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Abstract— Acoustic modeling technique is used to study long range propagation of airgun signals with 
emphasis on the low frequencies having impact on fish species of commercial interest, the frequency 
range from 25 Hz to 300 Hz. The acoustic propagation model is based on ray theory and can deal with 
range-dependent bathymetry and depth-dependent sound speed profiles. The bottom is modeled with a 
sediment layer over a solid rock and requires input values for geoacoustic parameters of the sediments 
layer and the rock with compressional speed, shear speed and absorptions coefficients. The source level 
and directionality is modeled for an airgun array with an arbitrary number of airguns of different sizes. 
The model calculates the complex spectrum and the full-waveform time response of the sound field to 
long distances from which a number of useful field descriptors and measures are derived. The sound 
pressure level at selected frequencies and the sound exposure level are calculated as function of range and 
compared with the threshold reaction level based on auditory and startle response levels for cod. A critical 
distance is defined as the range when the sound levels is lower that the reaction level. The environmental 
impact on the sound propagation is studied and discussed on the basis of a number of scenarios with 
different bathymetry, bottom properties and seasonal variations of sound speed profiles. Using realistic 
values for source level and directivity of an airgun array, the critical distances were found to vary from 8 
km to more than 50 km, depending on the sound speed profiles and the degree of bottom interaction, but 
the values of the critical distance are very sensitive to the assumed value of reaction threshold. The model 
has been tested and verified on data obtained at a real seismic survey conducted in the summer of 2009 at 
Vesterålen – Lofoten area (Nordland VII). In this experiment signals were recorded at fixed hydrophone 
positions as the seismic vessel approached from a maximum distance of 30 km toward the receiving 
positions. The same situation was modeled using available geological and oceanographic information as 
input to the acoustic model. The agreement between the real and recorded signals and the model results is 
good. This indicates that acoustic-biological modeling may be useful in the design and planning of 
seismic surveys to minimize the conflict between surveying and fishing. 

Paper presented at the 35th Scandinavian Symposium on Physical Acoustics, 29th January - 1th February 
2012, Geilo, Norway. 
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other seasons, the conditions may be entirely different, perhaps with downward refraction and strong 
bottom interactions with a significant portion of the energy disappearing into the bottom. Most of the 
knowledge we have today on these issues is developed by military research and development in 
connection with passive sonar to detect submarines at large distances, which involves about the same 
frequency band and distances as relevant to disturbances and effects on fish behavior. 

It is important to distinguish between stationary broad band noises from for instance a passing ship and 
the impulsive noise from an airgun or other similar sources. First it is not clear to translate a fish reaction 
to a steady harmonic tone or a burst of tone to the reaction of the impulsive sound from a nearby airgun. 
At longer ranges we are dealing with the propagation an oceanic waveguide with multiple reflections 
from the sea and bottom causing a significant time spread of the received signal that may last several 
seconds. In such situations the peak pressure is a time-space varying consequence of the coherent effects 
of multi-path contributions and bandwidth. Furthermore there are often confusions and misunderstanding 
with the respect to the characterization of sound and source levels, in particular for transient and 
impulsive sound. Carey (2006) has written a summary paper on this problem and defined a number of 
matrices, units and recommended practices. 

To assess these factors quantitatively it is necessarily to use mathematical /numerical modeling tools that 
can take all the effects of the oceanography, the bathymetry and the geophysical properties of the bottom 
into account. Modeling of propagation conditions has always been an important issue in underwater 
acoustics and there exists a wide variety of mathematical/numerical models based on different 
approaches. The most common models are based ray theory, expansion in normal modes, models based 
on wave number integration technique and models based on the solution of the parabolic equation. For an 
overview of these models and for further references, see Jensen et al. (1993). Although the effects of 
anthropogenic noise on marine life is an active field of research and has high public interest, it is 
surprising that the propagation of sound to large distances are hardly mention in the works dealing with 
bioacoustics. Noteworthy exceptions are the two companion papers by Erbe and Farmer [2000(a) and 
2000(b)] where they first presented a software model to estimate impact zones on marine mammals and 
then applied the model to case of icebreakers affecting Beluga whales.  

