
This paper was presented at the NIK 2011 conference. For more information see http://www.nik.no/

An Experimental Facility for Cross-layer Adaptation of
Service Oriented Distributed Systems

Shanshan Jiang, Svein Hallsteinsen, Arne Lie
SINTEF ICT, Postboks 4760 Sluppen, 7465 Trondheim, Norway

{Shanshan.Jiang, Svein.Hallsteinsen, Arne.Lie}@sintef.no

Abstract
Ubiquitous and IoT (Internet of Things) systems consist of many parts, are highly
distributed and need to be adaptive in a highly dynamic environment. The exploitation of
adaptation possibilities at different layers needs to be coordinated to get an optimal result.
However, it is difficult to test and evaluate such distributed systems with regard to their
adaptive behaviour. This paper presents the design and implementation of a hybrid
simulation based experimental facility for cross-layer adaptation of such adaptive systems.
It is based on adaptation logic that builds runtime adaptation models based on information
from the application, communication and hardware layers and uses the model for
coordinated adaptation of these layers. The simulation facility has been implemented based
on the MUSIC adaptation framework. Our work has been inspired by use cases from the
subsea sensor networks and ambient assisted living domains, and the simulation facility is
being applied to study the benefits of cross-layer adaptation in these domains. As
preliminary validation of the proposed approach we discuss initial experience from the
subsea sensor network use case. However, we believe that such simulation facility is
generally applicable for application domains exhibiting highly distributed systems in
heterogeneous and dynamically varying environments.

1. Introduction
The advances of sensor technologies and the prevalence of ubiquitous computing have
brought about numerous innovative applications. In particular, they contribute to the
vision of the IoT (Internet of Things) that any object from both the real world and the
virtual world is connected anytime, at anyplace and interacts with anything. Such
ubiquitous/IoT systems are complex, i.e., they have many parts, are highly distributed,
and execute in a dynamically varying computing and communication environment.
Adaptation capabilities are needed for such systems to adapt to changing environment
conditions and changing application requirements, such as dynamic discovery of
available resources and services, and dynamic reconfigurations and bindings resolved at
runtime. Various adaptation capabilities and mechanisms have been proposed at
different layers such as application, service interfaces, network and hardware layers
[1,2,3], but they mainly work in isolation. In recent years, the importance of cross-layer
adaptation enabling coordinated adaptation across layers has been recognized and
received more and more attention in order to maximize the benefits from adaptations at
different layers [4,5,6,7].

We are interested in studying how adaptation middleware can contribute to the
development, deployment and evolution of such systems. However, setting up a test
system of realistic size and making the environment behave in ways that allow
systematic testing is difficult. In some contexts testing in a simulated environment is the
only option. For instance, it is practically infeasible to deploy sensors running adaptive
middleware to a real underwater sensor network due to both technological and
economic constraints. Furthermore, our previous experience from working with
adaptive systems has shown that there are strong needs for tools that can demonstrate or
visualize the adaptive behaviour of systems under various contexts and “controlled”
environment during development and testing.

Hybrid simulation, i.e., a simulation facility that can run a mixture of real
application software components and simulated components for applications as well as
communication and physical environment, appears as a good approach. Our work on a
hybrid simulation facility is an attempt to address these two tightly coupled concerns: to
support cross-layer adaptation and be able to test and evaluate the adaptation behaviour
of highly distributed service oriented adaptive systems. In this paper we present the
design and implementation of such hybrid simulation facility. The work is based on the
MUSIC [8] adaptation framework. The idea is to use an environment simulator to
simulate the physical environment and communication between nodes. The simulator
receives events that simulate the dynamics of the target environment as well as
messages generated by other nodes in the system and feeds them to the MUSIC
middleware, which then performs adaptation and reconfiguration accordingly. This
hybrid approach combines simulation and real execution, where real MUSIC
middleware instances (adaptation logic) are running and adapting real applications on
top of a simulated network and hardware layer.

The simulation facility enables cross-layer adaptation by allowing the adaptation
logic to control adaptations at the application, network and hardware layers. Our
approach is based on a centralized Adaptation Manager, which makes adaptation
planning based on information obtained in different layers and controls the adaptations
at these layers.

