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Abstract: For labour intensive organizations, finding a good match between the 
predicted workload and the scheduled workforce work capacity is crucial: One 
important step in this matching process is shift design. In a multi-skill shift design 
problem, the model must reflect the skill attributes of the employees and the time-
dependent demand of each skill type. For hospitals, a number of constraints and 
objectives complicate the picture, and in this paper we introduce models which reflect 
many of the challenges faced by planners at two reference hospitals in Norway. 
Experiments using mixed-integer programming solvers show promising results, and 
optimal solutions are in some cases found within seconds or a few minutes. 
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1. Introduction 
 

Workforce management (WFM), which involves matching workload with 
workforce, is important within the labour intensive health sector. A mismatch can 
lead to longer waiting times or expensive labour cost. When looking at the WFM 
process it is often divided into four steps; Workload prediction, staffing, shift 
design and/or scheduling, and nurse rostering (Bhulai et al. 2008). By nurse 
rostering, we mean the short term timetabling of staff, not to be confused with 
other uses of the term ‘rostering’ across the literature (Burke et al. 2004). Hospital 
planners create work schedules by assigning hospital employees to given shifts 
while considering skills, fairness, laws, regulations, etc.. This is a combinatorial 
explosive problem which often is handled inefficiently by use of manual 
procedures (involving highly qualified health personnel). A prerequisite to good 
nurse rosters is shift design, which consists in finding a suitable set of shifts which 
covers the work demand for the planning horizon. Good shifts are important not 
only for the hospital (e.g. lowering cost, managing staff coverage, staff 
satisfaction) but also for its staff (e.g. healthy working shifts). This paper deals 
with the multi-skill shift design problem for hospitals, where shift details (start 



 

and end times, required staffing for each shift and each skill type) are not given as 
input, but must rather be found as a solution to an optimization problem. We 
present BeAct, a prototype of a decision support tool that automates multi-skill 
shift design. 

Shift design is the process of creating a set of shifts (start and end times) and assigning 
staffing needs to the shifts, so that the time-dependent demand for workers is covered 
while satisfying a set of constraints. The number of possible solutions increase 
exponentially with the size of the problem: it quickly becomes too large for an efficient 
manual approach. Optimization methods excel on these types of combinatorial 
explosive problem: searching for optimality by comparing feasible solutions against 
each other upon certain criteria (e.g. minimization of personnel cost). 
Our idea of automating shift design originates from discussions with AHUS (Akershus 
universitetssykehus HF) and SAB ( Sykehuset Asker og Bærum HF), two Norwegian 
hospitals in Oslo. It was highlighted that estimating the staffing needs of the shifts for 
their nurse rostering tool was problematic, while the input required for the shift design 
problem was relatively easy to specify. These two hospitals have been involved in the 
development process with ideas, criticisms, and data provision.  
We have used mixed -integer programming (MIP) as our solution method and Xpress-
MP as the solver. The relevant planning personnel at both hospitals are users of 
Microsoft Excel, which therefore has been used as the Graphical User Interface; for 
holding data, parameter values, and for presenting solutions graphically. The 
mathematical models were constructed through an iterative development process with 
our two reference hospitals. The constraints in the model include among others: a 
maximum of different shifts to be used during different periods; overlap between shifts; 
a common leaving time for all day shifts; one main shift having most of the workers 
assigned each day. Our model allows for work tasks requiring certain skills that only a 
part of the workforce possesses. The requirement of meeting the demand is formulated 
as a ‘hard' constraint, but a possibility for doing some of the tasks at another time than 
originally specified is also implemented. Some of the model objectives are: 
minimization of personnel cost; minimization of the total number of different shifts.  
 
The core contribution of this paper is threefold: 
 

1. We introduce BeAct, a prototype for automated multi-skill shift design for 
hospitals.  

2. We target an important but comparatively unattended research domain that is a 
prerequisite for finding efficient nurse rosters. 



