, fol-
lowed by execution of the corresponding advice. This means
that a match is first encountered when the B activity is about
to execute.

We now discuss three alternative ways to fix the v.1 GT
rule that simulates the aspect to monitor execution time. The
three alternative rules are a bit simplified in the figure. We
do not include identical parts from version 1 that are not
relevant for the discussion.

The first alternative rule is given in the left part of
Figure 8. The LHS from v.1 of the GT rule is extended by
using our previously proposed collection operator for graph
transformation [7]. For graph transformation, there exist
other proposals for constructs like the collection operator
in e.g., [22], [18].

The collection operator matches all the input pins and
incoming data flow that goes to the activities we want
to match. The RHS introduces a new sub activity with
the same input pins as a matched activity and with the
incoming data flow moved from the matched activity’s input
pins. The sub activity must contain a start and end activity.

Three alternative ways to fix v.1

id=2

Start Timer

<<before>>

alternative 3

id=1

Stop Timer

id=3

id=2

Start Timerid=1

Stop Timer

alternative 1

id=4

LHS id=1

id=3

id=2id=4
?name:
?type

*

id=3

RHS

LHS

RHS

<same as in v.1>

id=2

Start Timer

id=1

Stop Timer

id=3

LHS

RHS

<same as in v.1>

always treat
this as

’immediately
before’

alternative 2

?name:
?type

?name:
?type

Figure 8. Alternative ways to fix the v.1 GT rule that simulates the aspect
to monitor execution time

In addition it contains the three activities Start Timer,
the joinpoint activity (id=2), and the Stop Timer in that
sequential control flow order. There is also a data flow from
each of the sub activity’s input pins to the joinpoint activity’s
input pins.

A sub activity will not start before all its input pins are
available. Hence, this GT rule will ensure that the joinpoint
activity in the woven model is started immediately after the
start timer activity has completed.

The second alternative rule is given in the middle part
of Figure 8. The only change from the v.1 GT rule is that
the control flow from the start timer activity to the matched
activity has been stereotyped as «before», which has the
semantics that the source activity must execute immediately
before the target activity.

This new type of control flow, which we will refer to
as BFlow, is an extension of the UML activity modeling
language, and we need to provide special treatment of the
BFlow somewhere on the way towards the running com-
position in a BPEL engine. The alternatives range from: (1)
transforming a GT rule with BFlow into a corresponding GT
rule without BFlow, (2) transforming a GT rule with BFlow
into an AO4BPEL aspect, and (3) extending the existing
transformation specification from activity model to BPEL
so that activity models with BFlows are properly mapped.
In the first alternative, the transformation can introduce a
sub activity for each BFlow in a way that would transform
our monitor GT rule in the middle part of Figure 8 into the
GT rule to the left.

The third alternative rule identically specified as the v.1
of the GT rule. However, now all the new control flows that
are added by a GT rule are interpreted as BFlows.

With alternative three, we cannot define a new incoming
control flow which is not a BFlow (since all new control
flows are implicitly interpreted as BFlows). This can have

a negative impact on the performance, since the source
activities of BFlows may have their execution start delayed,
also in cases where it is not necessary.

C. Example: joinpoint of type ’reply’

The third aspect (also taken from Charfi and Mezini
[3]) adds information about relevant car rental offers as
an addition to the existing output information from three
different services.

AO4BPEL. The AO4BPEL code in Figure 9 defines a
pointcut that matches reply activities within three different
BPEL processes. For all these three processes, the similar
advice of type before is used. This means that the advice
body executes before the output data is finalized and is a way
to add some action at the end of a service and to modify
the final output data.

<pointcut name="about to reply" contextCollection="true">
//process[@name="travelProcess"]//reply[@operation ="getTravelPackage"]
| //process[@name="flightProcess"]//reply[@operation="getFlight"]
| //process[@name="hotelProcess"]//reply[@operation="showHotels"]| //process[@name hotelProcess]//reply[@operation showHotels]
</pointcut>
<advice type= "before">

<sequence><assign><copy>
<from variable="ThisProcess(clientrequest)" part="deptDate"/>(q) p p
<to variable="getCarRequest" part="startDate"/>

</copy>...</assign>
<invoke partnerLink="CarPortal" portType="CarPT"

operation="getCar” inputVariable="getCarRequest”p g p g q
ouputVariable="getCarResponse"/>

<assign><copy>
<from

expression="concat(getVariableData(ThisJPOutVariable),p (g (),
getVariableData(getCarResponse))"/>

<to variable="ThisJPOutVariable"/>
</copy></assign>

</sequence></advice>q

Figure 9. Car rental aspect represented by AO4BPEL

The advice body will call a service to get car rental offers
based on the relevant input data that are already available
within the existing service composition. The information
about car rental offers is concatenated with the original
output of the service composition to constitute the final
output.

