
A Case-based Assessment of the FLUIDE Framework for 
Specifying Emergency Response User Interfaces 

Erik G. Nilsson 
SINTEF ICT 
Oslo, Norway 

Erik.G.Nilsson@sintef.no 

Ketil Stølen 
SINTEF ICT 
Oslo, Norway 

Ketil.Stolen@sintef.no 
 

ABSTRACT 
In this paper, we report the results from assessing the 
FLUIDE Framework for model-based specification of user 
interfaces supporting emergency responders. First, we 
outline the special challenges faced when developing such 
user interfaces, and the approach used in the FLUIDE 
Framework to meet these challenges. Then we introduce the 
framework, including its two specification languages. 
Thereafter, we present the case addressing the specification 
of user interfaces for three existing emergency response 
applications. Based on these specifications, we discuss how 
well we succeeded, concluding that we were able to 
describe the applications in a comprehensive and 
understandable way taking similarities and difference 
between the applications into account. The language 
constructs function as intended, having two languages has 
proven valuable, and the specifications scale quite well.  

Author Keywords 
User interface specification languages; Emergency response  

ACM Classification Keywords 
D 2.2 Design Tools and Techniques: User interfaces 

INTRODUCTION 
Emergency response operations are very varied, from 
simple everyday incidents to long-lasting serious 
catastrophes. More complex operations tend to have a fast 
changing nature, sometimes being almost unpredictable. 
Developing ICT solutions supporting such work is 
challenging. User interfaces (UIs) of ICT solutions need to 
adapt to and reflect these variations, and their design are 
therefore particularly challenging. 

Support for UIs on equipment with different screen sizes is 
important to allow local leaders at the incident site employ 
the same applications in the same intuitive way on different 
kinds of equipment [15]. For field workers it is important to 

have non-intrusive ICT support, possibly offering non-
visual modalities as an alternative to or in combination with 
visual presentation and interaction. To the extent 
emergency responders have ICT support today, needs for 
flexibility are often addressed by generic, data oriented ICT 
solutions forcing them to adapt to the solutions, and not the 
other way around.  

There are on the other hand also many similarities and 
patterns between emergencies. These include types and 
occurrences of emergency response operations, as well as 
the actors involved in such operations. Furthermore, tasks 
and information needs have similar communalities across 
operation types, actual operations and agencies. In [16] we 
have argued that the similarities and pattern may be 
characterized by a limited number of categories of 
functionality. 

The approach put forward in this paper is to provide 
components supporting these categories of functionality, 
combined with means for composing end-user solutions 
from these components. The components need to be 
flexible and tailor-friendly, i.e., they need to combine being 
ready-to-use with being highly configurable. Composition 
is primarily done at design time, while configuration (and 
certain types of composition) may also take place at run 
time. Developing UIs for this kind of solutions using 
traditional programming languages with connected libraries 
is very challenging to the extent it is at all possible. It is 
extremely resource demanding because all imaginable 
combinations of functionality, compositions and 
configurations must covered. 

Model-based UI development approaches [11] are well 
suited to meet the needs for cross-platform and cross-
modality support, but existing model-based UI development 
approaches are also seriously challenged by the 
requirements for flexibility. There is a need for building 
blocks that: 

R1. Are at a sufficiently high level of abstraction to 
support development of UIs that work across 
platforms and modalities 

R2. Provide compound structures of simple elements 
and containers/dialogs to support common 
specifications between platforms and modalities 

R3. Have reflection mechanisms giving an awareness 
of model structures (including domain models) to 
support adaptation both at design and run time 

Permission to make digital or hard copies of all or part of this work for 
personal or classroom use is granted without fee provided that copies are 
not made or distributed for profit or commercial advantage and that copies 
bear this notice and the full citation on the first page. Copyrights for 
components of this work owned by others than the author(s) must be 
honored. Abstracting with credit is permitted. To copy otherwise, or 
republish, to post on servers or to redistribute to lists, requires prior 
specific permission and/or a fee. Request permissions from 
Permissions@acm.org. 
EICS'16, June 21 - 24, 2016, Brussels, Belgium  
Copyright is held by the owner/author(s).  
Publication rights licensed to ACM. 
ACM 978-1-4503-4322-0/16/06…$15.00  
DOI: http://dx.doi.org/10.1145/2933242.2933253 

97



R4. Support development of UIs where the layout 
depends on the instances at run time, typically 
using icons, maps, graphical elements, as well as 
alternative modalities like speech 

R5. Provide specific and explicit support for UI 
patterns and styles that are particularly useful in 
the emergency response domain 

MARIA [20] meets R1 well, but fulfills R2 only partly. It 
offers building blocks that are abstractions of simple UI 
elements (elements for entering data, presenting data, 
activation functions, etc.) as well as abstractions of 
containers for structuring these (including top level 
dialogs), but not any composed ones. With the chosen 
building blocks the composition structure of the UIs – 
which is different when the platforms have large differences 
– is reflected in the specifications, also at the abstract level. 
It meets R3 quite well by offering adaptation between 
platforms through a mitigation mechanism (including a run 
time system), but this does not support other types of 
adaptation on single platforms. R4 is partly met by offering 
support for different modalities, and a possibility to show 
map-based UIs. The latter is though offered through 
composing external UI services and specifying such UIs 
does not seem to be directly supported. As MARIA is a 
general purpose language, R5 is not met. 

Also UsiXML [8] meets R1 well, but fulfills R2 only partly 
for the same reasons as MARIA, although some compound 
components like tables are offered. It meets R3 to some 
extent. The connections to domain models are through 
transformation, but as these work both ways, a degree of 
traceability is achieved, and some models are available at 
run time to facilitate adaptation. The adaptation is though 
restricted to fitting a UI to similar devices with different 
form factors, not to platforms with large differences [12]. 
UsiXML is extensible, and there is an extensive family of 
related approaches providing various extensions [24]. Some 
of these extensions enhance the support for R3 [10], while 
other address R4 (including support for maps and 3D UIs), 
but there is no common, integrated support. Another 
extension supports development of a UI for a flight cockpit 
[7], an application area having similarities to emergency 
response. Except for this, R5 is not met. 

