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Near-Infrared (NIR) Interactance System for Non-contact
Monitoring of the Temperature Profile of Baked Liver Pâté

MARION O’FARRELL,* KARI ANNE HESTNES BAKKE, JON TSCHUDI,
and JENS PETTER WOLD
Sintef ICT, Forskningsveien 1, 0373, Oslo, Norway (M.O., K.A.H.B., J.T.); and Nofima Mat AS, Osloveien 1, 1430 Ås, Norway (J.P.W.)

This article investigates the possibility of using non-contact interactance

as a method for profiling the temperature in a processed meat product

(liver pâté) as it comes out of the oven. The application was defined by an

industrial partner, Nortura SA, Tønsberg, Norway, where more control of

the cooking process was desired. The optical system employs low spectral

resolution to achieve high enough signal-to-noise ratio (SNR) to depths of

2 cm into the product. The partial least squares (PLS) method was applied

to interactance spectra in the region 760-1040 nm and a root mean square

error of 1.52 8C was obtained. The model was tested on five different

validation sets spread over 18 months and a root mean square error of

prediction of 2.66 8C was achieved. The output of this model was based on

the weighted average of two temperatures in the first 2 cm of the liver

pâté, one of which is the core temperature. A comparison was also made

with two other models: a model based on the core temperature alone and a

model based again on the weighted temperature but using the shorter

wavelength range of 905.5–1047 nm. These two models gave less favorable

prediction errors.

Index Headings: Near-infrared spectroscopy; NIR spectroscopy; Partial

least squares; PLS; Nondestructive testing; Nondestructive measure-

ments; Non-contact optics; Interactance; Temperature measurements;

Water; Food; Quality control.

INTRODUCTION

Core temperature is a critical control parameter used in the
monitoring of cooked, ready-to-eat products in terms of
cooking loss, food safety, and energy efficiency. Typical
current practice involves random product sampling followed by
thermocouple insertion, which incurs large batch losses if an
incorrect temperature level is read. This error can easily be up
to 6 8C for complex products, thus requiring that food is
overcooked to ensure that everything is cooked. While contact
measurements of temperature are accepted in the food industry,
there is a desire for non-contact, nondestructive temperature
measurements, in real-time, for improved control of the
cooking process.

Current non-contact temperature measurement systems are
based on infrared (IR) radiation, in which the thermal radiation
is emitted from an object in the range from short to long wave
infrared, typically 1.4–100 lm. The amount of radiation
emitted by an object is dependent on its temperature and
emissivity, i.e., the ratio of energy emitted from an object to
that of a black body at the same temperature.1 From an
industrial point of view IR radiation imaging is most
commonly used in applications such as checking mechanical
equipment for hot spots or for monitoring or controlling oven
or refrigeration temperatures. FLIR Systems, for example, is

involved in the development of infrared imaging technology
specifically for food safety inspection to check that foods are
stored at the correct temperature. The FLIR ThermaCAM is
used for inspecting the electrical and mechanical equipment
found in food retail, warehousing, and production facilities. By
monitoring power loss in food storage and production areas,
potential increases in storage temperatures can be avoided.

While infrared imaging is applied in some food processes for
non-contact temperature measurements,2 it is restricted in terms
of penetration depth, i.e., it only measures the surface
temperature, therefore not allowing direct measurement of the
hazardous critical control point (HACCP), the core tempera-
ture. There has been research in the area of correlating the
surface temperature measured by an infrared camera to the core
temperature of food using algorithms based on modeling the
heat transfer of the food in the regions 3.4–5 lm3 and 8–14
lm.4 In the paper by Stewart et al.,4 a case study was
conducted in which a Mikron 7302 micro-bolometer camera
was placed at the exit of an oven at Gold Kist, Boaz, Alabama,
to monitor the surface temperature based on radiation and
calculate the core temperature based on the rate of surface
cooling over a 75 cm distance. This installation was
investigated over one year with changeover between chicken
nuggets and chicken patties. Calibrations were performed at
three and six months to check stability of the system and there
was no significant drift over the period. The algorithm
development for such surface to core temperature calculation
is certainly an issue and it is often the case that black box
solutions such as neural networks are employed to deal with
the complexity.3 Despite the potential of thermal imaging in
terms of belt coverage and automation possibilities, it is still
not widely applied in the food industry and process lines
continue to employ technicians to perform the task.