GT. A corresponding GT rule to simulate the AO4BPEL
aspect is shown in Figure 10. We use an or expression to
capture that there are three alternative services that we intend
to match. The LHS matches a final node inside the matched
service. We also need to match the relevant data pins that
shall serve as input to a new car rental offers service which is
inserted into the control flow before the final node. The to be
matched input pins must be part of the matched service, just
as they need to be part of the matched process in AO4BPEL.

IV. Weave Strategies

Figure 11 gives an overview of three alternative ways
to specify and weave aspects into an existing Web service
composition. The composition has three levels. On top is

LHS RHSid=1

deptDate

id=1id=2

id=2
id=5

travelProcess
{operation=

”getTravelPackage”}
ORdeptDate

deptDate
Get Car

{portType=“CarPT“, ...
operation=“getCar"}

startDate

endDateid=3

id=5OR
flightProcess
{operation=

”getFlight”}
OR

returnDate

operation getCar }

locationid=3
id=4

id 6

hotelProcess
{operation=

”getHotels”} carRental

returnDate
airport

id=4 id=5

id=6

carRental

airport id=6

Figure 10. Car rental aspect represented by GT

the modeling level where we in this paper use UML activity
models. In the middle is the XML level, where a Web service
composition is represented by a BPEL document. At the
bottom is the runtime level, where a BPEL engine runs the
composite Web service.

In the AO4BPEL weave approach, a service composition
has been specified by a BPEL document, which is given to
a BPEL engine for execution. An aspect is specified as an
AO4BPEL document and woven at runtime with the running
composition. The BPEL engine needs to be extended so
that it can weave AO4BPEL aspects, which is the case for
the BPEL engine developed by Charfi and Mezini [3]. In
the AO4BPEL approach, nothing is expected to be carried
out at the modeling level. However, a composition may be
specified at the modeling level followed by a transition to
BPEL.

There are two main GT approaches to defining aspects,
where one alternative uses a static weaving and the other
uses a runtime weaving. In both alternatives, a composi-
tion is specified as a UML activity model with a graph
representation. The user defines the model in the concrete
syntax of the modeling language, and an underlying mapping
derives the graph representation of the model. Furthermore,
an aspect is specified as a GT rule. A GT rule is also
based on the concrete syntax of the UML activity modeling
language, and again an underlying mapping derives the GT
rule in abstract syntax.

In the static GT weave approach, we can simply reuse
an existing graph transformation tool to perform a model
weaving. The transformed graph representation of the UML
activity model represents the woven composition. This com-
position can be transformed to a woven BPEL document by
an existing UML2BPEL transformation tool. Finally, this
woven BPEL is sent to a BPEL engine for execution.

In the runtime GT weave approach, the weaving is not

Model level (UML act. model)

XML level (BPEL)

Run-time level (BPEL engine)

CBPEL

R
CR

Levels of
a composite Web service

Alt 1: AO4BPEL
approach

AGTRCG
S = CW

G

Cw
R

Cw
BPEL

Alt 2: GT approach
w/ static weaving

CBPEL

R
CR

CG AGTR

transition (exists)
transition (needs to be developed)

C composition
A aspect

R runtime
S static
W woven

GTR graph transf. rule
G graph
 weavingLegends:

Alt 3: GT approach
w/ runtime weaving

AAO4B

AAO4B

AAO4B

AAO4B

AO4B AO4BPEL

Figure 11. Overview of three alternative weave strategies

performed by an existing graph transformation tool. Instead,
the GT rule is transformed into an AO4BPEL document,
and this transformation needs to be developed since such a
transformation, to our best knowledge, does not exist. With
the generated AO4BPEL document, a runtime weaving can
be performed similarly to the AO4BPEL approach.