This paper describes the use acoustic modeling technique to study long range propagation of impulsive 
sound with emphasis on the low frequencies having impact on fish species of commercial interest, the 
frequency range from 25 Hz to 400 Hz. After first describing the model and the required inputs, modeled 
results are compared with results obtained from a joint seismic-acoustic survey conducted in the summer 
of 2009 at Vesterålen – Lofoten area (Nordland VII). In this experiment signals were recorded at a fixed 
hydrophone positions as the seismic vessel approached from a maximum distance of 30 km toward the 
receiving positions. The same situation was modeled using available geological and oceanographic 
information as input to the acoustic model. The agreement between the real and recorded signals and the 
model results is good, Tronstad and Hovem (2011), Hovem and Tronstad (2012).  
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sound intensity decays proportionally to distance squared. In an ideal waveguide with constant water 
depth and sound speed the geometrical loss follows a cylindrical spreading law with the sound pressure 
decays proportionally with distance. It follows that the geometrical spreading in an ideal waveguide may 
be approximated with a spherical spreading law at short distance and cylindrical spreading at longer 
distance. A combination of the two spreading laws may be expressed by the equation  
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This expression gives the asymptotic behavior 
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In these equations rt is a transition range where the transmission loss goes from spherical close to the 
source and to cylindrical at long ranges. A reasonable value for rt is a value close to the water depth. 
Equation (2) may be used for rough calculation of the transmission loss, but is not included and neither 
are effects of oceanography and bathymetry. Frequency dependent acoustic absorption in the water is 
implemented using the expression of Francois and Garrison (1982). 

The sound exposure level SEL is an energy (E) measure obtained by integrating the square of the sound 
pressure p2(t) and normalize with respect a reference sound pressure and an exposure time tref  
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The reference sound pressure pref  is chosen to be 1Pa and the reference time tref  equal to one second.  
The SEL values and the spectral levels of selected frequency components may be used to characterize the 
loudness of airgun sound and to compare with assumed reaction thresholds of different species of fish. 
Since the model calculates the complete waveform of the sound other measures can easily be 
implemented. 
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In the across direction perpendicular to the towing direction  = /2 with  
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Figure 2. Air gun array with Ny lines each with Nx guns  

Equations (4) and (5) are general expressions valid for any number of sources with different frequency 
spectrum and locations, but requires that the source functions are known for each of the guns in the 
arrays. In cases that such detailed information is not available the following approach is used to estimate 
the directivity function of the airgun array. The approach is based on the assumption that all the guns in 
the array produces pulses of the same shape, but with a peak pressure amplitude that depends only on 
volume of the pressure chamber, given that the pressure in the all guns are the same. Thereby the source 
strengths in the above equations for the beam pattern are replaced by volume weights 
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In this expression Vn,m is the normalized volume of the individual guns and the exponent   has the value 
of 1/3 [Caldwell and Dragoset (2000)]. Q0(ω) is a frequency function of the common source signal, which 
here is taken as a Ricker pulse as described in the previous paragraph. This approach is a relatively poor 
approximation to the signature from a single air gun, but a reasonable approximation to the signature of 
all the guns combined since the firing times and the sizes of the individual guns are selected and 
synchronized to produce a single sharp pules without with a minimum of bubble oscillations. 

In the in-line direction the transmitted signal from the array is  
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Where qn represent the relative strengths of the individual airgun sources and xn are their positions along 
the x-axis. The far field directivity function as function of elevation angle and frequency is then 
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As an example we the values from an airgun array used in 2009 in a seismic survey at Nordland VII field 
are  

  (10) 

Figure 3 shows the resulting beam pattern for the frequencies of 50 Hz and 100 Hz. For 50 Hz the 
reduction in transmitted level in the horizontal directions is about -5 dB compared to level in the vertical 
direction, At 100 Hz there is a side lobe reaching a level of about – 15 dB compared with the level in 
vertical direction. The maximum amplitude is in the vertical direction and in the modeling of the time and 
frequency responses the maximum peak amplitude is scaled up to the level specified by the surveyor, 
which is 255 dB re 1 Pa in the case of the Nordland VII survey. From Figure 3 is evident that the array 
directivity is important for the accurate calculations of the sound field. 

