

Wafer-Level Packaged MEMS Switch with TSV

Nicolas Lietaer SINTEF ICT, Norway

 supported by the European ENIAC Joint Undertaking project ID:120016 JEMSiP-3D

Introduction

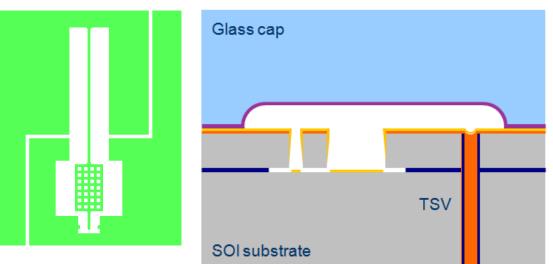
- MEMS acceleration switch
- Through-silicon vias
- Wafer-level packaging

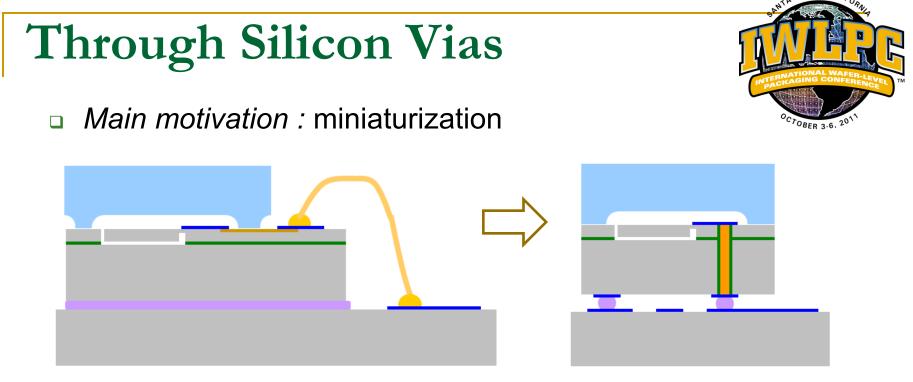
Fabrication

- Through-silicon vias
- MEMS switches
- Wafer-level encapsulation
- Direct mounting on PCB
- Characterization
 - TSVs
 - MEMS switches

- Introduction
 - MEMS acceleration switch
 - Through-silicon vias
 - Wafer-level packaging
- Fabrication
 - Through-silicon vias
 - MEMS switches
 - Wafer-level encapsulation
 - Direct mounting on PCB
- Characterization
 - TSVs
 - MEMS switches

MEMS acceleration switch


- Definition : a device that closes (or opens) a circuit above a certain acceleration threshold
- *Types :* intermittent or persistent
- Presented application : safety and arming devices (SADs) in smart ammunition fuzes
- Environmental conditions :
 - Setback acceleration pulse > 60 000 g, centripetal acceleration up to 9 000 g/mm
 - Severe shock and vibrations
 - Severe climatic conditions (e.g. -54°C to +71°C)

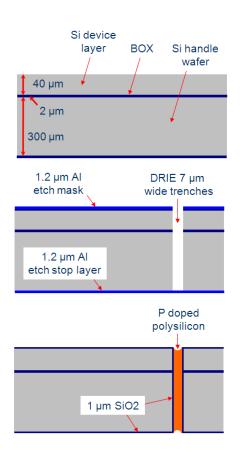

MEMS acceleration switch

- Why MEMS ?
 - Reduced size
 - Low cost

- Presented switch :
 - Intermittent switch
 - Centripetal acceleration threshold : 13 800 g (designed)
 - Operation : freestanding structure moves in lateral plane and makes contact with neighboring structure
 - Trenches in device layer used to isolate different parts

- □ TSV in device wafer :
 - No electrical interconnect required between cap and device wafer
 - Visual inspection still possible after flip-chip mounting (if glass cap)
 - Via-first approach must be used

Wafer-level packaging



- Why WLP ?
 - Reduced packaging costs
 - Protection of fragile MEMS structures during wafer dicing
- Presented method :
 - Adhesive wafer bonding with BCB :
 - \rightarrow robust, low-cost, CMOS compatible
 - → protects structures from liquids, particles and dust (but not fully hermetic)