A GT rule can in general be more expressive than an
AO4BPEL aspect. This means that some checks on the GT
rule is needed, to report if the GT rule can be transformed to
AO4BPEL. It should for instance be checked that the LHS
does not contain a sequence of activities, and that the LHS
does not contain control flow constructs such as decision
and merge. If the GT rule is not too expressive, then we
believe that it can be feasible to specify a transformation to
AO4BPEL by looking for patterns similar to those described
in the examples given in the previous section.

V. Comparison

This section compares GT vs. AO4BPEL with respect to
our two requirements: expressiveness and user-friendliness.
We use the term ’basic GT’ to mean the well-known
algebraic GT which for instance has tool support by AGG.
Extensions like the collection operator, or expressions in
attribute values and BFlow are not part of basic GT.

A. Expressiveness

Two of the three examples above can be expressed with
basic GT. The example with the around advice is a bit
more problematic if we try to use basic GT without any
extensions. Without or expressions and a construct like the
collection operator, we can still use GT to express the aspect.
However, we need to define two GT rules, one for each or
operand in the rule defined above. In addition we need to
hardcode the exact number of input pins when there is no
construct like the collection operator available. In the around
advice example above, the input pins are known, and we
expect this to be the normal case. Basic GT is not able to

express aspects using before or around advices where the
number of input pins is not known.

We argue that the possible AO4BPEL types not shown
by the three examples above, also are expressible with GT.
A before advice is just a simplified version of an around
advice. A GT rule for a receive joinpoint can be specified in
a similar manner to the reply joinpoint example above where
we add behavior after the initial node instead of before the
final node.

AO4BPEL has a predefined joinpoint model and three
fixed advice types, which gives limited expressiveness com-
pared to GT. In GT any LHS graph pattern can serve as a
joinpoint and any RHS graph pattern can serve as advice
type. In AO4BPEL only single activities or single messages
can be a joinpoint, i.e., a match. GT can for instance specify
the matching of two or more activities in a sequence, all
activities with exactly two input pins, all activities without
an output pin (achieved by a so called negative application
condition), two activities that are started in parallel, all the
incoming control flow of a merge node etc. None of these
examples are expressible with AO4BPEL.

In AO4BPEL there are only three advice types (before,
after and around). GT is more expressive since a RHS
can introduce parallel behavior, alternative behavior, and
new sub activities that include all or some of the matched
elements. Charfi and Mezini [3] argue that BPEL links
and the around advice can be used together to simulate
some kinds of parallel advice. However, it is quite limited
compared to what GT supports.

B. User-friendliness

GT, and specifically GT rules based on some preferred
concrete syntax such as UML activity models, is normally
considered a benefit compared to specifying in the lower
level XML-based AO4BPEL. This is the same benefit as
achieved by specifying a composite Web service with UM-
L/BPMN towards using BPEL. In the continued discussion
about the user-friendliness we ignore this first benefit that

was in favour of GT.
An advice of type after is fairly easy to specify with

AO4BPEL, and also with basic GT as long as we ensure that
all activities have a single incoming and a single outgoing
control flow. In AO4BPEL, the after behavior is ensured
regardless of the actual syntactic structure.

An advice of type before is difficult to express with basic
GT. The problem with before advice also applies to around
advices, since an around advice includes a before advice.
With basic GT, a before advice needs to be specified
in a quite cumbersome way, as shown by alternative 1 in
Figure 8. By extending basic GT with one of the alternative
strategies proposed by alternatives 2 and 3 in Figure 8, then
a before advice can be specified as easily as with an after
advice.

Without support for or expressions within attribute values,
then we need to make one almost identical GT rule for
each or operand. This is the case for the monitor execution
time example (Figure 6) and for the add car rental example
(Figure 10).

The user-friendliness can also be compared with respect
to the risk of producing aspects/rules that lead to incorrect
woven results. For GT which is more expressive than
AO4BPEL, this risk seems to be higher. Consider the after
advice from Figure 4. It is easy to forget to match (and
move) the outgoing control flow of the LHS activity. This
leads to the invalid woven result of producing the new
activity as a dangling activity, i.e., the new activity will not
have any outgoing control flow.

