
3rd International Workshop on Quality in Modeling

Jean-Louis Sourrouille1,2, Ludwik Kuzniarz3, Lars Pareto4, Parastoo Mohagheghi4
Miroslaw Staron5,

1Univ Lyon; 2INSA-Lyon, LIESP, F-69621, Villeurbanne, France
3Blekinge Institute of Technology, Ronneby, Sweden

4SINTEF ICT, Oslo, Norway
5IT University of Göteborg, Göteborg, Sweden

Abstract. Software quality management is widely researched within Model
Driven Software Development (MDD), from both industry practices and
academic research viewpoints. The goal of this workshop was to gather
researchers and practitioners interested in the emerging issues of quality in the
context of MDD. During the first part of the workshop, selected papers were
presented and discussed. The second part was divided into two working
sessions. The first session was devoted to the introduction of model quality into
the software development process by drawing a parallel with quality of code.
An invited practitioner introduced issues related to quality of code, followed by
a guided discussion based on a list of predefined questions. The second session
was dealing with future work and research interests of the participants.

1. Introduction

Quality is an important issue in software engineering, and stakeholders involved in
the development of software systems definitely are aware of the impact of the quality
of both development process and produced artifacts on the quality of final system.
The recent introduction of Model Driven Software Development (MDD) raises new
challenges related to ensuring proper quality of the software produced when using this
approach. Software quality management within MDD is widely researched from
multiple perspectives. Furthermore, in software engineering, the issues of model
quality need to be approached from the viewpoints of both industry practices and
academic research in order to arrive at sound and industrially applicable results.

The Quality in Modeling series of workshop (QiM) aim to provide a forum for
presenting and discussing emerging issues related to software quality in MDD. The
intended result is to increase consensus in understanding quality of models and issues
that influence this quality. In the previous QiM workshop, a common quality model
was established [1]. The intention of this year’s workshop was to discuss model
quality issues related to software development processes. Within “usual” software
development, code quality seems to be under-exploited. However, all the concepts
and theory about code quality have been widely described. Therefore, a special
attention is to be paid to practical issues such as the introduction of model quality into
the software development process in a convenient and accepted way.

2. Summary of the paper contributions

The presentation of papers consisted of two sessions, each one with three topics
addressed by the papers [4]:
 Towards model quality
 Definition of a measurement procedure to accurately quantify the size of

software developed with a Model-Driven Development (MDD) [4],
 Definition of a proactive and process-driven approach based on a meta-approach

to be instantiated in every sub-process producing a UML model [5],
 Description and implementation of a customized style guide for UML [6].

 Frameworks for model quality
 Definition of an operational framework to address database schema quality

through both global and analytical views of quality [7],
 Empirical validation of measures for UML class diagrams through a meta-

analysis study from five controlled experiments [8],
 Definition of a metamodel to precisely define quality elements and their

relationships in a quality model [9].

3. Introducing model quality in the development process

The starting point of the discussion was the introduction, presented by an industrial
expert, Marc Rambert from Kalistick, on how code quality management is approached
in an industrial context [2]. Obviously, there are common points between model
quality and code quality, but the main reason for this discussion was the actual use of
quality in practice. Despite the fact that theoretical and practical aspects of code
quality are well-known, and that a number of market tools for assessing code quality
exist for a long time, the quality of code is not used as much as it could be. To analyze
deeply theoretical aspects of quality is not enough. We have certainly to deal with
practical and/or human aspects for model quality to enforce its usage by software
developing teams. The aim of this discussion was to take lessons from experience
related to code quality to increase our chances to introduce successfully model quality
into the software development process. First, the industrial expert recalled issues
related to code quality:
 Getting control over the technical quality of a software development, which

requires clear objectives closely linked with project management, and aid to teams
to achieve project goals,

 Improving the technical quality by providing teams with a set of good practices,
detecting gaps between actual code and objectives, and focusing on key issues for
improvement,

 Providing a balance between additional costs and returns on investment. Quality is
not an absolute value; it is related to objectives that depend on the needs of the
target application. For instance the requirements for an embedded system are not
the same than for a text editor.

The expert also showed examples of metrics related to code quality, how quality can
be assessed and visually reported to assist teams in their daily work and taking
decisions for release. After this introduction, a discussion guided by a set of questions
sent to the participants before the workshop was carried on. For each of the questions
the course was as follows: the question was recalled followed by the moderator’s
comments; then the question was answered from the code quality perspective, and
finally an open discussion was carried out aiming to find a “common” answer from a
model quality perspective. In the sequel, a quality problem means a quality level
lower than the expected one for a criterion, for instance the number of dependency
cycles is too large. A quality goal is the expected value for some aggregate of
assessments and metrics. Quality goals depend on the application requirements and
should be defined by stakeholders before starting the development. In the following
we list the questions and a summary of the discussion on each question.