Screening the temperature in food can be done by
monitoring the spectral properties of the water peak in the
near-infrared (NIR) region. This is no longer an emission
measurement; instead the spectral changes occur due to
reflected/transmitted radiation. Water has absorption peaks at
840 nm, 970 nm, 1190 nm, 1450 nm, and 1940 nm due to a
combination of the third overtone of the OH stretching band
and the OH bending, the second overtone of the OH stretching
band, the combination of the first overtone of the OH stretching
and the OH bending band, the first overtone of the OH
stretching band, and combination of the OH stretching band
and the OH bending band, respectively.5,6 Most applications
that monitor temperature effect on the water peak are interested
in the correction of NIR-based calibration models (partial least
squares (PLS), for example) for temperature effects.7–10 There
have also been studies on verifying the endpoint temperature
(EPT) of heat-treated food.11,12 In EPT estimation, the NIR
measurement is taken after heat treatment and subsequent
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chilling, not during heat treatment. The wavelength range used
is 1100–2500 nm and the spectral changes seen are mostly due
to denaturation of the proteins combined with changes in the
state of water.

Using the water peaks in the NIR has been investigated for
noninvasive tissue temperature measurements in the medical
industry.13,14 As pointed out in these articles, there are
considerations to be made when measuring water in tissue
(or food) as it is dependent on both temperature and water state
or binding.13 Water binding refers to whether the water is free
or bound. Water molecules can be bound to other water
molecules through hydrogen bonding because the molecule is
polar. It is also possible that water is bound to other molecules
in the tissue/food, such as protein, and this also affects the
spectral shape. Increasing temperature causes a decrease in the
hydrogen bonding, causing the peak to narrow and shift
towards shorter wavelengths. The presence of other molecules,
on the other hand, increases hydrogen bonding, causing the
peak to broaden and shift towards longer wavelengths.
Therefore, these two effects are competing against each other
simultaneously. In general, the higher the water content, the
greater the amount of free water and the more similar the water
peak is to pure water. The effect of bound water in food is
discussed in an article15 in which the water peak at 1400 nm in
sliced pear was examined as the slice was dehydrated. It was
found that as the percentage of bound water increased during
dehydration, the water peak decreased at 1406 nm and
increased at 1430 nm, i.e., there was a shift to longer
wavelengths.

There are several challenges when using NIR for measuring
the core temperature of food. First there is the problem of light
penetration. Higher NIR wavelengths are strongly absorbed by
water over short distances, and thus penetration of light is
limited, which can affect direct measurements of core
temperature. This can be improved by using shorter wave-
lengths below 1100 nm. The wavelength range discussed in
this article is 760 nm to 1040 nm. When looking at
temperature-induced spectral effects on liver-based product
such as pâté, one would expect a change in the water peaks at
840 nm and 970 nm and a change in the myoglobin-related
peak at 760 nm.16,17 Scattering of light is also an issue as

multiple light scattering can obscure temperature-dependant
spectral shifts. This is a hindering factor in the measurements
of tissue temperature and it increases with depth of penetra-
tion.13,14

The objective of this paper was to evaluate the possibility of
using the wavelength range 760-1040 nm for rapid and non-
contact determination of temperature development in baked
portions of liver pâté at the exit of an industrial conveyor belt
oven. The measurements were done with a novel NIR based
system that allows rather deep penetration of light, giving
optical sampling that is representative of the temperature within
the samples. Measurements were done on several batches of
baked pâtés over time to validate the accuracy and robustness
of the method.