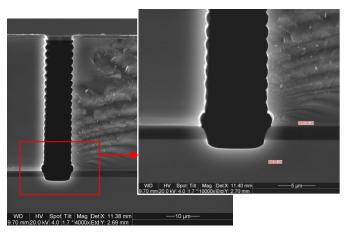
Introduction

- MEMS acceleration switch
- Through-silicon vias
- Wafer-level packaging
- Fabrication
 - Through-silicon vias <</p>
 - MEMS switches
 - Wafer-level encapsulation
 - Direct mounting on PCB
- Characterization
 - TSVs
 - MEMS switches

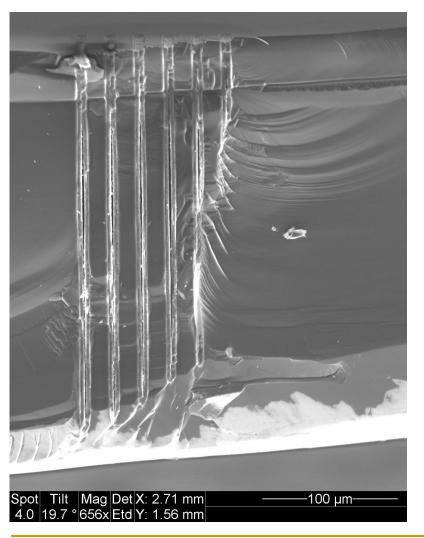
Via etch :

- SOI substrates (100 mm)
- 7 x 70 µm trenches
- Bosch DRIE process
- Al etch mask and etch stop
- Via filling :
 - Thermal oxidation (1 µm)
 - LPCVD undoped polysilicon
 - Phosphorous gas phase doping (POCl₃)
- Etchback :
 - Removal excess polysilicon



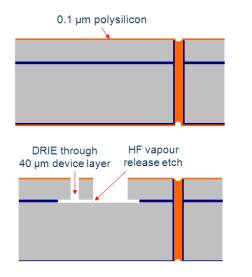


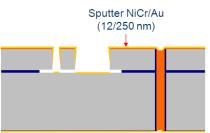
- Main challenges :
 - High aspect ratio DRIE
 - BOX etch at the bottom of narrow trenches
 - Conformal polysilicon filling
- Results :
 - Multi-step etch recipe with excellent profile and AR 50:1
 - BOX etch recipe with LF bias
 - Seam left in the center but sealed at the wafer surfaces


BOX etch with RF bias

BOX etch with LF bias

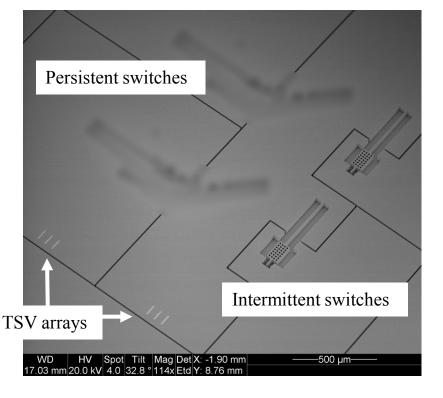
- Main challenges :
 - High aspect ratio DRIE
 - BOX etch at the bottom of narrow trenches
 - Conformal polysilicon filling
- Results :
 - Multi-step etch recipe with excellent profile and AR 50:1
 - BOX etch recipe with LF bias
 - Seam left in the center but sealed at the wafer surfaces


- Main challenges :
 - High aspect ratio DRIE
 - BOX etch at the bottom of narrow trenches
 - Conformal polysilicon filling
- Results :
 - Multi-step etch recipe with excellent profile and AR 50:1
 - BOX etch recipe with LF bias
 - Seam left in the center but sealed at the wafer surfaces


Introduction

- MEMS acceleration switch
- Through-silicon vias
- Wafer-level packaging
- Fabrication
 - Through-silicon vias
 - MEMS switches (
 - Wafer-level encapsulation
 - Direct mounting on PCB
- Characterization
 - TSVs
 - MEMS switches

MEMS switches


Protection TSV sidewalls

- Stripping SiO₂ frontside
- 100 nm poly deposition
- DRIE device layer :
 - 2.6 µm HiPR6517 photoresist mask
- Release movable structures :
 - 1 hr HF vapor release at 35°C
- Au metallization :
 - RIE 100 nm polySi
 - NiCr barrier/adhesion layer
 - 500 nm Au sputtering