 

Figure 3. Modeled directivity of the airgun array for 50 Hz and 100 Hz calculated for the 
weights and positions given by equation (10) 
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Figure 6. Measured and modeled sound exposure level (SEL) as function of range for line 1344 
in Nordland VII with comparison with the assumed SEL threshold level of 150 dB re 
1Pa2s. 

The sharp decrease in level is partly caused by the increasing water depth, but also losses associated with 
the bottom reflections. The values for the sound speed and attenuation yield the bottom reflection loss 
shown in Figure 7. The sound speed of 2500 m/s gives a critical angle of 42, but as can be seen from the 
figure there is a significant bottom reflection loss at lower angles. This propagation loss is caused by loss 
of energy due to sound absorption and conversion to shear waves in the bottom. Most important is the 
relatively high value of the shear speed and attenuation (600 m/s) and dB/λ).  

 

Figure 7. Bottom reflection loss for values used to model line 1344. Compressional wave 
speed: 2000 m/s, bottom density 2500 kg/m3, compressional wave attenuation 0.1 
dB/λ, shear wave speed 600 m/s and shear wave attenuation 1.0 dB/λ  
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This is further illustrated by Figure 8 showing the transmission loss as function of range and for the cases 
when the shear speed in the bottom is as 600 m/s compared with the loss of zero shear speed in the 
bottom. The differences between the curves displayed in the two figures is the shear wave conversion loss 
and at ranges longer than 10 km the loss is about 20 dB. The dotted line is the geometrical transmission 
loss of equation (1), which gives a slope of 10 log(r) for ranges longer than the water depth at the source. 

 

Figure 8. Modeled transmission loss for Nordland VII as function of range and for the 
frequencies of 50 Hz and 100 Hz: Left with for 600 m/s shear speed, and right with 
zero shear speed.  
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Figure 10. Ray traces from a source at 6 m depth for winter and summer conditions at Halten in 
the Norwegian Sea, Only a few rays are shown to give a simple impression of the 
impact of the sound profiles variation, 

The February profile is a typical winter profile where colder water nearest the surface gives a positive 
sound speed gradient, increasing sound speed with depth, over the whole water column. The consequence 
is upward refraction with concentration of sound in the upper part of water column. The bottom 
interaction is weak since the rays are bent upwards and the propagation is only weakly dependent on the 
acoustic properties of the bottom 

The July profile is governed by a relative high surface temperature decreasing with depth and resulting in 
a sound speed minimum at a certain depth, in this case at about 50 m. A sound speed minimum creates a 
sound channel where the sound is trapped and propagates to very long distances. Except for propagation 
in the sound cannel most of the sound is reflected many times from the bottom giving a high degree of 
sensitivity to bottom parameters. 

4.2 The bottom model 

As already demonstrated the bottom reflection losses are important for low frequency sound propagation 
and in many cases is the determining factor for how far the noise may affect the behavior of fish. The 
bottom model used in this study has a sediment layer over a solid rock half space as shown in Figure 11. 
The sediment layer with thickness D is modeled as fluid with sound speed cs and density s. The rock has 
sound speed crp, shear speed crs and density r. All waves are attenuated with absorption coefficients s, 
rp and rs, measured in dB wavelength, respectively for three wave types. 

Figure 12 shows a contour plot of the bottom reflection loss (dB) as function of incident grazing angle 
and frequency. The parameters are, cs= 1700 m/s, crp= 3000 m/s, crs= 600 m/s, s = 1800 kg/m3

 r = 2500 
kg/m3, s = rp = rs =0.5/. The reflection coefficient and the reflection loss are functions of the product 
of the acoustic frequency f and layer thickness D represented as the vertical axis in the figure. The 
reflection loss Figure 12 can therefore be scaled to any layer thickness and frequency. 