MATERIALS AND METHODS

Near-Infrared Interactance System. Previous research in
the area of fat and pigment measurements in live salmon
resulted in the development of an NIR measurement system
that eliminates surface reflection and resolves the interacted
light into visible (Vis) and NIR spectra, each with a 20 nm
resolution (460–740 nm and 760-1040 nm).18 During the core
temperature investigation, the NIR region was used, with focus
on the second overtone of water at 970 nm. By using the
shorter NIR wavelength range, the absorbance from water is
less, allowing the light to travel further into the sample. This,
combined with the low spectral resolution of the specially
designed spectrometer, results in a signal-to-noise ratio (SNR)
of 250 for a 15 ms spectral reading from pâté. The
measurement setup is shown in Fig. 1. The system is calibrated
by using a barium sulfate trough with a curved base. It is held
under the pipe allowing light to pass from the field of
illumination (FOI) to the field of view (FOV). The time of each
measurement was one second.

The infinite thickness, or the depth at which deeper layers no
longer affect the measurements for the pâté, was determined by
placing a 4 cm layer of pâté on top of a highly reflective
material and gradually slicing layers off while recording the
spectra. This was repeated on a black absorbing material and
the point at which the spectra from these two setups deviate

FIG. 1. Non-contact interactance in liver pâté. Samples are presented just below the pipe.
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was taken to be the infinite thickness. In the case of pâté, this
was determined to be approximately 2 cm.

Materials and Calibration Strategy. Three sets of
experiments were conducted over 18 months in which six
batches of pâté were delivered frozen from Nortura SA,
Tønsberg, Norway, and allowed to defrost overnight in a fridge
at 4 8C before the experiments began. The pâtés were brought
to an initial equalized temperature of 40 8C before baking, as
done in industry (there was one exception, where one set was
brought to various initial temperatures as a test on the model).
The pâté were then baked to core temperatures ranging
between 71 8C and 101.3 8C in an Electrolux MENU/
9764531201 convection oven (Electrolux, Stockholm, Swe-
den). The difference in temperature between the pâtés was
achieved by different cooking time for the pâtés constituting
each batch. The pâtés were removed from the oven one by one
and measured immediately. They were kept intact in their
alumina containers during measurements.

First, rapid (1 second) NIR measurements were taken at two
positions, at the center and halfway between the center and end
as one looks down on the pâté. These two readings are
regarded as separate measurements throughout the experiment.
Then the temperature at 1.5 cm down (core) and 0.5 cm down
was recorded with a K2 type thermocouple at the same two
positions on the pâté.

One of the Oct 09 batches, consisting of a total of 68 NIR
measurements on 34 containers of pâté, was used as a
calibration set and the other five batches were used as
validation sets. The six batches are described in Table I. In
the two sets from April (TS1 and TS2) NIR measurements
were taken at the center position only and they were used to
test samples with (1) an initial temperature of 40 8C that were
cooked at a faster rate, creating a darker crust with different
scattering properties and potentially different temperature
gradients (TS1), and (2) samples that were cooked with three
different initial core temperatures, 3 8C, 13 8C, and 40 8C, to
achieve an exaggerated temperature variation in the product.
These were also cooked at a fast rate (TS2). Although this
temperature variation would not be found in a realistic
processing plant, it gives a good indication of the robustness
of the model and how deep into the product the temperature
was actually measured. TS3 was taken on the day of the
calibration set and TS4 and TS5 were used to test the
robustness of the model by repeating the test a year after the
calibration data was collected. The temperature profile of each
reading was defined as the temperature difference between the
depths 0.5 cm and 1.5 cm. The validation sets were cooked for
various lengths of time to give good variation in terms of the
temperature profile. This was done to test the limits of the
model and demonstrate that the spectral information was
representative of the temperature of the pâté.