 

3. Our approach is developed in close cooperation with Norwegian hospitals, and 
tested on synthetic instances that are based on detailed discussions with the 
hospitals. 

Our experiment results show very good results on the instances. On our more advanced 
tests, within five minutes we find a MIP solution with an objective value gap to the best 
lower bound (obtained from LP relaxations) usually below 5 %, and in some cases 
optimal solutions are found within seconds or a few minutes. 
The paper is organized as follows: Section 2 provides the background information and 
related research. The problem is introduced and formally stated in section 3. In section 
4, we describe the experiment setup and discuss the results. We conclude and present 
the planned future work in section 5. 

2. Background  
 

For labour intensive organizations, finding a good match between the predicted 
workload and the scheduled workforce work capacity is crucial.  Mismatch leads 
either to longer waiting times or unnecessarily expensive labour costs. This 
matching process is part of the so-called workforce management (WFM) and is 
often done stepwise; predicting work load, staffing, shift design and/or 
scheduling, and nurse rostering (Musliu et al. 2004; Bhulai et al. 2008). These 
steps are all interrelated, and should ideally be treated simultaneously, but due to 
tractability they are often treated sequentially. For the hospitals, these steps would 
read as; listing the staff tasks (prediction of workload); estimating their required 
working time (staffing); designing shifts and scheduling them to minimize the 
mismatch (shift scheduling); and lastly assigning employees to the roster 
(rostering). In our reference hospitals, most time is spent on the rostering part. The 
research community have had the same focus, providing a large body of literature 
on nurse rostering (Burke et al. 2004) for the last 40 years (Ikegami and Niwa 
2003). Less attention has been given to optimal shift design, even though good 
shifts are a prerequisite for high quality nurse rosters. 

2.1 Shift Design 
 

The process of shift design consists of generating a set of shifts (which fulfils 
requirements on minimum and maximum shift duration, legal start and end times, 
etc.), with an associated staffing demand assigned to each shift, so that the time-
dependent and skill-dependent demands are satisfied in all time periods. The 
demands are supplied as input to the shift design problem, typically covering 24h 
with 15 minutes intervals, and varying between the days of the week. Finding an 
optimal shift design involves evaluating different solutions against each other 



 

through user specific objectives (e.g. minimizing cost, minimizing the number of 
shifts, ensuring overlap between shifts, etc.). For hospitals, a multi-skill feature 
must be considered during shift design; because the staff skills and work tasks 
skill requirements vary, a skill matching process is needed for efficient shift 
design. For real size problems the solution space is too large for an efficient 
manual approach: Even though finding a solution manually is possible, it is 
unlikely to be an optimal or even good solution. Still, shifts are in most cases 
designed manually. 

2.2 Related Work 
 

The literature on shift design is sparse and driven by the growth of call-centres, 
where the personnel cost is the predominant one (60-70% (Fukunaga et al. 2002). 
A range of solution methods have been investigated on the shift design problem: 
For example, constraint programming, integer and mixed-integer programming, 
and local search (Musliu et al. 2004; Canon 2005; Bhulai et al. 2008). 

The most relevant research for us are (Musliu et al. 2004) and (Bhulai et al. 2008). 
Musliu et al. have similarities but our research differs on several points. Firstly, 
while they focus on solving the general shift design problem, we focus on 
modeling and solving the shift design problem for hospitals. Secondly, their 
attention is on the algorithm and how it works, while our focus is on modeling the 
problem and developing a prototype for hospitals. Thirdly, their work is on single 
skilled shift design while ours is on multi-skill shift design. Lastly, they use local 
search, an approximate solution method that can not guarantee finding optimality 
(but is known to often find good solutions in a relatively short time). We are using 
MIP, an exact solution method, and we manage to find optimality within seconds 
for several of the cases. 

Another closely related work is conducted by Bhulai et al. (Bhulai et al. 2008). 
Both our work relates to multi-skilled shift design and while we both apply exact 
solution methods, their paper centres on presenting a new method while ours also 
presents a prototype. Another difference is that they focus on solutions for call 
centres while we aim for the hospital domain. Lastly, theirs is a generalized model 
while ours is tailored with more constraints. 