CAP3 [23] meets R1 and R2 in similar ways as MARIA 
and UsiXML, although the building blocks are slightly 
more abstract. According to [23], CAP3 supports adaptation 
to context, but this seems to be achieved through service 
integration and not involving any reflection mechanisms, 
showing limited or no support for R3. Except for supporting 
maps and live content like movies, R4 is not met. Only 
visual modalities seem to be supported. R5 is not met. 

ICOs [13] employs a different approach by focusing on the 
UI behaviour, abstracted using Petri nets. It does not 
support cross-platform specifications, and does therefore 
not meet R1, but it offers an abstract iWidget construct to 
embed the presentation part of UIs specified by other 

means. R2 is not met, neither. R3 is partly met by providing 
a run time system. Reflection is provided through such 
mechanisms in Java. Both seem to be used primarily to 
provide interactive development support. ICOs put 
emphasis on supporting development of post-WIMP UIs, so 
R4 is met. R5 is partly met, as ICOs have proven useful in 
closely related domains like command and control, air 
traffic control and cockpit systems. 

The recent OMG standard IFML (Interaction Flow 
Modeling Language, available at www.ifml.org) meets R1 
only partly, as the building blocks are on a lower 
abstraction level than MARIA, UsiXML and CAP3, and 
only visual web-based UIs are supported.  It meets R2 to 
the same degree as MARIA, UsiXML and CAP3, but 
supports neither R3, R4 nor R5. 

We have developed the FLUIDE Framework offering 
building blocks fulfilling R1-R5. How this is done is 
explained in the next section. In this paper we present the 
framework in an example-based manner, and report results 
from a case-based assessment of the framework. 
THE FLUIDE FRAMEWORK 
The FLUIDE Framework contains: (a) a collection of 
ready-to-use and highly configurable components 
supporting flexible composition of end-user solutions for 
emergency responders, (b) composition and configuration 
approaches, (c) the FLUIDE Specification Languages, (d) a 
generic mechanism transforming specifications to 
components or applications, (e) the FLUIDE Method 
supporting the use of the framework. The current version of 
the FLUIDE Framework is a first prototype, and thus the 
maturity of the different parts vary. The most mature part, 
and the subject of this assessment, is the FLUIDE 
Specification Languages: FLUIDE-A is used for expressing 
abstract UI (AUI), while FLUIDE-D is used for expressing 
concrete designs, usually denoted concrete UI (CUI). 
FLUIDE-D provides specific support for the emergency 
response domain through a library of UI patterns that are 
particularly useful for this domain, and may be 
automatically transformed to a final UI (FUI). 

The FLUIDE Specification Languages 
The UI of an emergency response application must support 
the work performed by emergency responders. The four 
main language constructs in FLUIDE presented as rounded 
rectangles in Figure 1 support a natural breakdown of such 
work (rectangles). Emergency response work can be 
categorized with respect to responder types, responder roles 
and high level tasks, as well as combinations of these. The 
categories of functionality [16] support categories of work 
and the task structures these categories contain.  

In FLUIDE-A, the Category Manager construct facilitates 
the specification of a whole application, or some part of it. 
A category of functionality supports certain work 
performed by emergency responders. Such work can be 
divided into tasks on different levels.  

98

http://www.ifml.org/


 
Figure 1. Overview of the main constructs in FLUIDE-A 

These tasks may be categorized both in a hierarchical 
goals/means structure and through temporal constraints 
between sets of tasks. Such task structures are specified 
using the Work Supporter construct, which includes a task 
model to specify hierarchical and temporal structures. The 
concrete syntax of FLUIDE-A uses a neutral hierarchical 
task model syntax to express the hierarchical structure. The 
temporal structure is expressed using operators. A special 
kind of Work Supporter aggregates other Work Supporters 
recursively.  

A UI supporting one task is required to manage information 
content relevant for solving the task. The information needs 
of individual tasks are specified using the Task Supporter 
construct. How the information content used in a Task 
Supporter is further broken down and structured in (part of) 
a UI is specified using the Content Presenter construct. The 
information to be presented by a Content Presenter is 
specified by a concept model where all entities are 
connected through relations. The concept model, together 
with the specification of an anchor (the root entity of the 
model), is sufficient for determining which information is 
to be presented in a FUI at run-time. FLUIDE-A employs a 
subset of the UML class model syntax (extended with the 
anchor) to express the models. Additional platform-
independent visual properties are expressed using 
annotations. As the same information may be useful when 
solving different tasks, and because other tasks may only 
require a subset of the same information, Content 
Presenters may be specified hierarchically. 

In the CAMELEON glossary1, one of the definitions of 
interactor is: "A computational abstraction that allows the 
rendering and manipulation of entities (domain concepts 
and/or tasks) that require input and output resources". The 
four main constructs in FLUIDE-A may be understood as 
interactors in this sense. We use interactor construct as a 
common term for these constructs, and the term interactor 
instance to refer to an occurrence of an interactor construct 
in a specification. 

FLUIDE-D is used for specifying designs for FLUIDE-A 
specifications, and contains variants of the four main 
constructs in FLUIDE-A, using the same names with the 
suffix design. The interactor design constructs in FLUIDE-
D are used to specify which parts of the domain and task 

1 http://giove.isti.cnr.it/projects/cameleon/glossary.html 

models that are to be included in a FUI. FLUIDE-D's core 
is the library of UI patterns, operationalized in the view 
constructs, including content views for presenting the 
instances corresponding to the concept models. Views are 
used to specify how some part a FLUIDE-A specification is 
to be presented on a given UI platform using certain 
modalities and UI styles. The view constructs in FLUIDE-
D make it possible to specify designs for a given FLUIDE-
A specification for different target platforms through 
adding minimal amounts of platform specific specifications. 