MUSIC focused primarily on the adaptation of applications. Other layers were
considered more like context, and used ad-hoc facility to control them. This paper
provides a complete and unified model for cross-layer adaptation and a simulation
facility for testing this approach. The main contributions of this paper are therefore the
generalisation of the capabilities of the MUSIC framework to support cross-layer
adaptation and a hybrid simulation facility suited to studying the benefits of cross-layer
adaptation, and to testing and tuning the adaptation logic. Although the simulation
facility is implemented based on the MUSIC middleware, the cross-layer adaptation
model is sufficiently general to serve as a basis for standardising layer interfaces
supporting cross-layer adaptation.

The rest of the paper is organized as follows: Section 2 presents some related work
about simulation and cross-layer adaptation. Assumptions and requirements for the
simulation facility are given in Section 3. Since the motivation is to test and tune
adaptation logic and study its effect, an adaptation framework needs to be explained.
Section 4 serves this purpose by briefly describing the main concepts in the underlying
adaptation framework. The model for cross-layer adaptation is described in Section 5.
Section 6 presents the simulation architecture and how the simulation facility works.
Section 7 reports our initial experience with the subsea use case and gives some
discussion. Finally, Section 8 summarises the conclusions and outlines future work.

2. Related Work
Following the methodologies of design science, systems designed need to be validated
and tested. Software simulation has been widely used in this regard. A simulator can be
either completely tailor programmed, or one can use some kind of simulator or
programming framework. Examples on the latter are e.g. Matlab1, which is most
commonly used for simulating continuous time processes, such as the physical layer of
communication systems. This can include signal modulation and demodulation, forward
error correction, adding channel impairments such as attenuation, distortion and noise,

1 http://www.mathworks.com/products/matlab/

http://www.mathworks.com/products/matlab/

and signal detection, equalization and synchronization. Such computations are however
CPU demanding. Higher layers such as MAC (medium access control) and network
layer (routing and link connections for packet switched networks) are therefore usually
simulated with discrete event-based techniques. In such simulators, only the time
instances where packets are created, sent, and received, are counted for. Physical
impairments for wireless communication are in the latter cases simplified to e.g. a static
signal strength or signal-to-noise value, giving e.g. a specific link bit rate, energy per bit
needed to transmit, and the link propagation delay. Examples of such simulator
frameworks are ns-22, ns-2-miracle3, WOSS4, ns-35, OMNeT++6, and SimPy7. In these
systems, a rich library of generic purpose modules are included, ready for use, such as
the TCP/IP protocol, routing protocols, WLAN MAC protocol, and signal attenuation
characteristics. FTP downloads and constant bit rate sources are typically present in a
small set of applications to generate data payload. The user is left with the job of
defining a static or dynamic network topology, and can easily scale the number of
communication nodes and the traffic load itself. The user should run each simulation
topology a certain number with random seeds giving stochastic fluctuations where
appropriate, so as to obtain qualified results with averages and confidence intervals. Our
subsea case study uses WOSS to obtain simulated network conditions.

However, existing simulation or simulators focus mainly on MAC, network layer,
and transport layer, and very seldom supports an application layer with adequate
behaviour. Special attention must be given when application adaptation is in use,
because of the online interaction between network state and application state [9]. Our
work intends to provide a solution to this challenge.

Various approaches for cross-layer adaptation integrating different layers have been
proposed. Gjørven et al. propose a framework for cross-layer adaptation based on QuA
middleware by integrating interface and application layer mechanisms [4]. The work of
Popescu et al. builds cross-layer adaptation on the taxonomy-based event-driven
discovery and selection of adaptation templates, which define the behaviour of
adaptation logic as BPEL processes [5]. Schmieders et al. propose an approach that
instruments cross-layer adaptation to avoid SLA violations. It exploits multiple
adaptation mechanisms available on all SBA layers and chooses the right mechanism
based on an adaptation strategy [6]. Yuan et al. present their design and evaluation of a
cross-layer adaptation framework for mobile multimedia systems called GRACE-1 [7].
Their framework supports coordinated adaptation in the hardware, OS and application
layers with mechanisms for global and local adaptation. Vidackovic et al. propose a
generic, cross-layer monitoring and adaptation framework based on a top-down
approach, focusing on the business model and its interactions with regard to the lower
layers [10].

In contrast, our approach models the variation points (i.e. things that can
change/control) at different layers and builds runtime adaptation model based on them
for adaptation planning to achieve coordinated adaptation across layers.