3. Mathematical Model 
 

As already mentioned in the introduction, our proof-of-concept model aims at 
designing shifts (start and end times) and assigning a number of workers to these 
shifts, thereby satisfying the demand of workers for each time slot. The demand is 
given as the number of employees needed, for each skill type and each time 



 

period (every 15th minute the entire day), for all weekdays. Furthermore, the 
workforce can be subdivided into groups based on skill attributes. All workers in a 
group have exactly the same set of skills. The cost of having an employee 
assigned to a shift is given for each group and each time slot. The cost is different 
for time slots belonging to daytime, evening, and night intervals. 

We now state the mixed-integer programming models that are used to design 
shifts. We start with the simplest model that minimizes the cost while satisfying 
the demand. Later we present the modifications needed in order to take into 
account additional realistic constraints and objectives. 

The notation used in these models is presented first. The indices and sets are: 

s : shift (defined by a start and end time). 

d : day. 

c : skill. 

g : group of workers, all with the same set of skills. 

S : set of possible shifts. 

St : set of shifts that cover time slot t. 

D : set of days, {Monday, Tuesday, ..., Sunday}. 

C : set of skills. 

G : set of groups. 

GC' : set of groups that have all of the skills in C'  C'. In other words: workers 
belonging to any of the groups in GC' have at least all of the skills in C'. 

The parameters are: 

Ksdg : the cost of one member of group g working shift s on day d. 

Btdc : the demand for skill c in period t on day d. 

The decision variables are: 

xsdg ∈{0, 1, ...} = the number of members from group g working shift s on day d. 

The model, in its simplest for, is then: 

 
such that 

 



 

Constraint 3.2 says that the demand must (at least) be met in all time periods, on 
all days and for all sub sets of skills. This generates a lot of constraints, out of 
which many are redundant and are removed before entering the solver stage.  

Before we look at a more extended model we introduce more notations. The 
additional indices and sets are: 

i : an interval of the day (day, evening or night).  

s′ : shift.  

I : the set of intervals for 24 hours: {day, evening, night}.  

Sday ⊂ S : the set of day shifts.  

SM : the set of possible main shift candidates, which is a subset of Sday.  

Sevening ⊂ S : the set of evening shifts.  

Snight ⊂ S : the set of night shifts.  

TE : the set of possible end times for day shifts.  

St
E : the set of shifts ending at the end of time period t.  

Additional parameters are:  

zig : the maximum allowed number of shifts used in one day in interval i for group 
g.  

η : the fraction of the day workers which should be on each main shift.  

n : the maximum number of different main shifts allowed per day. n is typically 
set to 1. 

τs : the length of shift s. 

M1
sg , M

2
sdg, M

3
s′dg and M4

td are different big M constants. 

 

Additional help variables are: 

ysg ∈ {0, 1} = 1 if shift s is used by group g; 0 otherwise. 

zsdg ∈ {0, 1} = 1 if shift s is used by group g on day d; 0 otherwise. 

etd = 1 if some shifts are ending at the end of time period t on day d; 0 otherwise. 

We may have objective components other than minimizing the total cost. The 
following objective is minimizing the number of shifts used: 

 
 

 



 

We also have to add the following constraints to model ysg and zsdg: 

 
 

The effect of this ‘big-M’ notation is that ysg and zsdg can be zero only when all 
xsdg in the corresponding constraints are zero. 

The following constraints are added to limit the number of day, evening and night 
shifts used for each group, each day: 

 
 

Constraints demanding at least η percent of the workers to work on the main shifts 
and maximum n main day shifts for each group, each day: 

 
 

 

Constraints for common end time, i.e. all day shifts ending at the same time: 

 
 

3.11 states that day shifts not ending on possible end times (t ∈ TE) cannot be 
used. 