In the FLUIDE Specification Languages, R1 is met by 
having building blocks both for the abstract and concrete UIs 
that are at a higher abstraction level than corresponding 
building blocks in the approaches discussed above. R2 is met 
by providing compound building block as constructs in the 
languages. The difference compared to other approaches is 
most evident for the content views used as part of the 
FLUIDE-D specifications. Such views specify how the 
instances corresponding to a concept model fragment is 
presented. They provide means for specifying quite advanced 
designs in a very compact way through exploiting pairs of UI 
patterns and model patterns. These views support UI patterns 
that are particularly useful in the emergency response 
domain, and in this way FLUIDE meets R5. We use the term 
UI pattern to denote a user interface design pattern, i.e., a 
pattern focusing on reoccurring visual and structural aspects 
as well as generic behaviour of user interfaces. Compound 
building blocks are in their nature more specialized than 
simple ones. To counter for this, the views provide versatility 
through being based on model patterns. We use the term 
model pattern to denote patterns of the same type as Gamma 
et al. [6], i.e., expressed in terms of a concept model. This 
means that the views may be used to specify advanced UIs 
managing a wide variety of information as long as the 
information to be presented has a structure that matches the 
model patterns used in the view. E.g., the Map Icons View 
provides means for specifying an icon-based presentation of 
any type of information in a map UI as long as the model 
follows a given structure (including providing locations) – 
working just as well for presenting incident objects, 
resources, victims, important locations or risks. Thus, such 
views combine being specialized and powerful with regards 
to emergency response need with being versatile with regards 
to the actual information they present. The compound view 
types in FLUIDE-D also support specification of UIs where 
the layout is depending on the instances at run time, thus 
meeting R4. R3 is supported in FLUIDE through enabling 
reflection mechanisms by embedding domain models as part 
of the specifications. This includes the concept models used 
in the content views just discussed, as well as task models. 
This also provides traceability, which reduces the challenges 
connected to roundtrip engineering which is inherent in 
model-based systems development.  

EMERGENCY RESPONSE CASE STUDY 
In order to assess the FLUIDE Framework we retrospectively 
specified the UI of three existing emergency applications 

99

http://giove.isti.cnr.it/projects/cameleon/glossary.html


(without any connections to FLUIDE), all three of which 
were developed as part of the research project BRIDGE 
(www.bridgeproject.eu). The three applications are: 
MASTER, eTriage and Resource Manager. We denote this 
the target UI. The advantages of specifying already existing 
applications are realism and that we do not need to do UI 
design from scratch. Using three applications in the case 
provides variation with regards to users, tasks, managed 
information, platform and style. The disadvantage on the 
other hand is that we mainly assess the suitability of the 
FLUIDE Specification Languages. The full description of the 
three applications and the corresponding FLUIDE 
specifications are available in [17]. In the following, we 
present excerpts from these specifications to provide more 
background on the FLUIDE languages and their usage. 

The MASTER Application 
The MASTER application consists of a large map display 
showing information overlays (icons and other visual 
representations) with relevant information for the emergency 
response at hand. All information overlays on the map belong 
to one of five categories. The application also includes a 
ribbon showing the information elements in the overlays 
grouped by these categories, which are further divided into 
sub categories. On the top level, the ribbon contains a set of 
buttons for accessing the information in each category, as 
well as a ticker showing summary information – as illustrated 
in Figure 2. The ribbons for each of the categories are similar 
to each other, but present different types of information. We 
only show the ribbon for the victims category (Figure 3). It 
contains some overview information at the left and icons for 
each of the sub categories in a horizontal scrollable view at 
the right. Each victim is represented by an icon in the ribbon 
and on the map. The plus icons represent functionality for 
adding elements of the given sub category. The information 
in the victims category may also be presented in a tabular 
form, as shown in Figure 4. The Victims Presenter (Figure 5) 
specifies both the right hand part of the ribbon for the victims 
category and the tabular presentation of victim information in 
FLUIDE-A, using the Basic Content Presenter construct. The 
outer border with a name is used for all FLUIDE-A interactor 
constructs. Decorations on the border determine the construct 
and whether it is basic or aggregated. 

 
Figure 2. Ribbon showing the ticker and the top level buttons 

 
Figure 3. Ribbon content for the victims category 

The UI annotations specified in Figure 5 express which icon 
that should be used to visualize instances of the entity Victim, 
rules for displaying icons, labels, as well as visualization of 
entities or attributes. The left side of the ribbon for the victims 
category is specified by a Basic Content Presenter called 
Victim Summary Presenter, which is not included in this paper. 
This presenter, together with the Victims Presenter (Figure 5), 
contain the needed information for specifying the ribbon 
category in Figure 3. The specification of this in FLUIDE-A is 
shown in Figure 6 using an Aggregated Content Presenter. 
Aggregated presenters include only the border parts of their 
members, and the members' names are shown inside the 
presenter instead of in the heading. 

Figure 7 shows a FLUIDE-D Basic Content Presenter 
Design specifying the right hand part of the ribbon for the 
victims category (Figure 3). The outer border of a FLUIDE-
D specification resembles the FLUIDE-A border, but it also 
specifies UI style(s) and modalities/platform(s) the design 
is targeted at. 

 
Figure 4. Tabular presentation of victim information 

Victims Presenter
*

id
name
age
gender
medical desc.
pulse
blood pressure
respiration 

Victim

Icons: 

Location

coordinates

Point
  

1 0..*

name
colour

Triage Category  
 1

0..*

Icon 
Display 
Rule: ...

name

Affected 
body part

  1

0..*

Visualization:

name
position

Triager

  
0..*

1

date
time

Triage

 

 
1

0..*

Visualization:

Icon Label: 
«id»& «med. 
descr.»

name

Logistic location

Label: 
«Location»

 

 

1

0..*

 
Figure 5. FLUIDE-A spec. of all the Victims sub categories 

Victims Category Presenter
*

1 *
Victim Summary Presenter

*

Victims Presenter

*

 
Figure 6. FLUIDE-A spec. of the Victims Category (Figure 3) 

100

http://www.bridgeproject.eu/


Victims Presenter Design

«Ribbon Sub Categories 
Categorized Single Entity View» 

Victims view

A

*

 
 1

0..* id
name

Victim

name

Triage Category

*

.. . .. .

.. . .. .