The reflection loss changes with frequency and for very low frequencies approaches the reflection loss of 
a homogenous rock bottom, but approaches the reflection loss of a uniform sedimentary bottom at high 
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frequencies. The two critical angles for the sound speeds of cs =1700 m/s and crs = 3000 m/s for the 
sediment and the rock, respectively 28 and 60 are clearly recognizably in the graph.  

With zero shear speed in the rock and zero wave absorptions in the sediment and the rock, the reflection 
loss is zero for angles smaller than the critical angles, which in this example is 28 and 60 for high and 
low frequencies, respectively. However, the reflection loss of Figure 11 shows significant losses also in 
areas of low frequencies and low angles. The losses in these areas are consequences of energy lost by 
wave absorption and conversion to shear waves in the bottom. Figure 12 (left) shows the low-frequency 
and low angle area extends up to frequency- layer thickness product of 500 m/s. For a frequency of 50 Hz 
the propagation is significantly affected by properties down to about 10 m into the bottom. 

Propagation of sound at low frequencies are very dependent on bottom reflection losses and this issue has 
been treated extensively in the literature, as for instance Hovem, Richardson and Stoll (1991. 

This study compares the propagation using two bottom types 

 Bottom type (I) Homogenous sediment with sound speed 1700 m/s, density 1800kg/m3 and 
attenuation 0.5 dB/ wavelength. 

 Bottom type (II) Sediment layer with thickness 2 m over solid rock with compressional speed 
3000 m/s, shear speed 600 m/s, density 2500 kg/m3. Both wave types with attenuations equal 
to 0.5 dB/wavelength.  

Bottom type (I) results by setting the thickness of the sediment D to infinity and type (II) is with D=2 m. 

 

 

 

 

 

 

Figure 11. Sea bottom model with a sediment layer over a solid rock half space  

Solid rock 

 

Thickness = D 
cs= 1700 m/s 
s = 1800 kg/m3 
s =0.5/ 

crp= 3000 m/s, 
crs= 600 m/s,  
r = 2500 kg/m3,  
rp = rs =0.5/. 
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Figure 12. Bottom reflection loss (dB) as function of frequency and incident grazing angle for a 
layered bottom with a sediment layer over hard rock. The parameters are given in the 
text. 

Figure 12 shows the bottom reflection loss for bottom type(I) and (II) as function of incident grazing 
angle and for the frequencies of 50 Hz and 100 Hz. For bottom type (I) the reflection loss is independent 
of frequency and the critical angle is 28 In the following discussion, bottom type (I) is referred to as a 
low loss bottom and bottom type (II) as a high loss bottom. 

 

Figure 13. Expanded view of the bottom reflection loss (dB) as function of frequency and the 
incident grazing angle. Left: Bottom type (II), Right: Bottom type (I), which is 
independent of frequency. The parameters are given in the text. 
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4.3 The bathymetry 

The effects of the bathymetry are investigated for the downslope and upslope propagation cases depicted 
in Figure 14. The water depth changes with 150 m over a distance of 30 km having a slope of about 
0.5 %. As will be demonstrated, even a gentle slope of the magnitude may significantly influence the 
propagation and the critical distance  

 

   

Figure 14. Examples of scenarios for discussing bathymetric effects on long range propagation.  