1. Not all metrics can be measured automatically. Some quality properties such as
architecture design value can be assessed manually.
Should we keep only automatic measurement?
To what extent can we keep manual assessment?

The overall answer is that it should be as automatic as possible depending on the
required effort. If the semantics is to be considered then it should be manual. Even
when the assessment is automatic, a manual interpretation is necessary in order to
assess where we are and to undertake recovery actions.

2. Software quality is relative to the requirements of an application: there is no
absolute level of quality, and "over-quality" is just non-quality.
How to define/express the quality requirements of an application from the end user
point of view?
How to avoid overestimated quality requirements, which implies over-costs?

The schema Fig. 1 expresses a basic principle: increasing the development costs to
reduce maintenance costs is limited by the increase in total costs. To define the
suitable quality level, the industrial expert draws a quality profile (Fig. 2) from
replies to a questionnaire directly related to project requirements but only
indirectly related to quality. Stakeholders have different requirements and they
should reach an agreement. The quality requirements for models seem to be closer
to system quality requirements than quality requirements for code, which might
result in some differences in the description.

Cost

Quality

Maintenance costs Development costs Maintenability

Total costs

4
3

Security Reliability 2
1
0

...
Efficiency

...

Fig. 1. Optimal cost Fig. 2. Quality profile

3rd International Workshop on Quality in Modeling 3

3. When actual quality is different from the expected one, some quality goals may
have a greater importance for the end user.
How to express the importance of application's quality goals?

In the industrial context, a dashboard shows the gap between actual and expected
profiles, and improvement plans are proposed to reduce the gaps. All quality
aspects have not the same importance for the stakeholders, leading to two kinds of
conflicts: (i) internal, between quality attributes, for instance to increase
maintainability may reduce performance; (ii) external, the same attribute being
more important for one stakeholder that for another one.

4. Continuous quality assessment would be a burden for the developer and would
probably result in some reject. On the other hand, to find quality problems as early
as possible is a well-known need in software engineering.
What could be the frequency or suitable moment for quality assessment?

The frequency may depend on cost of checks. In practice, weekly assessment is
enough for code. When no gap between actual values and goals is detected, and
when the trend of evolution does not deviate, the human cost is quite null;
otherwise a quick reaction is possible. Regarding models, instead of regular
checks, quality gates or check points could be introduced in the development
process to ensure quality levels.

5. When quality problems are detected, there are numerous possible actions. These
actions generally depend on the application status: to correct existing software
might be risky (non-regression) and of limited interest, while to correct software
under construction will have a better return.
Should we help the user to define the actions to achieve?
Should we prioritize the quality problems to deal with?
Finally, should the developer deal with all the quality problems?

Another factor affects the decision: how fast the developer can find the fault?
Actions to undertake depend on project management decisions, and to help
managers to make their decisions is necessary.

6. There is a link between metrics and quality goals.
To what extent does the developer need to know this relationship?
When this relationship is known, is it acceptable for a developer to limit quality
problems to stay just below thresholds that triggers quality problems?

Example: if the metric for readability is that a sequence diagram includes less than
20 connected elements, the quality goal can specify that at most 5 sequence
diagrams may break the rule. Below 5 rule violations, no quality problem is
detected, therefore the developer is not warned and the situation is acceptable.

7. To find a way to deal with a quality problem is not always easy.
Do we need to aid correcting quality problems?
Do we need to show the place of the problem in the model (see tool below)?

Tools detect the symptoms but not the causes: the tool may detect that there are too
many dependencies, which does not explain why and how to reduce them.
Similarly, patterns and anti-patterns explain why and where the problem is, but not
how to correct it. Since errors may come from a combination of several causes,
explanations should be precise. Regarding model quality, to help developers

implies embedding quality checks in a tool, which is a great difference with code.

8. Developer training could be an important aspect to get better results.
What kind of training would be useful: before development? When errors occur?
Should developers training focus on actual metrics? Or only on principles?

The experience shows that teaching rules has no interest. The best way seems to
train on principles, and when a problem occurs to train on this problem. Moreover,
training professionals has psychological issues to take into account.

9. Many stakeholders will look at quality results, each one with a different point of
view.
How to present the results in a suitable way for each stakeholder?
What are the suitable ways for developers?

A dashboard for each category of stakeholder is useful in industrial context.