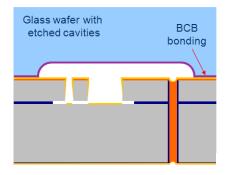
MEMS switches

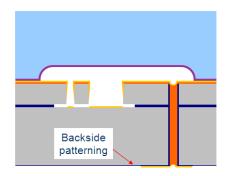
After NiCr/Au metallization

Main challenges :

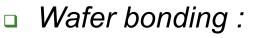
- Vertical profile DRIE
- Planarity of released structures after metallization

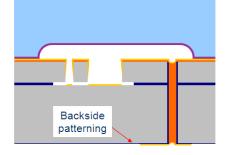
Results :

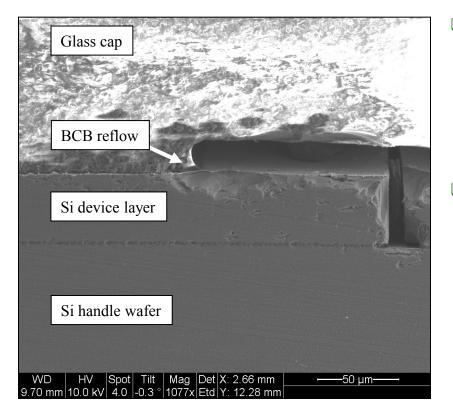

- DRIE process with vertical sidewalls and small scallops
- Slight (< 1 µm) upwards bending of cantilever structures


Introduction

- MEMS acceleration switch
- Through-silicon vias
- Wafer-level packaging
- Fabrication
 - Through-silicon vias
 - MEMS switches
 - Wafer-level encapsulation
 - Direct mounting on PCB
- Characterization
 - TSVs
 - MEMS switches




- Etch cavities in glass wafer :
 - TiW/Au etch mask
 - Wet etch of glass (49 % HF at room temp)
 - Etch depth : 20 µm
 - Stripping of TiW/Au
- BCB coating glass cap wafers :
 - Cyclotene 3022-35 (BCB)
 - Spray coating with airbrush pressurized with dry N₂
 - 1.4 µm thickness
 - Hotplate 90 sec 110 °C



- Suss BA6 bond aligner
- Suss SB6 thermo-compression bonder
- Pre-heating 5 min 150 °C
- Pressure : 300 mbar
- 1 hr 250 °C

- Patterning backside metal :
 - AZ4562 photoresist mask
 - Wet etching of NiCr/Au
- Dicing with conventional diamond saw

- Main challenges :
 - Particles and defects
 - BCB reflow within the cavity

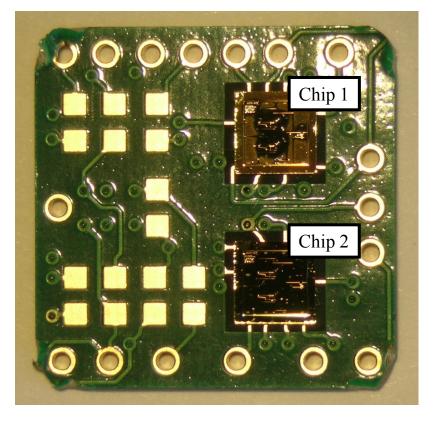
Results :

- Successful bond over the complete wafer
- Particles and defects embedded in bond seal
- Acceptable reflow
- Efficient sealing/protection during dicing

- Main challenges :
 - Particles and defects
 - BCB reflow within the cavity
- Results :
 - Successful bond over the complete wafer
 - Particles and defects embedded in bond seal
 - Acceptable reflow
 - Efficient sealing/protection during dicing

Introduction

- MEMS acceleration switch
- Through-silicon vias
- Wafer-level packaging


Fabrication

- Through-silicon vias
- MEMS switches
- Wafer-level encapsulation
- Direct mounting on PCB <=</p>
- Characterization
 - TSVs
 - MEMS switches