2 http://isi.edu/nsnam/ns/
3 http://www.dei.unipd.it/wdyn/?IDsezione=3966
4 http://telecom.dei.unipd.it/ns/woss/doxygen/
5 http://www.nsnam.org/
6 http://www.omnetpp.org/
7 http://simpy.sourceforge.net/

http://isi.edu/nsnam/ns/
http://www.dei.unipd.it/wdyn/?IDsezione=3966
http://telecom.dei.unipd.it/ns/woss/doxygen/
http://www.nsnam.org/
http://www.omnetpp.org/
http://simpy.sourceforge.net/

3. Assumptions and Requirements for the Simulation Facility
To derive the assumptions and requirements for the simulation facility we have
investigated two use cases, one from the subsea environmental monitoring domain and
one from the AAL (Ambient Assisted Living) domain as examples of typical ubiquitous
computing and IoT systems. The subsea environmental monitoring use case is used in
this paper to illustrate the ideas.

We consider that the target environment is characterised by large numbers of
heterogeneous sensors, heterogeneous communications infrastructure as well as
heterogeneous service publication, discovery and binding technologies. Sensor
networks are typically constrained by bandwidth, processing power, memory and power
consumption. For example, underwater sensor networks pose big challenges for the
communication infrastructure. Such networks need to rely on acoustic communication
since radio signals propagate very poorly in sea water. In addition, radio communication
is used from surface to land, either directly or via satellite, depending on the distance.
Variations in weather, sea temperatures and salinity strongly influence the
communication conditions under water and the use of mobile units (ships on the surface,
autonomous underwater vehicles - AUVs - and gliders under water) adds to the
variation. Such environment is characterized by the low capacity and long delays of the
acoustic channel, the potentially huge number of sensors, and the energy constraints of
battery powered underwater units. Furthermore such systems typically involve a wide
spectrum of devices, from tiny sensors through buoys and AUVs to nodes installed on
ships, and thus heterogeneity both of devices and communication links is an issue. One
special design choice for such resource constrained environment is to support UDP.
Such environment usually prefers UDP over TCP, since UDP has less overhead and is
ideally suited to short transactions.

From this we derive several requirements for the simulation facility. Firstly, the
simulation facility needs to support context aware and adaptive applications based on
SOA (Service Oriented Architecture) architectural style running on resource constrained
environment. Such applications consist of many parts collaborating by providing
services to and using services from each other and application configuration forms
dynamically and adapts to changes in the environment. Examples of changes include 1)
nodes and services appears and disappears; 2) resources become exhausted (e.g.
batteries running flat), 3) communication links appear and disappear and vary in
capacity and other characteristics.

Secondly, it needs to be based on a hybrid simulation approach. There will be a
mixture of real software application components and simulated components. Based on
the separation of application and adaptation logic, it will use the skeleton of application
components, e.g., based on the MUSIC approach, so that we can test the adaptation
behaviour at an early stage independent of business logic.

Thirdly, the simulation facility should be general, not only suitable for subsea and
AAL systems, but more generally for M2M/IoT type of systems, where alternative
networks (e.g. WLAN, Bluetooth and UMTS/GPRS) and fluctuations in availability and
capacities are common and adaptation to them is required. This also means that the
simulation facility should work with heterogeneous discovery and binding technologies.

Finally and very importantly, the facility should support cross-layer adaptation. This
means that the adaptation framework should integrate adaptation capabilities in different
layers to enable coordinated adaptation across layers. For instance, alternative links
between a pair of nodes may exist in cases like: 1) multi-hop vs. single-hop route in
wireless radio sensor networks or underwater acoustic networks (communication using
multiple short hops may be energy and bandwidth beneficial compared to a single long

hop); 2) in radio communication, there can be multiple frequency bands and standards
available, such as WLAN, Bluetooth and UMTS/GPRS; and 3) in the extreme end, in
the cognitive radio network vision, the terminals have powerful front-ends and digital
intelligence to dynamically sense and adapt and select vacant frequency spectrum at a
fine temporal granularity [11]. It would be desirable that adaptation at the
communication layer based on the availability and properties of such alternative links
can be coordinated with the adaptation at the application layer.

4. Adaptation Framework
This work builds on the MUSIC adaptation framework. The MUSIC framework is
based on an externalized approach to self-adaptation where the adaptation logic is
delegated to generic middleware working on the basis of models of the software and its
context represented at runtime [8,12].