With AO4BPEL it is not desirable to have a before
advice combined with a joinpoint of type receive, and it
is not desirable to have an after advice combined with a
joinpoint of type reply. This is because the receive and reply
activities represent the very first and the very last actions of
the entire Web service composition. It is therefore unclear
what it would mean in general to add behavior before a
receive or to add behavior after a reply activity. The receive
and reply activities also represent the public interface of the
composite Web service, and changes to this interface should
be avoided according to Charfi and Mezini [3].

The XPath expression can also lead to incorrect
AO4BPEL code, since an XPath expression in general can
select any elements in a BPEL document and not only those
supported by the joinpoint model. This problem does not
occur for GT, since any graph pattern can be an allowed
joinpoint.

C. General Comparison

The GT approach with static weaving has several ben-
efits compared to a runtime weaving. Firstly, it can be
independent of a Web service composition language and
support all those composition languages from which there
exists a transformation from UML/BPMN. The AO4BPEL
runtime weaving is handled by extending a BPEL engine,

which means that AO4BPEL is tied not only to BPEL
as the composition language but also to BPEL engines
that have been extended to support AO4BPEL. With a
runtime weaving, there is also a need for runtime checks
which can slow down the execution of the Web service.
However, Charfi and Mezini’s experiments in [3] indicate
that the performance overhead in practice is negligible. Other
benefits with a static weaving is that the woven result can
be viewed by the designer, such as for documentation or for
manual validation purposes. Finally, BPEL tools allow us
to perform a static analysis to detect possible errors on the
statically woven BPEL.

A drawback of using GT as a BPEL aspect language is
that it requires more tool support in order to be used in
practice. This includes a mapping from UML (alternatively
BPMN) to BPEL, and a mapping from GT concrete syntax-
based rules to GT abstract syntax-based rules.

If there are multiple aspects that are dependent, then the
weave order is important. Such dependency is currently not
supported by AO4BPEL. GT on the other hand, provides a
well-established theory and associated tools [23] that can be
used to automatically detect dependencies among its rules.
For dependent rules, the notion of layers can be used to
control the transformation order.

VI. RelatedWork

We investigated using UML activity models with a map-
ping to BPEL, while Ouyang et al. [17] present a mapping
from BPMN diagrams to BPEL. Our results in this paper
should also be valid if we use BPMN instead of UML.
This is because BPMN and UML activity models use
quite similar ways to display control and data flow. The
data flow in BPMN can also lead to implicit control flow
between activities, and thus using graph transformation to
model before (and around) advices will in general also be
difficult for BPMN.

The Padus tool from Braem et al. [2], [1] uses Prolog-
based relations to express pointcuts, and it uses BPEL code
for the advice. XSLT is used to statically weave the advice
with the original BPEL into a woven BPEL that can be
executed in a standard BPEL engine. Padus provides a richer
joinpoint model than in AO4BPEL, including control flow
constructs like while and switch.

Padus has an advice of type in as an addition to those
available in AO4BPEL. An in advice allows us to insert new
BPEL elements as children to a number of existing BPEL
elements. Many of these can easily be expressed with GT,
but adding a child element to a parallel branch (e.g., flow)
is not easy with GT. This is because GT has no general way
to match the related pairs of a fork and a join in an activity
model. If we carefully design the metamodel with an explicit
edge that relates the fork and join, then a GT rule on the
abstract syntax can simulate an in advice also for parallel
branches.

Courbis and Finkelstein [5] is quite similar to AO4BPEL,
except the advice language is Java instead of BPEL.

Whittle et al. [25] have also used algebraic graph trans-
formation to simulate aspects, but so far the approach has
not been configured for UML activity models or BPMN.

Model transformations can be seen as a generalization of
aspect weaving. Hence, by making BPEL processes available
at the modeling level enable us to specify BPEL aspects also
by general model transformation tools like QVT [16] and
ATL [12].

Xu et al. [26] defines a UML profile to model aspects
for a Web service composition, where the composition is
represented by UML activity models. Like other aspect
languages it suffers from having a fixed predefined joinpoint
model. Their aspects are limited to expressing that a new
Web service call shall be inserted before, after or instead of
a set of matched Web service calls. Furthermore, they have
not specified how to implement the weaving.