 
Figure 7. FLUIDE-D spec. of all the Victims sub categories 

Victims Presenter Design - Tabular

0..*
  1

«Table View» Victim table view A

*

id
medical description
blood preasure
temperature
name

Victim

colour

Triage Category

*

 
Figure 8. FLUIDE-D spec. of the Tabular UI in Figure 4 

Victims Category Presenter Design*

…..
…..
…..

…..
…..

«Ribbon Category View» Victims Category view
A

<sub category in focus>

.. . .. .

.. . .. .

Victim Summary 
Presenter Design

*

…..
…..
…..

…..
…..

A

Victims Presenter Design

* .. . .. .

.. . .. .

 
Figure 9. FLUIDE-D specification of the Victims Category 

Presenter designs contain one or more views. There are four 
main types of views, i.e., layout manager view, decorational 
view, content view and content integration view. The view 
shown in Figure 7 is a content view, i.e., a view that 
presents instances of one or more entities. Content and 
content integration views use UML stereotype notation to 
denote the view type before its name. A 1 or * on the top 
left of a content view denotes whether the view presents 
one or a number of instances of the anchor entity. The 
available content and content integration views make up the 
FLUIDE library of emergency response UI patterns. 

All content views impose restrictions on the model fragment 
they may present, expressed in FLUIDE-D as a model 
pattern fitting the UI pattern supported by the content view. 
The model pattern for the domain specific content view used 
in Figure 7 must contain the entity to be presented (Victim), 
and a categorizing entity (Triage Category). It presents a 
number of instances of the presented entity as a set of grids 
or tables of icons. The number of grids is determined by the 
number of instances of the categorizing entity. These 
instances also determine the labels for each sub type. The 
plus icon on the right hand side of the view is specified using 
a property setting for the view. The icons to use in the grid 
are obtained from the icon annotation on the Victim entity in 
the corresponding FLUIDE-A specification. 

Figure 8 shows a Basic Content Presenter Design 
specifying the Tabular presentation of victim information 
(Figure 4). It contains one generic content view. Its model 
pattern must contain one entity (possibly with subtypes) 
that determines the rows in the table (Victim). It may also 
include related entities, as long as the cardinality on the side 
of the related entity is one. 

Figure 9 shows an Aggregated Content Presenter Design 
specifying the Ribbon content for the victims category 
(Figure 3). It only includes the border parts of the member 
presenter designs. The anchor symbol indicates which of 
the member presenter designs the aggregated one inherits 
the anchor from. The presenter design in Figure 9 contains 
a content integration view. Content integration views 
integrate related content from different presenter designs. 
Content integration views require that their member 
presenter designs use specific content views. The Ribbon 
Category View used in Figure 9 has two slots. The part to 
the left of the vertical line may only aggregate exactly one 
presenter design containing a Ribbon Category Overview 
View. The right hand slot may aggregate different view 
types, including the one used in Figure 7. 

To specify the coupling of the 5 ribbon categories (of which 
one is specified in Figure 6 and Figure 9) in FLUIDE-A, we 
use a Task Supporter with 5 children, shown in Figure 10. 
We do not show the corresponding Task Supporter Design. 
To specify the coupling of the ribbon buttons (specified in 
the Task Supporter Use ribbon buttons which is not shown) 
and the ribbon categories (Figure 10), the Basic Work 
Supporter shown in Figure 11 is used. Each task in a Work 
Supporter may have a connected Task Supporter. In the 
Work Supporter shown in Figure 11, there are three tasks, 
of which two have Task Supporters. We do not show the 
corresponding design for the Work Supporter. 

To specify the entire ribbon (buttons, ticker and the 
individual ribbon categories), the Aggregated Work 
Supporter shown in Figure 12 is used. An Aggregated Work 
Supporter must add exactly one task (possibly with a Task 
Supporter) on the level above the member supporters. The 
supporter in Figure 12 couples the ribbon contents (Figure 
11) with the Work Supporter for the ribbon ticker. We do 
not show the corresponding design. 

The map part of MASTER in FLUIDE-A is specified using 
a number of Basic and Aggregated Content Presenters, a 
Task Supporter, and a Basic Work Supporter. 

Use Ribbon Categories

Incident Category Presenter

*

Response Category Presenter

*

Resources Category 
Presenter

*

Victims Category Presenter

*

Risks Category Presenter

*

TS

 
Figure 10. FLUIDE-A specification of a Task Supporter 

connecting the five ribbon categories 

101



Use Ribbon Content SupporterT

Use Ribbon 
Buttons

TS
Use Ribbon 

Buttons

Use Ribbon Content

Use Ribbon 
Categories Use Ribbon 

Categories

TS

 
Figure 11. FLUIDE-A spec. of a Basic Work Supp. coupling 
the ribbon categories with the top level set of ribbon buttons 

Use Ribbon SupporterT

Use Ribbon

Use Ribbon Ticker Supporter

T

Use Ribbon Content Supporter

T

 
Figure 12. FLUIDE-A specification of an Aggregated Work 

Supporter for the Use Ribbon task 

Master Category Manager Design

Use Map Supporter Design

…..
…..
…..

…..
…..

…..
…..
…..

…..
…..

Use Ribbon Supporter Design

…..
…..
…..

…..
…..

T .. . .. .

.. . .. .

.. . .. .

.. . .. .

«Combined Map and Ribbon View» 
All MASTER contents view A

T

CM

 
Figure 13. FLUIDE-D spec. of the MASTER UI 

To specify the coupling of the ribbon and the map, a 
Category Manager is used. A Category Manager may 
aggregate both Content Presenters and Work Supporters. The 
Master category manager (not shown) aggregates a Basic and 
an Aggregated Work Supporter. The corresponding design is 
shown in Figure 13. It uses a domain specific content 
integration view which puts together one design containing a 
Map View with another design containing a Ribbon View, 
together making up a complete UI with the map and the 
ribbon working together. All designs having design children 
exploit the sum of styles and modality/platforms of their 
children (and their children recursively). 