Spectral Preprocessing and Modeling. The spectra were
processed as follows to minimize scattering effects:

(1) Linearization of the spectra using the log of the inverse of
the interactance spectrum (log (1/T));

(2) Standard normal variate (SNV) applied to log (1/T).

Partial least squares regression (PLSR) was applied to the
calibration data set to obtain a calibration model. Full cross-
validation was applied to determine the optimal number of PLS
factors and to evaluate the model’s predictive ability. The
prediction error was estimated by the root mean square error of
cross-validation (RMSECV):

RMSECV ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

N

XN

i¼1

ðyi � ŷiÞ
2

vuut ð1Þ

where ŷi is the predicted temperature from the cross-validation,
yi is the measured reference temperature, and i denotes the
samples from 1 to N.

The performance of the different models during the
industrial testing was evaluated by studying the root mean
square error of prediction (RMSEP), which is calculated
exactly as the RMSECV.

Calibration development was done by the software package
Unscrambler 9.8 (Camo Software AS, Oslo, Norway), while all
operations on the spectra were performed with Matlab version
7.9.0.529 (R2009b) (The Mathworks Inc., Natick, MA).

RESULTS AND DISCUSSION

Spectral Interpretation. Figure 3 shows spectra of both
water and pâté measured using the NIR system. The water
measurement was set up so that light from the source was
transmitted through 4 cm of boiling water and reflected back up

TABLE I. The batches of pâté that were cooked for the experiment.

Group Name Date Initial T ( 8C) Number of NIR measurements Core temperature range ( 8C) Duration in oven after initial T reached

Test set 1 (TS1) April 09 40 9 (9 containers) 86.1–101.3 20 minutes
Test set 2 (TS2) April 09 3, 13, 40 17 (17 containers) 76–99.8 50 minutes
Calibration Set (CS) Oct 09 40 68 (34 containers) 70–100.4 1hr 30mins
Test set 3 (TS3) Oct 09 40 66 (33 containers) 71–100.9 1hr 37mins
Test set 4 (TS4) Oct 10 40 62 (31 containers) 74.7–100.4 2hrs 4mins
Test set 5 (TS5) Oct 10 40 72 (36 containers) 75.4–100.4 1hr 25mins

FIG. 2. Side view of pâté. NIR measurements were taken at two positions for
each pâté. Shaded areas indicate the area in which the light interacts with the
pâté. Arrows mark the two temperature measurements at 0.5 cm and 1.5 cm
down for each position.

APPLIED SPECTROSCOPY

//Xinet/production/a/apls/live_jobs/apls-65-12/apls-65-12-01/layouts/apls-65-12-01.3d � Tuesday, 20 September 2011 � 9:33 am � Allen Press, Inc. � Page 3

jbethel
Sticky Note
?? Please provide callout for figure 2 in body of text. AP/Proofreader



to the field of view using the barium sulfate reference trough.
Spectral and temperature measurements were taken at intervals
as the water cooled. Figure 3A shows the second derivative of
the log (1/T). There are two distinctive negative peaks in both

the water and pâté derivative spectra at 840 nm and 970 nm and
these are the water peaks described above. The pâté has another
negative peak at 780 nm, where the water has none. This is
most likely related to the myoglobin peak at 760 nm, which
would be quite high in concentration in liver, the main
ingredient of the pâté. The main ingredients are porcine liver
(36%), pork cheek meat (26%), skimmed milk, and porcine
meat (5%). This peak would be seen more clearly in the second
derivative if the spectrum continued to shorter wavelengths.
The myoglobin absorption peak is, however, very clear in Fig.
3B, where the SNV spectrum shows a large absorption peak
around 760 nm. Figure 3B also clearly shows the narrowing of
the water peak and shifting to shorter wavelengths that occurs
as the water is heated and the hydrogen bonds between water
are broken. This is not as obvious in pâté but it is still evident
to some extent. The reason it is more difficult to see is that
there exists a counteracting broadening and high wavelength
shift due to hydrogen binding between water and other
molecules in the pâté mixture. It is also due to the fact that
the percentage of hydrogen bound water is higher since there is
reduction of free water molecules caused by the dehydration
during baking (the mixture enters the oven as a liquid batter
and comes out firm and solid).