Systems are conceived as collections of applications collaborating by providing
services to and using services from each other, and executing on a network of computer
nodes connected by communication links. Each node runs an instance of the adaptation
middleware which is responsible for adapting the applications hosted there. A
variability model associated with the application, specifies its adaptation capabilities in
terms of variation points, and how the alternative bindings of the variation points affects
its properties. Supported adaptation mechanisms include component replacement,
service binding and varying the quality level of provided services. Variants are
characterized by properties which vary between their variants. Such variants can be
components or services provided by external service providers. These properties
express functional and/or extra-functional (i.e. QoS) properties of the component or
provided service and are modelled by property predictor functions. The properties and
the resource needs of an application variant are computed by predictor functions based
on the properties and resource needs of the included component and service variants.
Such property annotation of the architecture model has to be provided by the developer.

The variability model defines a utility function, which expresses how well suited a
given configuration is in a given situation based on the predicted values of the varying
properties, the properties of current context and resources, and service level agreements
with consumers of provided services.

The adaptation middleware monitors relevant context and resources, components
installed on the node it runs on and services available in the environment. When
significant changes occur adaptation planning is triggered. The middleware evaluates
the utility of all configurations satisfying the resource constraints and selects the one
with the highest utility. If this is different from the currently running configuration it
reconfigures the application to the selected configuration. One instance of the
middleware controls the adaptation of the set of application running on the node it runs
on and coordinates their adaptation so as to maximise the overall utility. Coordination of
the adaptation on collaborating nodes is achieved through the dynamic discovery and
binding of services and settling of service level agreements between applications on
different nodes.

Variability models are represented at runtime as plans. A plan contains a recipe for
instantiating a component realization and a function for predicting its QoS properties in
the form of property predictors. The dependency on an external service is represented as
a service plan, with an associated set of service plan variants representing the available
service providers.

The MUSIC middleware is based on a pluggable architecture and implemented on
top of OSGi [8]. Figure 1 gives an overview of the middleware architecture. Plans and

plan variants are stored in the Plan Repository in the Kernel. The Context & Adaptation
Middleware handles the adaptation planning process, which is triggered by context
changes detected by Context Sensors. The Adaptation Manager builds valid application
configurations by solving their dependencies, ranks them by evaluating their utility
based on the computation of the predicted properties, and selects the configuration that
provides best utility. The Configurator handles the reconfiguration process using the
configuration and plans selected by the Adaptation Manager. The Communication
provides basic support for SOA in distributed environment. The Service Discovery
publishes and discovers services using different discovery protocols. Whenever a
service is discovered, a corresponding service plan variant is created in the plan
repository. The Service Binding is responsible for the binding and unbinding of services.
At the service provider side, it exports services (i.e. enable them to accept service
requests), and at the service consumer side, it provides bindings (i.e. remote access) to
the discovered remote services. The Negotiation Framework is an optional component
responsible for service level negotiation and violation handling. It interacts with the
Context & Adaptation Middleware and the Communication to realize the adaptation
process integrated with service level agreement mechanism [13].

Context
Sensor

ConfiguratorAdaptation
Manager

Kernel

Negotiation
Framework

Plan
Repository

Context & Adaptation Middleware

MUSIC Middleware

Service
Binding

Service
Discovery

Communication

Figure 1 Overview of MUSIC middleware platform

5. A Model for Cross-layer Adaptation
The MUSIC adaptation framework was primarily built to do adaptation at the
application layer although information about the communication and hardware layers
are also taken into account as context. In order to realize cross-layer adaptation,
adaptation capabilities of the communications and hardware layers also have to be
exploited and adaptation at all three layers must be coordinated in a way that optimises
the overall working of the systems. To achieve this we propose an extension of the
MUSIC framework enabling the Adaptation Manager to do such coordinated adaptation
planning and reconfiguration across all three layers.

5.1 The Unified Model
Our approach is based on a unified model for adaptation (Figure 2). The main idea is
that the communication and hardware layers also expose their adaptation capabilities in
the form of a variability model, defining variation points with sets of variants.
• At the hardware layer, variation points can be configuration parameters for a

hardware component, such as the clock speed of CPU, battery power on/off,
memory bank turning on/off. Context information includes resource usages, e.g.,
battery level, CPU and memory usage.

• At the communication layer, there can be alternative links as illustrated in Section 3
with varying link properties. Examples of link properties are delay, bit rates,
transmission power, energy consumption and forwarding cost.