 

 

 



 

Constraint to ensure overlap between shifts: 

 
 

3.13 states that there must be more people at work in each time period than those 
quitting in the end of that time period.  

If it is not necessary to do the tasks in exactly the specified period, the demand 
should not be hard constraints. A way to do this is to allow for changes in 
demand, within some limits, by modifying the demand constraint 3.2. First we 
introduce some additional parameters and help variables. 

Additional parameters: 

δ  c
+ : the maximum allowed increase in demand for skill c in any period. 

δ  c
- : the maximum allowed decrease in demand for skill c in any period. 

bc : the minimum demand for skill c after a decrease in any period. 

Δc : the maximum change in demand for skill c allowed during one day. Note: In 
the code only changes of the demand for skill level 1 is allowed, which is equal to 

setting Δc = 0 and/or δ  c
+ = δ  c

- = 0 

Additional help variables: 

δ+
tdc : the increase in demand for skill c at time t on day d. 

δ-
tdc : the decrease in demand for skill c at time t on day d. 

 

The soft demand constraints model then becomes: 

 
 

Where 3.15 and 3.16 gives limitations on the change in each period (the min 
function in the latter is to ensure that the demand is not set below a certain limit), 
3.17 limits the total change each day, and 3.18 makes sure that the total demand 
after the changes is not lower than before.  



 

4. Empirical Studies 
 

Our case study refers to the shift design problem faced by our reference hospital 
in Oslo, AHUS. We conduct several experiments concerning variations of the 
model. Models were implemented in MOSEL and solved by XPRESS-MP 19.00 
on an Intel Xeon 3.0 GHz microprocessor. A simple GUI in Excel was developed 
to demonstrate the BeAct prototype and enable discussions with the end users. 
The experiments are based on synthetic parameter values and 24-hour demand 
data, with realistic values set based on input from our reference hospital. The use 
of synthetic data is justified by the focus of this work as a proof-of-concept, and 
by the present lack of high-quality real 24-hour demand data suitable for our 
purposes; our reference hospitals have plans for improving and standardizing their 
24-hour demand data. The 24-hour demand data is subdivided into time slots of 
15 minutes, and the demand values in a single time slot are for each skill type. 
The 24-hour demand data can be different for different weekdays. 

According to our data, the workforce (nurses, head nurse, and so on) is subdivided 
in up to 5 groups, each group having the same skill set. The skills in a skill set can 
be of 5 different skill types. In cases with hierarchical groups, the lowest group 
contains only one skill type, whereas the most advanced worker group contains all 
the skill types. Our multi-skill case studies have focused on the slightly more 
difficult problem where the skill groups can have arbitrary skill type 
configurations. A cost matrix defines the hourly monetary cost of scheduling 
workers from each skill group, with different parameters for day time, evening, 
night, and week-end hours. The 24-hour demand data is a 24-hour demand curve 
which details, for every 15th minute, the demand for each skill type. In our easy 
test cases, the 24-hour demand is the same for all weekdays (except week-end), 
whereas the more difficult cases have demands that vary both intra- and inter-day. 

The shifts designed to meet the demand must satisfy some time-related 
constraints. Specifically for our test cases, minimum and maximum durations of 
shifts are 6 hours and 10 hours, respectively. The earliest start time of a shift is 
07:00, and the latest start time is 22:30. No shifts can end between 00:00 and 
07:00. All shift durations are integer multiples of 30 minutes. In a pre-processing 
stage, the tool generates all possible shifts adhering to these constraints. For 
models respecting the overlap constraint, at least one worker from the preceding 
shift must overlap at least 30 minutes with the next shift. This does not require 
equal skill groups of the overlapping shifts. For models respecting the main shift 
constraint, one main shift is required to start between 07:00 and 09:00, its duration 
must be 7-8.5 hours, and at least 70 % of the daytime workers must be assigned to 
the main shift. Although the model supports a parameterized number of main 



 

shifts, for our experiments we have limited this parameter to 1 (i.e., a single main 
shift per group. For the reported results, this is also a single main shift per week, 
although the model can handle different main shifts from day to day). 