Calibration Modeling. The spectra from the calibration set
taken in October 2009 were used for the models. Three models
were built based on the SNV applied to log (1/T). The first
model was based on the full spectrum from 760 to 1047 nm.
The second model was based on the water peak alone from
905.5 to 1047 nm. The outputs of both of these models were
based on a weighted average (30:70) of the temperature
measurements taken 1.5 cm down (core) and 0.5 cm down,
respectively. This weighing was done to take into account that
the temperature profiles of the pâté can vary. The temperature
profile of each reading is defined as the temperature difference
between the 0.5 cm and 1.5 cm down (core) readings and is
shown in Fig. 4. Using the weighted average also imitates the
light interaction with the pâté: it is assumed, with the setup
used for these experiments, that the majority of the light comes
from the upper layers of the pâté but that there is also a
contribution from as far down as 2 cm into the pâté. It was also
discovered that due to the aluminum foil container in which the

FIG. 3. (A) Second derivative of log (1/T) and (B) SNV of log (1/T) of both
water (dashed traces) and pâté (solid traces) at various temperatures (8C).

FIG. 4. Temperature profiles for each batch of pâté (temp at 1.5 cm down minus temp at 0.5 cm down).
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pâté was baked, surface evaporation caused the temperature at
the core to be unexpectedly higher than that at 0.5 cm down. It
was, therefore, important to include information about the
lower temperature reading near the surface for food safety
reasons. A third model was also investigated using only the
core temperature as the output. This was done to demonstrate
the advantage of using the weighted temperature as the output.
The details of all of the models are given in Table II. The
correlations between predicted and measured temperature were
high, and the prediction errors were at a level very acceptable
for process control use. Figure 5 shows the regression vectors
for these models. It is clear that the regression vectors for the
full spectrum models apply weight to the shift of the two water
peaks 840 nm and 970 nm and the pigment peak at 760 nm.

Validation of Models. The three models were validated
using the validation sets TS1–TS5. Figure 6 shows the
predicted temperatures of all validation sets using the full
spectrum model with weighted temperature as the output. The
prediction details are given in Table III. TS3, TS4, and TS5
were well predicted while TS1 and TS2 had significant bias in
their predictions, especially TS1. As described above, these
two validation sets were the most unrealistic with regards the
standard process and were used to test the limits of the model.
TS1 was cooked at a very fast rate and had a darker crust than
the other pâté batches and TS2 had different starting
temperatures and was cooked at a fast rate, which would
affect the baking development. The RMSEP of all the
validation sets together in Fig. 6 is 2.66 8C. If TS1 and TS2
are removed, this is reduced to 2.38 8C.

Table III shows the prediction details for each validation set
separately. If the second derivative of spectra from TS1 and
TS2 (those with the largest prediction error and marked 1, 2, 3,
and 4 in Fig. 6) are compared to spectra in the calibration set
with similar core temperature (Fig. 7), it is clear that there is a

particularly large difference at the lower wavelengths, which is
probably related to the heme pigment, myoglobin. Jaywant et
al.18 did a study on bovine liver at three temperatures, 35 8C, 50
8C, and 78 8C, in which the scattering coefficient, l0

s, and
absorption coefficient, la, were measured using an integrating
sphere and structural images were taken of the samples using a
transmission electron microscope. Two wavelengths were
examined, 633 nm and 810 nm. The general trend for liver
with heating was that the scattering particles decreased in size
from 500-1000 nm to 100 nm due to coagulation, causing a
faster rate of decrease in anisotropy, g, with increasing
temperature at 633 nm than at 810 nm. This corresponds to a
greater change in l0