The ray diagrams in Figure 14 shows several interesting and important features. Downslope propagation 
leads to a thinning of rays causing faster decay of the sound level with range than propagation in waters 
with constant depth. Upslope propagation yields a concentration of rays with range such that the 
geometrical propagation loss is initially reduces and the sound level increases with range until a point 
may be reached where the grazing angles of the rays reach 90, which signifies a cutoff in propagation. 
(Back-reflected rays are ignored in the propagation model). In addition there is effect of bottom reflection 
losses, most pronounced for the winter conditions as observed earlier. 
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log(r) for ranges longer than the water depth at the source. The transmission loss for bottom type (II) with 
shear wave conversion is significantly higher than for bottom type (I), the difference approaching 10 to 15 
dB at the longer ranges. This is as expected from plots of bottom reflection loss in Figure 13 

The critical range where the sound level drops below the threshold value of fish reaction can be defined in 
various ways. We have chosen to use either the SEL values or the levels of selected spectral 50 and 100 
Hz. Figure 17 shows the SEL values as function of range calculated for the bottom types (I) and (II) and 
compared with the assumed threshold value of fish reation. In Figure 18 the spectra lines of 50 Hz and 
100 Hz are compared with the same threshold. The difference between the sound level at 50 Hz and 100 
Hz is mainly caused by the directivity and the higher source level at 50 Hz than for 100 Hz. The critical 
range is defined by the crossing with the assumed reaction threshold indicated by the dashed line. For 
propagation over the low loss bottom (I) the critical range is about 40 km for both criteria whereas the 
critical range is about 15 km for the bottom type (II).  

The SEL value variation with range is important to sensitivity of the critical distance. In this case the low 
loss bottom type (I) give a slope with range of 10 log (r), the high loss bottom type (II) varies 20 log (r) at 
the crossings with the reaction threshold. 

 

Figure 15. Time responses in a Pekeris waveguide as function of reduced time and range from 
source receiver calculated for the two bottom types (I) and (II). 
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Figure 16. Transmission loss as function of range for the two bottom types (I) and (II). 
The dotted line is the geometrical transmission loss of equation (1) 

 

Figure 17. SEL values and spectral valus for 50 Hz as function of range for the Pekeris 
waveguide calculated for the bottom types (I) and (II). The dashed line is the 
assumed threshold value of fish reation.  
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Figure 18. Spectral line values at 50 Hz and 100 Hz as function of range for bottom types (I) and 
(II). The dashed line is the assumed threshold value of fish reation. 

5.2 Propagation under different seasonal condition 

The effects of seasonal variations of the environment are illustrated by simulation of propagation at 
typical summer and winter conditions in the Halten area in Norwegian Sea using the speed profiles of 
July and February shown in 0Figure 9. This case may serve as example of the propagation effects caused 
by the combination of sound speed profiles and bottom properties over a flat bottom.  

Figure 19 shows the time responses for winter and summer conditions and for the two bottom types (I) 
and (II). In the winters, the signals from a shallow source propagates mainly in the surface channel being 
repeatedly reflected from the sea surface and refracted at different depths without striking the bottom. 
Consequently the bottom composition is not an important factor for the propagation. Under summer 
conditions the most propagation paths are with bottom reflections and therefore the transmission is 
strongly dependent on the bottom properties. The influences of the bottom types are also clearly visible in 
the same way as can see in Figure 15. 

Figure 20 shows the SEL values and spectral values at 50 Hz for propagation under summer and winter 
conditions and for bottom types (I) and (II). Winter conditions give strong transmission to receivers at 
shallows depth with critical range in excess of 50 km, almost independent of the bottom proerties. For the 
summer conditions the critical distance is about 20 km for both bottom types (I) and (II). 
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Figure 19. Time responses at Halten as function of reduced time and range for summer and 
winter conditions calculated for the two bottom types (I) and (II). 

Figure 20 shows the SEL values and spectral values at 50 Hz for propagation under summer and winter 
conditions and for bottom types (I) and (II). Winter conditions give strong transmission to receivers at 
shallows depth with critical range in excess of 50 km, almost independent of the bottom proerties. For the 
summer conditions the critical distance is about 20 km for both bottom types (I) and (II). 