An early input from our end users was to include the common end time constraint 
in some models, due to organizational issues (transfer of information between 
shifts). For these cases, shifts that end between 12:00 and 18:00 must end at the 
same time. Another desire was to test models where there is a maximum number 
of shifts in use within the three intervals day, evening, and night. For these cases, 
we set the maximum to 3 day shifts, 2 evening and 2 night shifts, per day and per 
skill group. 

Table 1 summarizes the results of our experiments on these cases. All of the 
reported cases are for multi-skill problems with arbitrary skill sets for each group 
of workers (i.e., no hierarchical configuration), different 24-hour demand data 
each day, and a basic objective of minimizing the monetary cost. The table reports 
the plan costs, run times, and gaps to lower bounds (if any) for the different cases; 
Basic multi-skill, main shift requirement, common end time for day shifts, limited 
number of shifts for day, evening and night time, the overlap between shifts 
constraint, and all of the above combined. For the combined problem, the solver 
times out after 1 hour, with a 6,55 % optimality gap to the LP relaxation. We note 
that for the corresponding combined problem in a single skill setting, the solver 
finds the optimal solution after 630 seconds (not shown in the table). 

 
Type Cost # shifts Runtime (s) Gap 

Basic 160,2 58 1 0 

Main shift 165,0 39 1 0 

Common end 164,6 44 5 0 

# shifts in intervals 156,7 37 300 1,55 % 

Overlap 152,9 55 1 0 

All 183,8 46 3600 6,55 % 

 

 

 

The reported results used the single objective of minimizing cost. Replacing this 
with a weighted sum of objective components cost and the number of shifts in use, 
the runtime increases noticeably. We remark that the problem of minimizing the 
number of shifts in use is NP hard and also hard to approximate (Musliu, Schaerf 
et al. 2004). Also, for test runs where the main shift is allowed to vary from day to 

Table 1. Experimental results for the different constraint models, showing the monetary cost of 
the plans, the total number of shifts per week, the runtime in seconds, and the optimality gap. 



 

day, the runtime increases noticeably compared to the case of a single main shift 
for the entire week. Note that depending on the demand, the main shift constraint 
may force an undesirable large assignment of workers to evening shifts—due its 
shorter maximum duration.  

Next, we have also experimented with the flexible model where demand can be 
moved in time, to a limited degree. Smoother demand curves should enable the 
solver to find better shift designs. So far, we have only experimented with 
modifying the demand for a single skill type. The moved demand must stay within 
the same day, the maximum amount of moved demand is limited to a total of 8 
hours per day, and there is an upper bound on the amount of demand that can be 
moved in a single time slot. Early results indicate that the model works according 
to our intentions, with smoother demand curves and fewer shifts as a result. More 
input on end-user requirements is needed before further experiments on this 
aspect can be conducted. 

5. Conclusion and Future Work 
 

In this paper, we present a novel approach that will assist users in both tactical 
as well as in strategic staff planning responsibilities. Our work focuses on the 
development of a proof-of-concept prototype for hospital planners, with a 
variety of models implemented that reflects real-world constraints. We have 
tested our approach using instances of synthetic data based on input from our 
reference hospital, and present the results in this paper. They show that the 
approach manages to solve shift design instances which are realistic both in size 
and in problem characteristics. The developed tool handles shift design for 
multi-skill demand cases given a workforce which is grouped based on 
employees’ skill attributes, and hospital-specific constraints are modeled, such 
as the optimal design of a main shift and a common end time for day shifts. 
Variants of these implementations are the subject of future research. Also, the 
related problem of distributing excess capacity in a robust manner, given a pre-
specified workforce size, has been implemented, but more work is needed here. 
Along with our reference hospitals, we plan to continue our work by improving 
the model and developing a tool that allows them assistance in both strategic and 
tactical decisions.  
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