Some recent approaches have defined adaptive and dis-
tributed Web services that go beyond the capabilities within
BPEL [15], [24], [6]. These approaches do not yet have a
well-established relation to graphical models, and hence it
is non-trivial to see how GT can be helpful.

In parallel with our work, Charfi et al. [4] have presented
an aspect-oriented language for BPMN called AO4BPMN.
The possible joinpoints are limited to single activities or
events, while the advice can be of arbitrary complexity.
The authors propose to tag the base model elements that
are to be affected by aspects instead of a separate pointcut
model. Unfortunately, this early work on AO4BPMN does
not include information about how to weave the aspects with
the base model. This means that we cannot fully evaluate
the capabilities of AO4BPMN with respect to the three
AO4BPEL examples we have used in this paper.

VII. Conclusions

This paper has investigated if GT rules can simulate
BPEL aspects at the modeling level and make BPEL as-
pect languages such as AO4BPEL redundant. We focused
on expressiveness and user-friendliness of specifying the
BPEL aspects, as our two main requirements. There are
pros and cons with both alternatives with respect to these
requirements.

Since GT rules represent a viable alternative to
AO4BPEL, it can be questioned if defining a completely new
BPEL aspect language is really needed. With a new aspect
language it is necessary to specify an explicit joinpoint
model, a pointcut language and a set of advice types. These
parts are implicitly supported by the general apparatus of
GT. Furthermore, it can be questioned if such an aspect lan-
guage with a predefined joinpoint model will be expressive
enough for unforeseen aspects.

GT allows us to define aspects/rules at a higher level by
using graphical models in UML or BPMN. On the other

hand, this paper shows that it can be difficult to specify an
advice of type before (and thus also around) with GT.
We propose a new control flow, called BFlow, dedicated to
handle before advices.

Further case studies are needed to see what kinds of
aspects are needed in practice, so that we know more about
the needed expressiveness. Such experience may reveal the
need for extensions in both AO4BPEL and GT.

Acknowledgment

The work reported in this paper has been funded by The
Research Council of Norway, grant no. 167172/V30 (the
SWAT project), and by the ENVISION project grant no.
249120 (EU FP7).

References

[1] M. Braem and N. Joncheere. Requirements for Applying
Aspect-Oriented Techniques in Web Service Composition
Languages. In Software Composition, 6th International Sym-
posium, SC, volume 4829 of Lecture Notes in Computer
Science. Springer, 2007.

[2] M. Braem, K. Verlaenen, N. Joncheere, W. Vanderperren,
R. V. D. Straeten, E. Truyen, W. Joosen, and V. Jonckers.
Isolating Process-Level Concerns Using Padus. In Business
Process Management, 4th International Conference, BPM,
volume 4102 of Lecture Notes in Computer Science. Springer,
2006.

[3] A. Charfi and M. Mezini. AO4BPEL: An Aspect-oriented
Extension to BPEL. In World Wide Web, pages 309–344,
2007.

[4] A. Charfi, H. Müller, and M. Mezini. Aspect-Oriented
Business Process Modeling with AO4BPMN. In Modelling
Foundations and Applications, 6th European Conference,
ECMFA, volume 6138 of Lecture Notes in Computer Science,
pages 48–61. Springer, 2010.

[5] C. Courbis and A. Finkelstein. Weaving Aspects into Web
Service Orchestrations. In IEEE International Conference on
Web Services (ICWS). IEEE Computer Society, 2005.

[6] A. Erradi, V. Tosic, and P. Maheshwari. MASC - .NET-
Based Middleware for Adaptive Composite Web Services.
In IEEE International Conference on Web Services (ICWS).
IEEE Computer Society, 2007.

[7] R. Grønmo, S. Krogdahl, and B. Møller-Pedersen. A Col-
lection Operator for Graph Transformation. In Theory and
Practice of Model Transformations, Second International
Conference, ICMT, volume 5563 of Lecture Notes in Com-
puter Science, pages 67–82. Springer, 2009.

[8] R. Grønmo and B. Møller-Pedersen. Aspect Diagrams for
UML Activity Models. In Applications of Graph Transfor-
mations with Industrial Relevance, Third International Sym-
posium, AGTIVE 2007, Revised Selected and Invited Papers,
volume 5088 of Lecture Notes in Computer Science. Springer,
2008.