Figure 21 show the transmission loss as function of range for the frequencies of 50 Hz and 100 Hz. In 
these plots the directionality and the level of the source are not included. The model results of the 
propagation loss are significantly different from that of the simple equation (1). 
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Figure 20. SEL values and spectral values for 50 Hz as function of range for summmer and 
winter conditions at Halten calculated for the bottom types (I) and (II). The dashed 
line is the assumed threshold value of fish reaction.  
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Figure 21. Transmission loss as function of range for winter and summer at Halten for the two 
bottom types (I) and (II).The dotted line is the geometrical transmission loss of 
equation (1) 

In the cases considered so far the receiver depths are 15 m and the treatment relevant for fish near the sea 
surface. However in many cases the depth is important for the sound level and this demonstrated by 
considering receiver at 225 m depth, which is 15 m above the bottom. Figure 22 and Figure 23 show the 
result for winter condition in the Norwegian Sea, this figures should be compared with Figure 20 showing 
the winter results for receivers at 15 m depth. The difference is significant and about 10 to 15 dB lower at 
225 m depth compared with the levels at 15 m depth. The bottom properties are not very important for the 
winter conditions as earlier concluded. 
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Figure 22. SEL values and spectral values for 50 Hz at 225 m depth as function of range for 
summmer and winter conditions at Halten calculated for the bottom types (I) and (II). 
The dashed line is the assumed threshold value of fish reaction.  

 

 

Figure 23. Transmission loss for winter condition in the Norwegian Sea at for the frequencies of 
50 Hz and 100 Hz. as function of range a depth of 225 m for bottom types (I) and 
(II). Directionality is not included. Receiver depth is 225 m 
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5.3 Bathymetric effects  

This section discusses the propagation over down and up sloping bottoms evaluated for winter and 
summer conditions and for the two bottom types (I) and (II) the scenarios are shown in Figure 14.  

Figure 24 shows the results for downslope propagation under summer and winter conditions, respectively, 
with SEL values and spectral values at 50 Hz as function of range for bottom types (I) and (II). The level 
of the assumed reaction threshold, indicated by the dashed line, gives a critical distance of about 15 km 
with bottom type (I) and 8 km with bottom type (II) for both summer and winter conditions.  

Figure 25 shows the results for upslope propagation under summer and winter conditions with SEL values 
and spectral values at 50 Hz as function of range for bottom types (I) and (II). With winter conditions the 
effect of increasing density of rays is clearly visible with nearly constant levels until 30 km where the cut-
off effect takes place independent of the bottom properties. For summer conditions the results are similar, 
but in this case the bottom properties are more important because of more bottom interaction in the 
summer than in the winter. 

Figure 26 shows the transmission loss as function of range for the frequencies of 50 Hz and 100 Hz for 
downslope propagation and Figure 27 shows the same for the upslope propagation. In these plots the 
directionality and the level of the source are not included. 
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Figure 24. SEL values and spectral values for 50 Hz as function of range for downslope  
propagation under winter and summer conditions calculated for the bottom types (I) 
and (II). The dashed line is the assumed threshold value of fish reaction.  
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Figure 25. SEL values and spectral values for 50 Hz as function of range for upslope 
propagation under winter and summer conditions calculated for the bottom types (I) 
and (II). The dashed line is the assumed threshold value of fish reaction.  
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Figure 26. Transmission loss for downslope propagation under winter and summer conditions 
for the frequencies of 50 Hz and 100 Hz as function of range for bottom types (I) and 
(II).  
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Figure 27. Transmission loss for upslope propagation under winter and summer conditions for 
the frequencies of 50 Hz and 100 Hz as function of range for bottom types (I) and 
(II).  
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(4) Water parameters are coupled with the bottom parameters in the way they affect sound 
propagation. For instance, the bottom reflection loss is more important in combination with a 
downward refracting sound speed profile than with an upward refracting profile. Hence, the 
impact of the bottom properties may be seasonal dependent.   

(5) The critical distance is defined as the maximum distance where the sound level exceeds a 
predefined threshold. The critical distances calculated in the examples are based on a reaction 
threshold close to the startle threshold of cod, which is some 60-70 dB higher than the auditory 
threshold. The discussion on the “correct” threshold values for behavior reactive is on-going and 
controversial and the values for the critical distances given in this paper should not in any way be 
considered as authoritative. 
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