The Resource Manager Application 
The Resource Manager is a smartphone application 
supporting personnel in the field by managing locations as 
well as receiving and responding to task allocations. Figure 
14 shows two of the UIs it consists of. We do not show any 
of the Content Presenters or Task Supporters specifying the 
UIs of the Resource Manager. Instead we show the Work 
Supporter in Figure 15. It uses a more complex task model 
than the Work Supporter shown for the MASTER 
application (Figure 11). There are four levels in the task 
model in the Work Supporter, and four of the nine tasks have 
connected Task Supporters. The task model contains some 
operators (using the same symbols and precedence rules as 
CTT [19]): “>>” indicates sequence in task performance, while 
“[]” indicates a choice between tasks. No operator indicates 
that the tasks may be performed in an arbitrary sequence, 

including in parallel. The corresponding design is shown in 
Figure 16.  

This Work Supporter Design utilizes a decorational view 
specifying that the child designs are a set of loosely 
connected windows (or full screen dialogs on a mobile 
device). The close icon indicates that windows are used, 
while the stacking look is used to indicate that the view 
contains a number of windows. The child Task Supporter 
Designs correspond to the children of the Work Supporter 
shown in Figure 15. Note also that the design uses touch-
based mobile device modality/platform. 

 
Figure 14. Two example Resource Manager UIs  

Perform Work in the Field Supporter

Use Map
TS

Use Map

Perform Work in the Field

Receive Task 
Request

Manage Tasks

View 
Tasks

Receive Task Request
TS

View Tasks
TS Decline 

Task Decline Task
TS

Assess 
Task

Perform 
Task

T

[]

>> >> >>

Accept 
Task

 
 Figure 15. FLUIDE-A specification of the Basic Work 

Supporter Perform Work in the Field Supporter 

Perform Work in the Field Supporter Design

Decline TaskDecline Task

http://www.statkart.no/Eiendom-og-areal/Tinglysing-av-eiendom/Hvordan-tinglyse/
Tinglyse-ny-eier/Skjote/

Perform Work in the Field

A

T

…..
…..
…..

…..
…..

Receive Task Request Design

…..
…..
…..

…..
…..

TS

Decline Task Design

…..
…..
…..

…..
…..

TS

Use Map Design – Icons for map

TS
…..
…..
…..

…..
…..

View Tasks Design

TS
…..
…..
…..

…..
…..

 
 Figure 16. FLUIDE-D specification of a Basic Work 

Supporter Design for the Basic Work Supporter in Figure 15 

102



 
Figure 17. Map based UI giving an overview of triaged victims 

 
Figure 18. UI for managing details about a triaged victim 

Victims Presenter Design – 
Victims map

*

«Map Icons View» 
Victims Status and Location view

id
medical description

Victim

coordinates

Point
  
1

0..*

name
colour

Triage Category   
1

0..*

  0..*
1

Triage

A*

Victim Presenter Design – 
Medical details

*

…..
…..
…..

…..
…..

Map Mode

Center Map Projector View

Camera View

Victims Presenter Design – 
Victims 3D map

*

 
Figure 19. FLUIDE-D specification of the UI in Figure 17 

The eTriage Application 
The eTriage application supports personnel in the field 
triaging victims. The UI giving an overview of victim 
already triaged is shown in Figure 17. The UI employed 
when triaging a single victim or looking at the details for a 
victim already triaged is shown in Figure 18. The content 
managed by these UIs are covered by the FLUIDE-A Basic 
Content Presenter Victims Presenter shown in Figure 5.  

The FLUIDE-D specification of Figure 17 is shown in 
Figure 19. It uses a map-based UI style, shown by the icon 
on the left side in the header. It contains one Map Icons 
View, which is a domain specific content view type. The 
model pattern must contain one entity (possibly with 
subtypes) that has a relation to a location entity (providing a 

point). It may also include related entities, as long as the 
cardinality on the side of the related entity which is 
presented is one. It presents a number of instances of the 
presented entities as icons on a map. If the presenter design 
using this type of view is member of a Map View (a domain 
specific content integration view), either directly or one or 
more times among its parents, the icons are shown on the 
map provided by the Map View highest up in the hierarchy. 
If a Map Icons View does not have a parent providing a 
Map View, it will provide its own map. Three of the 
buttons inside the views are property values of the view, the 
fourth (i.e., the button labeled "Camera View") is a button 
providing navigation. The presenter design shown in Figure 
19 also specifies the intended dialog navigation to take 
place when an icon in the map is tapped. It is shown as a 
dashed-lined arrow with a growing size. The type of dialog 
navigation (in this case open) is shown as text on the arrow. 
The small end indicates which element of the UI that 
triggers the dialog navigation. The point of the arrow 
identifies the target. The target of one of the dialog 
navigation specifications is a representation of the presenter 
design shown in Figure 20. 

A FLUIDE-D specification of Figure 18 is shown in Figure 
20. It puts together five content views using a number of 
layout manager views (the designs used in MASTER leave 
most of the layout to the content and content integration 
views). 

Victim Presenter Design – Medical details*

…..
…..
…..

…..
…..

«Single Instance View» Victim heading A

name
position

Triager

date
time

Triage

  1
0..*

id
name
age
gender
pulse
blood pressure
respiration 

Victim

«Single Instance View» 
Victim details

A«Body Parts 
Visualization View» 
Injured body parts

A

name

Affected body part

«Single Instance View» Victim diagnosis
A

medical description

Victim

«Single Instance View» Triage category A

name
colour

Triage Category

1

1

*

1

1

Back

 
Figure 20. FLUIDE-D specification of UI in Figure 18 

103



Layout manager views are not given names, and are shown 
using dashed lines (to indicate that they are usually not 
visible). The arrows on the dashed line specify whether the 
children are organized horizontally or vertically. Four of the 
content views used are Single Instance Views, a generic 
content view type for presenting one instance at a time of a 
single entity. The presenter design also uses the domain 
specific Body Parts Visualization View, which presents 
multiple instances together graphically. The presenter 
design also contains a button for navigating back to the 
dialog from which the Medical details was opened using 
the "return" type of dialog navigation. 

DISCUSSION 
As a result of the case study we have obtained three 
specifications – one for each application. In the following, 
we discuss the suitability of the FLUIDE languages by a 
careful inspection of these specifications as available in 
[17]. The discussion is structured according to six research 
questions. 