s at shorter wavelengths, i.e., at 633 nm than
at higher wavelengths, i.e., 810 nm. It is also the case that with
increasing temperature the number of scattering particles
increases. These particles are arranged randomly in liver (as
opposed to in a structured way in muscle), causing an almost
twofold increase in l0

s (from 25 cm�1 to 50 cm�1 between 50
8C and 78 8C at 810 nm). In liver, it was concluded that the
continuous increase in l0

s with increasing temperature was due
to the large globulin proteins (a heterogeneous group of
proteins with typical high molecular weight) that denature with
temperature. This corresponds well with our data, where the
validation sets TS1 and TS2 were cooked at a faster rate than
the other sets, which would cause faster changes in product
texture and color (Fig. 8). This in turn would lead to greater
differences around the pigment absorption peak at the lower
wavelengths.

Figure 9 shows the predicted temperature of all the
validation sets using the water peak based model. The
prediction details are given in Table IV. In this case TS1 and
TS2 show an improvement in prediction because the lower
wavelengths are removed, which indicates that focusing on the
water peak reduces the likelihood of interfering parameters
such as pigment and scattering due to pigment changes.

TABLE II. PLS calibration information.

Pretreatment Wavelength range/nm Model output No. of PLS factors R2 RMSECV No. of samples Core temp range ( 8C)

Log (1/T) þ SNV 760-1047 (15 channels) Weighted temp 3 0.99 1.52 64 70–100.4
Log (1/T) þ SNV 905.5–1047 (8 channels) Weighted temp 2 0.97 2.06 62 70–100.4
Log (1/T) þ SNV 760-1047 (15 channels) Core temp 2 0.97 1.51 62 70–100.4

FIG. 5. Regression vectors for the three models as described in Table II.

FIG. 6. Prediction of validation sets using the full spectrum model. Model
output is weighted temperature. Data points marked 1–4 from TS1 and TS2
have high prediction errors.
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However, a surprising outcome of this result is the large offset

that exists between TS4 and TS5. These validation sets were
taken on the same day from the same delivery from Nortura

and their temperature profiles were very similar (Fig. 4). The
temperature measurements were also taken by the same person

for both batches so human error is less likely. The biggest
difference between the two batches was that TS4 was in the

oven longer and was therefore cooked at a slower rate. This
model is based entirely on the water peak, which is shown in

Fig. 10 for various samples from TS4 and TS5. It is clear that
the water peak spectra from TS4 are broader than those from

TS5. In fact, the difference between the two spectra at
approximately 85 8C is almost as big as the difference between

the two spectra at 88.8 8C and 76.4 8C in Fig. 3. It is possible
that this occurs, not due to temperature differences but due to

the counteracting increasing hydrogen bonding that occurs with
increasing dehydration, which is masking the temperature
effect. This increased dehydration in TS4 could be caused by
the longer duration in the oven. The TS4 spectrum at 85.4 8C
was from a pâté sample that was 1hr in the oven and the TS5
spectrum at 84.4 8C was one that was only 30 minutes in the
oven. By focusing on the water peak alone in the model, the
output is more susceptible to this interfering parameter than if
the entire spectrum is used.

Figure 11 shows the predictions of the third model for the
two validations sets, with the biggest difference in temperature
profile from the calibration set, using just core temperature as
the output of the model. The prediction details are given in
Table V. TS3 and TS5 both have larger temperature profiles
than the calibration set. The calibration set has an average
temperature profile of 2.87 8C, whereas TS3 and TS5 are 4.08
8C and 5.74 8C, respectively. The fact that the temperature
distribution is not uniform in the depths where the light is
traveling is clearly evident from the bias that appears in the
predictions of these validation sets (Table V). The samples are
nearly all under-predicted. These predictions demonstrate the
need to take into account the temperature profile in the model.
They also demonstrate how modeling the temperature based on
surface IR radiation could give inaccuracies based on
variations in the temperature profiles.