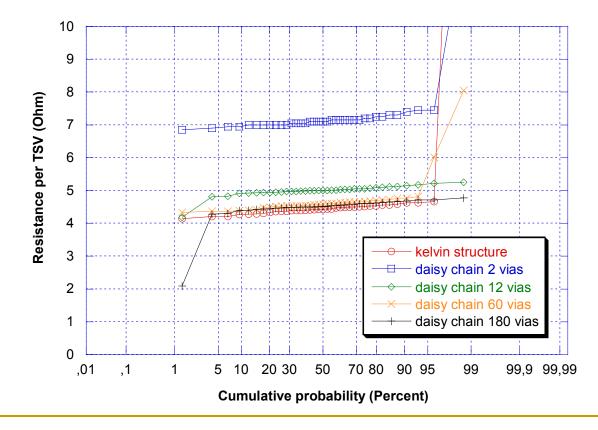
Direct mounting on PCB

- Mounting of chips :
 - Direct on FR-4 PCB
 - Novel isotropic conductive adhesive (ICA) with uniform Ag-coated polymer spheres
 - Dima HS-100 stencil printer
 - MyData My-9 pick and place
 - Curing 60 sec 150 °C
 - Pad size : 250 x 440 µm
 - Pad pitch : 600 µm

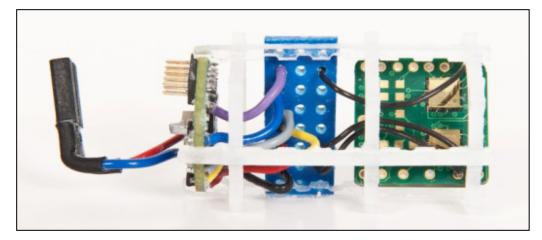
Introduction

- MEMS acceleration switch
- Through-silicon vias
- Wafer-level packaging

Fabrication

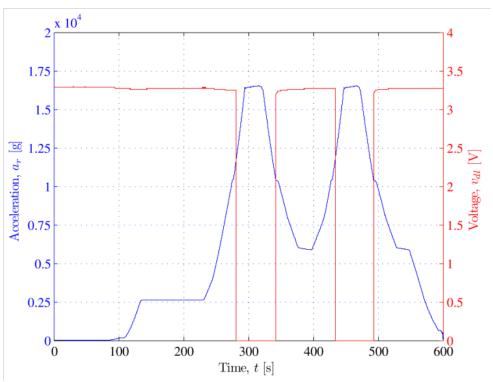

- Through-silicon vias
- MEMS switches
- Wafer-level encapsulation
- Direct mounting on PCB
- Characterization
 - TSVs
 - MEMS switches

Characterization of TSVs


- Results :
 - Via resistance ~ 4.5 Ω
 - High yield also for daisy chains with 180 vias

Characterization of switches

- Test system :
 - FR-4 PCB with two MEMS chips
 - Test PCB with data logger
 - Placed in sample holder for centrifuge and filled with a powder consisting of 40 to 80 µm glass beads
 - Sorvall WX80 Ultra centrifuge


Ø 20 x 35 mm test system

Characterization of switches

- Results :
 - Closing threshold ~ 11 800 g (15 % lower than expected)
 - Opening threshold ~ 10 500 g

(some stiction)

Introduction

- MEMS acceleration switch
- Through-silicon vias
- Wafer-level packaging

Fabrication

- Through-silicon vias
- MEMS switches
- Wafer-level encapsulation
- Direct mounting on PCB
- Characterization
 - TSVs
 - MEMS switches
- Summary

- Polysilicon TSVs with 4.5 Ohm/via were successfully fabricated through 340 µm thick SOI wafers
- A new RIE process based on LF substrate bias was successfully developed to etch a 2 µm BOX layer at the bottom of high aspect ratio trenches
- A simple and robust method for wafer-level encapsulation with non-photosensitive BCB adhesive was demonstrated
- Direct mounting of MEMS devices onto a PCB using a novel isotropic conductive adhesive was demonstrated
- A miniaturized wafer-level packaged MEMS acceleration switch with TSVs was successfully fabricated

Acknowledgements

- □ T. Bakke, SINTEF ICT
- A. Summanwar, SINTEF ICT
- P. Dalsjø, Norwegian Defence Research Establishment (FFI)
- □ J. Gakkestad, Norwegian Defence Research Establishment (FFI)
- F. Niklaus, KTH Royal Institute of Technology
- This work is supported by the European ENIAC Joint Undertaking project ID:120016 JEMSiP-3D