When conducting the assessment, we have put emphasis on 
dealing with the challenges related to the fact that the 
assessment was performed by the researchers that develop 
the FLUIDE Framework. Firstly, these challenges were 
addressed by formulating research questions that were 
possible to address solely by assessing the specifications 
and the corresponding UIs. Secondly, the discussions 
addressing the research questions are to a large extent based 
on quantitative data obtained by careful analyses of the 
specifications and the UIs they specify. We claim that both 
these measures have contributed to an objective assessment 
with comparable conclusions to a possible outcome of an 
assessment performed by other researchers. 

To what extent were we able to successfully express the 
three applications? 
We were able to fully describe all three applications. In 
doing this, we met no major obstacles. We claim that the 
specifications of the three applications contain sufficient 
information for the target UIs to be schematically deducible 
from them. To support this claim, we will use two examples 
to show how all the different parts of a target UI are 
reflected in the corresponding specification: In Figure 21 
we show where the different parts of the UI in Figure 3 are 
specified. In Figure 22 we show the correspondence 
between the elements in the UI in Figure 18 and elements in 
its FLUIDE-D specification (Figure 20). 

To what extent are the specifications comprehensible to 
third parties? 
The fact that the model fragment are expressed using 
known modelling languages gives systems developers (and 
end users) knowing UML class models and task models a 
head start. Also, as can be seen in the presentation of the 
case, the powerful constructs in the languages – particularly 
the view constructs – make the specifications fairly simple. 

 
Figure 21. Where the parts of the UI in Figure 3 are specified 

 
Figure 22. Connections between the UI in Figure 18 and its 

specification 

The naming of the different content and content integration 
views are made to highlight which kind of UI pattern they 
support and how they are used. To add to this, the 
decorations on the FLUIDE-D specifications give 
comprehensive and understandable information about style, 
modality and platform in a compact manner. These 
observations are supported by an experiment using another 
case [18]. 

Are there common patterns/differences between the 
three specifications? 
The three applications all support emergency responders, 
and they manage overlapping information. They have many 
commonalities, but they also vary regarding number of UIs, 
their complexity, style, platform, modality, and whether 
they are data or task oriented. The number of UIs is 
reflected in which interactor construct that are used. 
MASTER and Resource Manager use all constructs, while 
eTriage having few UIs only use the Content Presenter and 
Category Manager (Design) constructs. As Resource 
Manager and eTriage only manage one category of 
information each, while MASTER manages 5, there is only 
one Content Presenter instance in the FLUIDE-A 
specifications of Resource Manager and eTriage 
respectively, while there are 20 such instances in the 
FLUIDE-A specification of MASTER. 

MASTER is data oriented and puts few restrictions on the 
sequence in which the different parts are to be used. 
Resource Manager is task oriented with a natural sequences 
in which the different UIs are used to solve specific tasks. 
This difference is reflected in the task models in the Work 

104



Supporters in their specifications. The task models in the 
Work Supporters in MASTER (like the one in Figure 11) 
are quite simple, while the task model in the Work 
Supporter in Resource Manager (Figure 15) is more 
complex, containing operators to specify the expected 
sequence the UIs are to be used. 

Which constructs functioned well; which constructs 
functioned less so? 
All the interactor constructs in FLUIDE-A and all interactor 
design constructs in FLUIDE-D are used in the case. In the 
case description, examples are given for all the interactor 
(design) constructs, either the FLUIDE-A, the FLUIDE-D, 
or both variants. Based on this, we may conclude that the 
interactor (design) constructs match the needs of the case. 
All sub constructs (construct that may only be used as part 
of an interactor instance) except one match the needs of the 
case. The annotation sub construct is not used in any of the 
Work Supporters. This may be an indication that 
annotations are not very useful for this construct.  

All the four view types in FLUIDE-D are used in the case, 
and the distribution between them reflects characteristics of 
the case. Content views may be further divided into domain 
specific and generic ones. The domain specific ones are 
more used than the generic ones, although one of the 
generic ones (Single Instance View) is among the 
individual view constructs used most often. These findings 
indicate that having a library combining domain specific 
and generic view types is useful in an emergency response 
case.  

Are both languages needed or should they be 
integrated into one? 
The main rationale for having the traditional split AUI and 
CUI [3] in the FLUIDE languages is to support 
development across platforms, styles, modalities and even 
applications, by having the common parts of the 
specifications expressed in FLUIDE-A and the more 
specific parts expressed in FLUIDE-D, among other to 
avoid redundant specifications. This split works well for the 
Content Presenters (which represents 57% of the interactor 
instances in the specification). All these instances are used 
as basis for at least two designs, and there are on average 
3.1 designs for each instance of Basic Content Presenter. 
The most versatile (among them the Victims Presenter in 
Figure 5) are used as a basis for as much as six designs. 
Approximately a third of the Basic Content Presenters are 
used as the basis for presenter designs in two different 
applications, showing that our aim of using FLUIDE-A 
specifications across applications is achievable. 
Furthermore, there is one Basic Content Presenter (the 
Victims Presenter in Figure 5) that is used as basis for 
presenter designs exploiting all four styles used in the case 
(ribbons, tabular, maps and forms).  

All the instances of the other interactor constructs are used 
by exactly one interactor design instance. The main 
explanation for this finding is that the tasks and task models 

tend to be more specialized than the concept models, 
indicating that the Task Supporters and Work Supporters in 
the FLUIDE-A specifications, although intended to be 
abstract, will naturally be specific for one (part of) a UI on 
a given platform. This is in line with the findings of e.g., 
Clerckx et al [4]. This shows that the split between 
FLUIDE-A and FLUIDE-D is important and successful for 
Content Presenters, but not important for the other 
constructs. As the Content Presenters represent more than 
half the interactor instances in the case, keeping the split for 
this construct seems advisable. An option would be to 
merge the languages for the other constructs, but this would 
violate the symmetry between the languages. Thus, our 
conclusion is that although the case has shown that the split 
is not important for all the constructs, we find the benefits 
from keeping the split higher than the disadvantages of 
having the split only for some constructs. 