• At the application layer, examples of variation points are different component
realizations for a component type and service offerings from different providers
with varying quality, which may dynamically appear, change and disappear (cf.
Section 4).

• In addition, user context (e.g., home, office or driving) may influence adaptation at
all layers and shall be considered in the adaptation planning.

Figure 2 Cross-layer adaptation framework

The Adaptation Manager uses information about the variation points to build a
runtime adaptation model (represented as plans), which describes what can be changed
and controlled at runtime. The model will be dynamically updated when the variants
change. The adaptation is triggered by context changes. The Adaptation Manager
controls the adaptation at the application layer by selecting and reconfiguring to the best
application variants (i.e., binding to the selected component and service instances). By
selecting the specific communication link that can contribute to the best utility, e.g.,
with lowest forwarding cost based on the battery levels and energy consumptions, the
Adaptation Manager also controls the adaptation at the communication layer. The
Adaptation Manager can also select configuration parameters of a hardware resource,
and ask the hardware to turn on/off memory bank or power on/off battery, thus controls
the adaptation at the hardware layer as well. Adaptation middleware may also provide
recommendations to user, e.g., to close an application due to battery running low.

5.2 Incorporating Link Properties in Cross-layer Adaptation
Link properties are typically provided by network sensors in real deployments or by
network simulators in simulations. In particular, we define a special link property called
forwarding cost to represent the resource usage of a link outside the source and target
nodes. For example, we may simply represent the forwarding cost of a multi-hop link as
the average value of the battery levels for all the relay nodes. This means that resource

Link properties, such as energy
consumption, forwarding cost

Alternative links

Adaptation
Middleware
(Adaptation

Manager)

Application layer

Communication layer

Hardware layer

Context

Runtime
adapt.
Model
(Plans)

Resource usages, e.g., battery level,
CPU and memory usage;
Configurations like CPU frequency,
battery power on/off

Running appl.
variants

Service availability and QoS

Component realization

Variation points and
context

User context

builds,
maintains

& uses

context changes

Information flow
Control flow

Legend:

Recommendations

usages of other nodes can be passed over to higher layers as a special link property via
the communication layer. Figure 3 illustrates this idea with an example of multi-hop
routes as alternative links from the subsea sensor network use case. In the figure, there
are two alternative links between A and B. The link properties considered including
transmission power (trPwr), which in both cases are the power used by node A to send
messages; forwarding cost (fwdCost), which is zero for direct link and a function of the
average battery level (pwrLvl) of intermediate nodes for multi-hop link.

 In order to include communication layer in cross-layer adaptation the link
properties should be reflected in the representation of the discovered services, which in
MUSIC terms, is called service plan variants. We have modified/extended the Service
Discovery and Service Binding components of the MUSIC middleware to include the
adaptation of communication layer in the coordinated adaptation. The approach is to
consider link properties as special properties for discovered services and annotate the
service plan variants for discovered services with link properties of available links.
Figure 3 shows two different service plan variants (S, l1), (S, l2) created at node B with
properties of available links (l1 and l2) when node B discovers the service S provided by
node A. These service plan variants (therefore the link properties) are then used by the
Adaptation Manager in its adaptation planning (cf. Section 4). When new configuration
is selected after adaptation the service plan variants selected will decide which link to
use for communication. In this way the Adaptation Manager also controls the adaptation
of the communication layer.

Figure 3 Nodes, services and alternative links annotated with link properties

6. Design and Implementation of the Simulation Facility
The simulation facility is based on a hybrid simulation model with a discrete event-
driven environment simulator to simulate events from any layer in the physical
environment. The environment simulator gets event-based input and notifies the
MUSIC middleware running on corresponding node(s) about the changes. The MUSIC
middleware then performs adaptation and reconfiguration accordingly.

Due to the hybrid nature, the simulator has two types of inputs and they have
different impact on the energy consumption which is an important property in the
evaluation of system performance from the adaptation aspect. On the one hand, the
simulator may receive simulation events, e.g., events from communication layer
generated using other network simulators, which simulate target network conditions
(such as the network topology, the characteristics of the communication links and their
changes). These simulation events are not real messages sent over the actual networks
and thus have no direct impact on the energy consumption for the receiving nodes. On
the other hand, the simulator may receive messages sent by other nodes in the system.
These are the real messages needed for running the adaptive systems, thus need to
consume energy when sending and receiving the messages.