[9] R. Grønmo, B. Møller-Pedersen, and G. K. Olsen. Compar-
ison of Three Model Transformation Languages. In Model
Driven Architecture - Foundations and Applications, 5th
European Conference, ECMDA-FA, volume 5562 of Lecture
Notes in Computer Science. Springer, 2009.

[10] R. Heckel, J. M. Küster, and G. Taentzer. Confluence of
Typed Attributed Graph Transformation Systems. In Graph
Transformation, First Int. Conf., ICGT, 2002.

[11] D. Jordan and J. Evdemon. Web Services Business Process
Execution Language Version 2.0. Committee Specification.
OASIS WS-BPEL TC., 2007.

[12] F. Jouault and I. Kurtev. Transforming Models with ATL.
In Satellite Events at the MoDELS 2005 Conference, Revised
Selected Papers, volume 3844 of Lecture Notes in Computer
Science. Springer, 2006.

[13] G. Kiczales, E. Hilsdale, J. Hugunin, M. Kersten, J. Palm,
and W. G. Griswold. An Overview of AspectJ. In ECOOP
’01: Proceedings of the 15th European Conference on Object-
Oriented Programming, 2001.

[14] L. Lambers, H. Ehrig, and F. Orejas. Conflict Detection for
Graph Transformation with Negative Application Conditions.
In Graph Transformations, Third Int. Conf., ICGT, Lecture
Notes in Computer Science. Springer, 2006.

[15] L. D. B. Navarro, M. Südholt, W. Vanderperren, B. D. Fraine,
and D. Suvée. Explicitly distributed AOP using AWED. In
Proceedings of the 5th International Conference on Aspect-
Oriented Software Development, AOSD. ACM, 2006.

[16] Object Management Group. MOF QVT Final Adopted Spec-
ification, OMG Document: ptc/05-11-01, November 2005.

[17] C. Ouyang, M. Dumas, W. M. P. van der Aalst, A. H. M. ter
Hofstede, and J. Mendling. From business process models to
process-oriented software systems. ACM Trans. Softw. Eng.
Methodol., 19(1), 2009.

[18] A. Rensink. Nested Quantification in Graph Transformation
Rules. In Graph Transformations, Third International Con-
ference, ICGT, Lecture Notes in Computer Science. Springer,
2006.

[19] Roy Grønmo. Proof-of-concept Model Transformation Tool
for UML Activity Models with Support for the Collection
Operator. http://folk.uio.no/roygr/ECMDA-2009-impl.zip.

[20] Roy Grønmo. Using Concrete Syntax in Graph-based Model
Transformations. PhD thesis, Faculty of Mathematics and
Natural Sciences, Univ. of Oslo, 2010.

[21] D. Skogan, R. Grønmo, and I. Solheim. Web Service
Composition in UML. In Proceedings of the 8th IEEE Intl
Enterprise Distributed Object Computing Conf (EDOC’04),
Monterey, California, September 2004.

[22] G. Taentzer. Parallel and Distributed Graph Transformation.
Formal Description and Application to Communication-Based
Systems. PhD thesis, Technische Universität Berlin, 1996.

[23] G. Taentzer. AGG: A Graph Transformation Environment
for Modeling and Validation of Software. In Applications
of Graph Transformations with Industrial Relevance, Second
International Workshop (AGTIVE), 2003.

[24] B. Verheecke, M. A. Cibrán, and V. Jonckers. AOP for
Dynamic Configuration and Management of Web Services. In
Web Services - ICWS-Europe 2003, International Conference,
volume 2853 of Lecture Notes in Computer Science. Springer,
2003.

[25] J. Whittle, P. Jayaraman, A. Elkhodary, A. Moreira, and
J. Araújo. MATA: A Unified Approach for Composing UML
Aspect Models based on Graph Transformation. Transactions
on Aspect-Oriented Software Development VI. Special Issue
on Aspects and Model-Driven Engineering, 5560, 2009.

[26] Y. Xu, S. Tang, Y. Xu, and Z. Tang. Towards Aspect
Oriented Web Service Composition with UML. In th An-
nual IEEE/ACIS International Conference on Computer and
Information Science (ICIS). IEEE Computer Society, 2007.