To what extent do the specifications scale? 
The main means for specifying UIs of different size and 
complexity in FLUIDE is the aggregation mechanisms in 
the languages. They enable splitting the specification of 
large and/or complex UIs into smaller, manageable pieces 
through reusing lower level interactor (design) instances in 
higher level ones. Such mechanisms are available both in 
FLUIDE-A and FLUIDE-D. Through these mechanisms, it 
is possible to keep each interactor instance on a reasonable 
size. The specifications show that all the main aggregation 
mechanisms are used, and that each time an aggregation 
mechanism is used, a limited number of occurrences are 
aggregated (but usually more than one). This makes the 
specifications simple and manageable, and is a natural 
consequence of having four levels of interactor constructs, 
of which two may be used recursively. The most complex 
interactor (design) instances are included in the case 
description (Figure 5 for FLUIDE-A and Figure 20 for 
FLUIDE-D). Both these are of reasonable size. 

RELATED WORK 
There are quite a few languages and approaches supporting 
model-based UI development [11]. As shown in the 
introduction, neither some of the most influential of these 
[8, 13, 20] nor OMG's IFML standard meet all the 
requirement we have identified. In particular, none of the 
assessed approaches meet the requirement of having 
compound building blocks. UsiXML, MARIA, CAP3 [23] 
and RBUIS [2] build on or relates to the CAMELEON 
Framework [3], which depicts a close connection between 
AUIs and concept and task models. Despite this, neither of 
these embed such models, including their structure, as part 
of specifications. In UsiXML, the language supports 
specification of such models, but the connection to the AUI 
is through graph transformations. In MARIA, elements 
from concept models are referred in the AUI, as are 
operators from task models. CAP3 have explicit relations to 
task models in the AUIs, but use this mainly to specify 
behaviour, not for aggregation as we do. RBUIS keeps the 
connection to task models, even at run time where these 

105



models are used as the basis for simplification of layout and 
features to roles, operationalized through adaptation of the 
CUIs. The AUIs are also used in this process, which 
enables fine-grained adaptations that are difficult to include 
in specifications. Our adaptations to roles are more coarse-
grained, and based on the task models at design time. 
Adaptation at run time is partly focused on keeping the 
context of use in UIs on different devices, and partly on 
adaptations to changes in the external context. In realizing 
the latter, the approach used in RBUIS will be considered. 
We use the concept interactor in a similar way as it is used 
in the CAMELEON Framework, MARIA, CAP3 and 
Trætteberg’s work [22]. 

The concrete syntax we use in FLUIDE-D is inspired by the 
way Canonical Abstract Prototypes [5] embed abstract 
interactors in an abstract layout, but it also differs 
significantly through our use of views and model element 
instead of containers and simple UI elements. Our view 
constructs rely on combining and coupling UI patterns and 
model patterns. Using UI patterns in UI development 
approaches is not uncommon. Ahmed and Ashraf [1] use 
patterns extensively, but focus on task and UI patterns. Lin 
and Landay [9] also use UI patterns in their cross-device 
development tool, but they rely on correspondence between 
CUI elements on different platforms rather than 
abstractions. In MyUI, Peissner et al [21] make extensive 
use of patterns combined with state charts for their AUI. In 
addition to UI patterns, they use patterns for categorizing 
devices, user groups, UI elements, as well as adaptation to 
these. They do not apply model patterns. Vanderdonckt and 
Simarro [25] support patterns both for domain and UI 
models, but do not combine them. Using model patterns as 
part of model-based UI development is not very common. 
Trætteberg [22] uses such patterns as part of his languages, 
but does not apply it to a view mechanism in the CUIs. The 
transformation mechanism presented in [14] also uses 
model patterns. 

CONCLUSIONS AND FUTURE RESEARCH 
We have presented the FLUIDE Framework supporting 
development of flexible UIs for emergency response 
applications through a component-based approach. The 
framework contains the FLUIDE Specification Languages 
with a unique combination of feature. The languages 
provide compound building blocks, which for AUIs enables 
common specifications across platforms and modalities 
with large differences, and for CUIs enables compact 
specifications of advanced UIs, including UIs where the 
layout is depending on instances at run time. The compound 
building blocks are made versatile by supporting model 
patterns, and provides a library of UI patterns that are 
particularly useful in the emergency response domain. The 
specifications embed domain model (concept and task 
models), including their structure, enabling reflection to 
support composition and adaptation, as well as traceability 
to support roundtrip engineering. 

We have assessed the FLUIDE specification languages by 
specifying three existing emergency response applications. 
The experience from using the FLUIDE languages for 
specifying the case indicates that they are well suited for 
specifying UIs in applications supporting emergency 
responders working at the incident site. More precisely, we 
were able to fully describe all the three applications without 
meeting any major obstacles. Moreover, we have argued 
that the specifications contain sufficient information for the 
target UIs to be schematically deducible. We have tried to 
highlight that the specifications are comprehensible to third 
parties because they use known modelling style, have 
powerful constructs making the specifications fairly simple, 
yet carrying comprehensive information about the UI being 
specified. 

The commonalities and the variations between the three 
applications are well reflected in the three specifications, 
both with respect to which constructs that are used, and 
level of details in the specifications. The specifications 
contain occurrences of all the interactor and interactor 
design constructs. All these, as well as most of their sub 
constructs, including the view types, were used as expected 
and intended. The case indicates that annotations on Work 
Supporters are probably not needed. We experienced that 
having a library combining domain specific and generic 
view types is useful when specifying emergency response 
UIs.  

The specification includes a set of very versatile Content 
Presenters, working across both styles, modalities and 
applications. Even though the other construct proved less 
versatile, this shows that the split between FLUIDE-A and 
FLUIDE-D works, as the Content Presenters represent more 
than half the interactor instances in the case. The 
specifications scale very well because the reuse 
mechanisms are extensively used in the case, both on 
construct and instance level, contributing to keeping the 
specifications simple. The case also shows that the 
complexity of the target UIs is well reflected in the 
complexity of the FLUIDE specifications. 