The simulation architecture is depicted in Figure 4. The ProSUS environment
simulator (named after the internal project ProSUS) reads the simulation events and
simulates the communication between several MUSIC nodes. Each node is represented

as an OSGi/JVM (Java Virtual Machine) instance with the appropriate middleware and
application bundles installed. Every communication is via the ProSUS environment
simulator.

Figure 4 Simulation architecture

Some more details about the working of the environment simulator and its
interaction with the middleware are explained in the following (the numbers in
parenthesis refer to corresponding numbers in Figure 4):
• An event file is generated containing sequence of simulation events based on

knowledge about the real running environment (1). In general, any event from each
layer can be included. For the hardware layer, events can be failure of hardware
(e.g., memory bank), or battery level depleted. For the communication layer, events
can be new node, dead node, new link, broken link and change of link properties.
Events can also be contexts set by user, e.g., user can switch the context from
“driving” to “in-a-meeting” during simulation. Our current implementation covers
only events from the communication layer, which are generated based on knowledge
about real communication layers and input from other network simulators.

• The ProSUS simulator has an event handler which reads the events from the
simulation event file in the temporal order given by the event timestamps, and
maintains a table of nodes and links in the network and their properties (2).

• The changes of nodes and links are sent to the MUSIC middleware by the simulator
and trigger the middleware for service discovery (3).

• The Service discovery and binding components discover the services over the
available links (3) and create service plan variants for each service over an available
link (4). The link information is considered as an explicit property of a service (cf.
Section 5.2). These service plan variants are used by the MUSIC middleware for
adaptation and reconfiguration.

• The MUSIC middleware uses the ProSUS environment simulator for sending and
receiving messages required for service discovery and communication between
nodes (i.e. service binding). In other words, the ProSUS environment simulator also
transmits MUSIC messages via a middleware selected link according to the link
properties stored in the table. For example, it can delay the message transmission

ProSUS environment simulator

Knowledge about real
environment

Sequence of events

Availability of nodes and links

1

2

3 3

Input from other network
simulators

MUSIC Context &
Adaptation MW

MUSIC Applications

Discovered services
with link properties

4

Node1

…...MUSIC Service
discovery

MUSIC Service
binding

MUSIC Applications

Discovered services
with link properties

4

Node2

MUSIC Service
discovery

MUSIC Service
binding

3

MUSIC Context &
Adaptation MW

{etype=NewNode,id=Node1,
ip=10.0.0.1,port=4000,
timestamp=1}
{etype=NewLink, id=Link1,
n1=Node1,n2=Node2,
delay=0.35s,
bitrate=1600bps,
txpower=3.75dbw,
fwdcost=0.5, timestamp=5}
...

Event file

JVM JVM

JVM

according to the link delay property or drop packets according to the packet loss
property.

7. Experience and Discussion

7.1 Initial Experience with the Use of the Simulation Facility
As the first application of the simulation facility we have developed a scenario for the
subsea environmental monitoring use case [14]. In this scenario we identified several
sources of variation: 1) communication capacities and energy consumption: Acoustic
communication in sea water implies a highly limited transmission capacity, long delays
and a high ratio of energy per bit. These parameters vary over time and with the depth
and are influenced by environmental phenomena that typically have a cycle of one year;
2) owner needs: Under normal condition, the requirement to sampling frequency and
freshness of data may be relaxed, while in the presence of accidents causing oil spill or
leakage of radioactive material, much more frequent and recent observations are
needed; 3) mobile nodes: The use of mobile nodes such as ships, AUVs, and gliders to
relay the measurements to the onshore installation, causes dynamic variation in the
topology of the network. Battery depletion and other node failures have the same effect.

The purpose of this exercise is to study the benefits of cross-layer self-adaptation in
this kind of systems, in particular the effect on resilience and energy efficiency. The
simulation facility is the natural choice for testing and evaluation of such application as
it is practically infeasible to test it in real deployment.

We have used WOSS8 simulator to obtain link properties. Since phenomena that
influence underwater acoustic communication typically have a cycle of one year, we run
WOSS simulations for different seasons and topologies and get information about link
properties, such as node distance, transmission power, path loss, bit rate and relay nodes
for multi-hop links. Properties like forwarding cost and link propagation delay have to
be computed separately based on the above information. Then we manually generate the
event file with a sequence of events derived from the WOSS simulation output. A
typical event is the change of link properties due to seasonal variations derived by
comparing the output from different seasons. The timestamp of each event and
information about node and link properties are also collected. Figure 4 shows an excerpt
of such an event file.