CONCLUSION

Results presented here demonstrate an online, non-contact
method for monitoring the temperature profile of liver pâté as it
exits the oven. The NIR system is based on remote interactance
measurements in the short wave NIR region 760-1040 nm.

Three models were tested, one with the full spectral range
including the two water peaks and the pigment peak (output:
weighted temperature), one with just the main water peak at
970 nm (output: weighted temperature), and a third with the
full spectral range including the two water peaks and the
pigment peak (output: core temperature). It was found that by
using the 970 nm water peak alone, the model was more
susceptible to the hydration levels of the product but was more
robust against pigment variation. By using the full spectrum,
differences in hydration levels had less of an influence.
However, the validation sets with greater pigment deviations
from being cooked at a faster rate were poorly classified. In an
industrial setting, parameters such as baking duration and oven
temperature are usually less variable and the initial temperature
of the product is typically equalized. This minimizes the

TABLE III. Prediction details for each validation set using model 1.

Set R2 RMSEP Bias No. of Samples

TS1 0.43 4.29 �4.19 9
TS2 0.75 4.18 �2.48 17
TS3 0.97 1.53 �0.02 66
TS4 0.97 2.00 0.07 62
TS5 0.97 3.19 2.49 72

FIG. 7. Second derivative spectra from TS1 and TS2 compared with CS. The
legend shows the core temperature and batch name. The spectra from TS1 and
TS2 are those marked 1–4 in Fig. 6.

FIG. 8. Difference between samples that are cooked at a faster rate (0.6 8C min�1) and slower rate (0.33 8C min�1).
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probability of the occurrence of such large variations in the
product. It was still, however, useful to test such variations in
order to check the limitations of the model. The model that was
based on core temperature alone was dependent on the
temperature variation in the first 2 cm of the pâté, which is
not surprising since the light travels to and collects information

from that depth. By using the weighted temperature, the model
output was much more robust against variations in the
temperature profile.

In terms of applying such a system online, it would be better
practice to use a model based on the entire spectral range, thus
making it less susceptible to hydration levels. Hydration would
be something that is more likely to vary in a real life factory
than the pigment. Occurrences such as product flow delays,
storage duration of raw materials, or room temperature and
humidity level, which could cause evaporation of water from
the product, are more likely to occur than the oven temperature

FIG. 9. Prediction of TS1–TS5 using the water peak based model. Model output is weighted temperature.

TABLE IV. Prediction details for each validation set using model 2.

Set R2 RMSEP Bias No. of samples

TS1 0.95 1.31 �0.66 9
TS2 0.88 2.86 0.56 17
TS3 0.92 2.60 �1.17 66
TS4 0.37 6.85 �6.01 62
TS5 0.91 2.59 0.85 72

FIG. 10. Water peak of spectra from TS4 and TS5 with similar temperature
profiles. The legend shows the core temperature and batch name.

FIG. 11. Comparison of the prediction of TS3 and TS5 using a model based
on the full spectrum. Model output is the core temperature alone.

TABLE V. Prediction details for each validation set using model 3.

Set R2 RMSEP Bias No. of samples

TS3 0.96 3.31 �2.17 66
TS5 0.95 13.79 �13.46 62
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suddenly increasing, resulting in a faster cooking rate. The
RMSEP of the validation sets TS1–TS5 were 4.29 8C, 4.18 8C,
1.53 8C, 2 8C, and 3.19 8C, respectively, when using the full
spectrum model. The RMSEP of all the data sets grouped
together was 2.66 8C. If TS1 and TS2 are removed this is
reduced to 2.38 8C.

The system described here offers an opportunity to monitor
the temperature development of the product in real time
without the need for random product selection and thermo-
couple probing, which is dependent on human diligence to
ensure the probe reaches the center of the product and is given
enough time to read the temperature. It was also the case that
the pâté in these experiments were not coldest at the core but
rather 0.5 cm below the surface due to surface evaporation, and
this would be taken into account in the measurement with the
NIR system.
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