Among our planned future research is to complement the 
framework, including tool support and adaptation 
mechanisms. 
ACKNOWLEDGMENTS 
The work on which this paper is based is supported by the 
EMERGENCY project (187799/S10), funded by the 
Norwegian Research Council and the following project 
partners: Locus AS, The Directorate for Civil Protection 
and Emergency Planning, Geodata AS, Norwegian Red 
Cross, and Oslo Police District. 

REFERENCES 
1. S. Ahmed and G. Ashraf. 2007. Model-based user 

interface engineering with design patterns. Elsevier 
Journal of Systems and Software 80(8), 1408-1422.  

106



2. P. A. Akiki, M. Keynes and A. K. Bandara. 2013. 
RBUIS: Simplifying Enterprise Application User 
Interfaces through Engineering Role-Based Adaptive 
Behavior. Proceedings of EICS'13. ACM 

3. G. Calvary, J. Coutaz, D. Thevenin, Q. Limbourg, L. 
Bouillon, and J. Vanderdonckt. 2003. A Unifying 
Reference Framework for Multi-Target User 
Interfaces. Oxford Journals Interacting with 
Computers 15 (3), 289–308. 

4. T. Clerckx, K. Luyten,,and K. Coninx. 2004. 
Generating context-sensitive multiple device interfaces 
from design. Proc. of CADUI’04. Springer. 

5. L. L. Constantine. 2003. Canonical Abstract Prototypes 
for abstract visual and interaction. Proc. of DSV-IS'03. 
Springer. 

6. E. Gamma et al. 1995. Design Patterns – Elements of 
Reusable Object-Oriented Software. Addison-Wesley. 

7. J. Gonzalez-Calleros, J. Vanderdonckt, A. Lüdtke and 
J-P. Osterloh 2010. Towards Model-Based AHMI 
Development. Proc. of HCI-Aero'10. ACM. 

8. Q. Limbourg, J. Vanderdonckt, B. Michotte, L. 
Bouillon, V. López-Jaquero. 2004. USIXML: a 
language supporting multi-path development of user 
interfaces. Proc. of EHCI-DSVIS'04. Springer. 

9. J. Lin, J.A. Landay. 2008. Employing patterns and 
layers for early-stage design and prototyping of cross-
device user interfaces. Proc. of CHI'08. ACM. 

10. V. López-Jaquero, J. Vanderdonckt, F. Montero and P. 
González. 2007. Towards an Extended Model of User 
Interface Adaptation: The ISATINE Framework. Proc. 
of EIS'07, LNCS 4940, Springer. 

11. G. Meixner, F. Paternò and J. Vanderdonckt 2011. 
Past, Present, and Future of Model-Based User 
Interface Development. De Gruyter i-com 10(3), 2-11. 

12. V. G. Motti and J. Vanderdonckt 2013. A Unified 
Model for Context-aware Adaptation of User 
Interfaces. Revista Română de Interacţiune Om-
Calculator 6(3), 211-248. 

13. D. Navarre, P. Palanque, J-F. Ladry, and E. Barboni. 
2009. ICOs: A model-based user interface description 
technique dedicated to interactive systems addressing 
usability, reliability and scalability. ACM Trans. 
Comput.-Hum. Interact. 16(4). 

14. E.G. Nilsson, J. Floch, S. Hallsteinsen, and E. Stav. 
2006. Model-based User Interface Adaptation. Elsevier 
Computers & Graphics, 30(5), 692-701. 

15. E.G. Nilsson and K. Stølen. 2010. Ad Hoc Networks 
and Mobile Devices in Emergency Response – a 
Perfect Match? Proc. Second International Conference 
on Ad Hoc Networks. Springer. 

16. E.G. Nilsson and K. Stølen. 2011. Generic 
functionality in user interfaces for emergency response. 
Proc. OZCHI'11. ACM. 

17. E.G. Nilsson and K. Stølen. 2016. Assessment of the 
FLUIDE Specification Languages Using an Emergency 
Response Case. SINTEF Report A26920 (ISBN 
9788214059014). 

18. E.G. Nilsson and K. Stølen. 2016. The FLUIDE 
Framework for Specifying Emergency Response User 
Interfaces Employed to a Search and Rescue Case. 
Proceedings of ISCRAM 2016. 

19. F. Paternò. 1999. Model-based Design and Evaluation 
of Interactive Applications, Springer. 

20. F. Paternò, C. Santoro, and L.D. Spano. 2009. MARIA: 
A universal, declarative, multiple abstraction-level 
language for service-oriented applications in ubiquitous 
environments. ACM Trans. on Computer-Human 
Interaction 16(4). 

21. M. Peissner, D. Häbe, D. Janssen and T. Sellner. 2012. 
MyUI: generating accessible user interfaces from 
multimodal design patterns. Proc. of EICS'12. ACM. 

22. H. Trætteberg. 2002. Model-based User Interface 
Design. PhD thesis, NTNU. 

23. J. Van den Bergh, K. Luyten and K. Coninx. 2011. 
CAP3: context-sensitive abstract user interface 
specification. Proc. of EICS'11. ACM. 

24. J. Vanderdonckt 2008. Model-Driven Engineering of 
User Interfaces: Promises, Successes, and Failures. 
Proc. of ROCHI'08. Matrix Rom. 

25. J. Vanderdonckt and F. M. Simarro 2013. Generative 
Pattern-Based Design of User Interfaces. Proc. of 
PEICS'10. ACM. 

 

107


	A Case-based Assessment of the FLUIDE Framework for Specifying Emergency Response User Interfaces
	ABSTRACT
	Author Keywords
	ACM Classification Keywords

	INTRODUCTION
	The FLUIDE Framework
	The FLUIDE Specification Languages

	Emergency Response Case Study
	The MASTER Application
	The Resource Manager Application
	The eTriage Application

	Discussion
	To what extent were we able to successfully express the three applications?
	To what extent are the specifications comprehensible to third parties?
	Are there common patterns/differences between the three specifications?
	Which constructs functioned well; which constructs functioned less so?
	Are both languages needed or should they be integrated into one?
	To what extent do the specifications scale?

	Related work
	Conclusions and Future Research
	ACKNOWLEDGMENTS
	REFERENCES