We need to simulate events and data at other layers as well. We need to simulate
input to the application such as measurements made by the sensors. We also need to
simulate context events such as changed preferences, e.g., oil spill requiring more
frequent measurements over a period, and hardware layer events like battery level
depleted and memory bank failure. To study the energy effect we need to simulate the
control of physical layer, e.g., turning on/off a memory bank or power on/off battery.

We are in the process of implementing the example system based on selected
scenarios and plan to execute them in the simulation facility. The simulation of the
communication layer has been implemented while other layers have been designed.
Even in this early stage, the simulation facility has demonstrated its flexibility by
allowing us to simulate the long-term (i.e. yearly) variation in a manageable
environment.

8 WOSS is an extension to ns-2-miracle, aided towards underwater sensor network simulation, where

actually a very sophisticated physical layer model is interfaced (the ray tracing model Bellhop), which is
run at simulation start-up to provide close to real-life signal-to-noise ratios of all possible network links.

7.2 Discussion
In Section 3 we stated a number of requirements for the simulation facility. Regarding
the first requirement, the simulation facility is based on MUSIC, which supports context
aware and adaptive applications and is already SOA-based and targets resource
constrained environments. Our implementation of communication based on UDP
reflects this constraint as well. Regarding the second requirement, the simulation facility
allows for applications to run based on various simulated events from the environment
as well as to simulate controls at different layers. Even some application components or
input can be simulated to allow for early testing. As for the third requirement, we have
implemented service bindings based on UDP and RESTful style [15], which are suitable
for working with emerging standards and protocols targeted for resource constrained
environment, such as CoAP9. Finally, we have proposed a unified model for
coordinated adaptation of application, communication and hardware layers. We have
implemented the core of the simulation facility as described in the paper with support
for events at communication layer10. It can be easily extended to support events from
other layers.

During the design of the simulation facility we faced several design choices.
Firstly, there are alternative approaches to cross-layer adaptation. This paper adopts a
centralized approach, where an Adaptation Manager controls the adaptation of
application, communication and hardware layers based on information obtained from
different layers. With this approach it is easy to ensure the coordination across layers.
The drawback is it may suffer from scalability problems, caused by the combination of
variation points from several layers. Alternatively, a distributed approach could be used
where application, communication and hardware layers are controlled by mechanisms at
different layers; these adaptation mechanisms are then governed by high level policies.
This approach scales better, but the challenges are the specification of proper high level
policies and strategies to ensure the coordinated adaptation, and a solution for conflict
resolution.

Secondly, there are also alternative approaches to modelling link properties at the
adaptation layer. We have implemented a simple approach by adding link quality
information directly to service plan variants which are used for adaptation planning.
Alternatively, we might have extended the MUSIC model to represent link properties
explicitly in the model, by modelling connections as variation points. This is a more
general approach, but it was discarded because it requires substantial changes to the
MUSIC tools and middleware.

The use of the simulator requires the construction of an event file with a sequence
of events which is representative for the target execution environment of system being
studied. This can be obtained in different ways. We have reported how we generate
event files manually in the subsea use case. In other cases, such as AAL, we may collect
link properties using other network simulators and generate event sequences (semi-)
automatically.

8. Conclusions and Future Work
We have presented the design and implementation of an experimental facility based on
hybrid simulation for adaptive systems. We also report initial experience from the
subsea sensor network use case as preliminary validation of the proposed approach. By

9 CoAP: IETF draft. http://tools.ietf.org/id/draft-shelby-core-coap-00.txt
10 The source code for the simulation facility is available at: https://svn.berlios.de/svnroot/repos/ist-

music/music-middleware/branches/NetworkSimulator.

http://tools.ietf.org/id/draft-shelby-core-coap-00.txt

separation of application and adaptation logic, the simulation facility allows for testing
the adaptation behaviour at an early stage independent of business logic. Using
simulation facility allows for instantiating many nodes as needed in the real systems
without needing access to the physical equipment and end users in real life setting,
giving good potential for scalable testing.