10. Code quality assessment does not depend on a tool.
Is it desirable to assess model quality independently of any tool (for instance by
analyzing XMI files)? Or should the IDE tool include quality assessment?

Participants mainly think that tools should include quality assessment. This ideal
solution requires customizing each tool.

Comments. Due to lack of time, but also because all the answers are not actually
known, there is no precise answer for each question. The list was limited to 10 items,
aiming to tackle different practical aspects about model quality. Anyway, answers
will be needed to bring model quality into play. These aspects complement the quality
model discussed during the previous workshop.

4. Working session on a road map for further research

The second session of the working part was devoted to development of a common
research roadmap, by the following procedure. 1) The presentations were analyzed
using the unified quality model of the QiM’07 workshop [10]; analysis result was a
graph associating presentations to distinct qualities of concern. 2) This graph was
presented for review: contributing sites were asked to check that associated qualities
were appropriate and complete with respect to the research pursued at the site. 3) The
graph was revised collectively. The outcome is given in the Table below. The topmost
part shows the home base of the research groups behind the QiM’08 contributions.
The lowermost part shows the white spots with respect to the common quality model:
these qualities have no immediate connection to the presented talks, and should be
fertile ground for research.

Acknowledgement. We would like to thank Marc Rambert, from Kalistick, provider
of the 1rst SaaS platform for code quality, who kindly agreed to prepare the invited
talk for the working session, and to moderate the discussion based on code quality.

3rd International Workshop on Quality in Modeling 5

P1

Valencia
P2

Genova
P3

Lyon
P4

Namur
P5

Ciadud
P6

Oslo
P7 Ville-
Urbaine

Correctness x x x

Consistency x x x

Completeness x x

Conciseness x x

Maintainability x x x x

Complexity x

Size x x

Understandability x x x

Model
Quality

Transferability x

Infrastructure Automatic x x

Rigourously defined x x x x

Automateable x
Process
Quality

Easily configureable x

Rigourously managed x

Automatically Measurable x Project Quality

Modeling Guidelines x

Model Quality Navigability, Traceability, Measurable, Stable, Precision Improving,, Detailedness

Infrastructure
Quality

Ubiquitous, Updateable, Seclusive, Flexible, Categorial, Archival, Cohesive,
Efficient

Process Quality
Predictability, Reuse of good practices, Roll backing, Quality Assurance for
models, Explicit about modeling purpose, Voluntary, Incentive, Regulatory, Process
Support, Measurability, Effectiveness, Productivity

White Spots

Project Quality Qualified staff, Skill, Experience, Tools

References

1 Ludwik Kuzniarz, Lars Pareto, Jean-Louis Sourrouille, Miroslaw Staron, "The Third
Workshop on Quality in Modeling", LNCS 5002, Springer, 2008, pp.271-274

2 Nicolas Blanc-dit-Grenadier, Marc Rambert, Jean-Louis Sourrouille, Régis Aubry, "Toward
a real integration of quality in software development", ICSSEA'08, to appear, 2008

3 Jean-Louis Sourrouille, Miroslaw Staron, Ludwik Kuzniarz, ed, Proc. of the 3rd Workshop
on Quality in Modeling, IT University of Göteborg RR 2008:02, ISSN 1654-4870, pp1-88

4 Beatriz Maron, Nelly Condori-Fernandez, Oscar PastorJean, “Design of a Functional Size
Measurement Procedure for a Model-Driven Software Development Method”, in [3]

5 Gianna Reggio, Egidio Astesiano, Filippo Ricca, “A proactive process-driven approach in
the quest for high quality UML models”, in [3]

6 Mohammed Hindawi, Lionel Morel, Régis Aubry, Jean-Louis Sourrouille, “Description and
Implementation of a Style Guide for UML”, in [3]

7 Jonathan Lemaitre, , Jean-Luc Hainaut, “A Combined Global-Analytical Quality Framework
for Data Models”, in [3]

8 M. Esperanza Manso, Jose A. Cruz-Lemus, Marcela Genero, Mario Piattini, “Empirical
Validation of Measures for UML Class Diagrams: A Meta-Analysis Study”, in [3]

9 Parastoo Mohagheghi, Vegard Dehlen, Tor Neple, “Towards a Tool-Supported Quality
Model for Model-Driven Engineering”, in [3]

10 L. Pareto, C. Lange, P. Mohagheghi, V. Dehlen, M. Staron, C. Bouhours, F. Weil, C.
Bastarrica, S. Rivas, P.O. Rossel, L. Kuzniarz, Towards a Unified Quality Model for
Models, 2nd QiM, RR in Soft. Eng. and Management 2008:01, Gothenburg University