This paper presents a unified model for cross-layer adaptation. The current
implementation of the ProSUS environment simulator covers only events from the
communication layer so far. We plan to extend it to simulate the effects of configuring
the CPU and memory of the nodes as well as to allow users to set contexts for
simulation. We are also in the process of implementing applications for use cases from
AAL domain and subsea environmental monitoring and test them on the simulation
facility. One of the goals is to investigate whether self-adaptive capabilities of sensor
systems can save energy and extend sensor lifetime. Another direction is to run large
scale simulation on a cloud server, e.g., one such facility as provided by Telenor ASA.

Acknowledgement
This work is partly supported by SINTEF and Telenor through their strategic research cooperation
agreement FI-M2M project, as well as MODERATES and ProSUS projects.

References
1. Batista T. V., Joolia A., and Coulson G. Managing Dynamic Reconfiguration in Component-

Based Systems. In EWSA 2005, LNCS 3527, Springer, 2005, 1-17.
2. Flinn J., de Lara E., Satyanarayanan M, Wallach D., and Zwaenepoel W. Reducing the energy

usage of office applications. In Proc. Of Middleware 2001, Heidelberg, Germany, Nov. 2001.
3. Corner M., Noble B., and Wasserman K. Fugue: time scales of adaptation in mobile video. In

Proc. of SPIE Multimedia Computing and Networking Conference, San Jose, CA, Jan. 2001.
4. Gjørven E., Rouvoy R., & Eliassen F. Cross-layer Self-adaptation of Service-oriented

Architectures. In Proc. of MW4SOC, 37-42, 2008.
5. Popescu R., Staikopoulos A., Liu P., Brogi A., & Clarke S. Taxonomy-driven adaptation of

multi-layer applications using templates. In Proc. of SASO, 213-222, 2010.
6. Schmieders E., Micsik A., Oriol M., Mahbuk K., & Kazhamiakin R. Combining SLA Prediction

and Cross Layer Adaptation for Preventing SLA Violations. 2nd Workshop on Software
Services: Cloud Computing and Applications based on Software Services, 2011.

7. Yuan W., Nahrstedt K., Adve S. V., Jones D. L., & Kravets R. H. Design and Evaluation of a
Cross-layer Adaptation Framework for Mobile Multimedia Systems. MMCN, 2003.

8. Rouvoy R., et al. MUSIC: Middleware Support for Self-Adaptation in Ubiquitous and Service-
Oriented Environments. In: Cheng, B.H.C., et al. (eds.) Self-Adaptive Systems, LNCS 5525,
Springer, 2009; 164-182.

9. Lie A. and Klaue J. Evalvid-RA: Trace Driven Simulation of Rate Adaptive MPEG-4 VBR Video.
ACM/Springer Multimedia Systems Journal, Nov. 2007.

10. Vidackovic K., Weiner N., Kett H., and Renner T. Towards business-oriented monitoring and
adaptation of distributed service-based applications from a process owner’s viewpoint. In
ICSOC/ServiceWave workshop, 385-394, 2009.

11. J. Mitola III J., G. Q. Maguire Jr. Cognitive radio: making software radios more personal. IEEE
Journal on Personal Communication, Vol. 6, No. 4, 1999.

12. Rouvoy R., Beauvois M., Eliassen F. Composing Components and Services using a Planning-
based Adaptation Middleware. In: 7th Int. Symp. on Software Composition (SC). LNCS 4954,
Springer, 2008; 31-36.

13. Jiang S., Hallsteinsen S., Barone P., Mamelli A., Mehlhase S., Scholz U. Hosting and Using
Services with QoS Guarantee in Self-Adaptive Service Systems. In: Eliassen, F., and R. Kapitza,
R. (eds.): DAIS 2010, LNCS 6115, Springer, 2010; 15-28.

14. Hallsteinsen S., Jiang S., Sanders R. Dynamic software product lines in service oriented
computing. In: 3rd Int. Work. on Dynamic Software Product Lines (DSPL), 2009.

15. Fielding, R. T. Architectural Styles and the Design of Network-based Software Architectures.
Doctoral dissertation, University of California, Irvine, 2000.

	1. Introduction
	2. Related Work
	3. Assumptions and Requirements for the Simulation Facility
	4. Adaptation Framework
	5. A Model for Cross-layer Adaptation
	5.1 The Unified Model
	5.2 Incorporating Link Properties in Cross-layer Adaptation

	6. Design and Implementation of the Simulation Facility
	7. Experience and Discussion
	7.1 Initial Experience with the Use of the Simulation Facility
	7.2 Discussion

	8. Conclusions and Future Work
	Acknowledgement
	References

