
A Model-driven Approach to Interoperability in B2B Data Exchange. Volume X – No. X/2001, pages
1 to n

A Model-driven Approach to Interoperability in
B2B Data Exchange

Dumitru Roman, Brice Morin, Sixuan Wang, Arne J. Berre

SINTEF, Norway

Forskningsveien 1, Oslo, Norway
{firstname.lastname}@sintef.no

ABSTRACT: With the B2B data exchange becoming ubiquitous nowadays, automating as much as
possible the exchange of data between collaborative enterprise systems is a key requirement for
ensuring agile interoperability and scalability in B2B collaborations. Semantic differences and
inconsistencies between conceptual models of the exchanged B2B data hinder agility, and ultimately
the interoperability in B2B collaborations. In this paper we introduce a model-driven technique and
prototype that support humans in reconciling the differences between the data models of the parties
involved in a data exchange, and enable a high degree of automation in the end-to-end data exchange
process. Our approach is based on the use of OMG Model-Driven Architecture (MDA) for abstracting
platform-specific schemas and instances to platform-independent metamodels and models,
specification of transformations at the platform-independent level, and generation of executable
mappings for run-time data exchange. This paper presents the MDA-based data exchange framework
we have developed, and focuses on the mapping metamodel and the generation of executable mappings
from platform-independent transformations. Benefits of the proposed framework include the possibility
of the mappings creator to focus on the semantic, object-oriented model behind the different platform-
specific schemas and specify the mappings at a more abstract, semantic level, with both specification
and execution of data mappings (i.e. design- and run-time mapping) provided in a single, unifying
framework.

KEY WORDS: MDI, MDA, data exchange, mapping, transformation

2 A Model-driven Approach to Interoperability in B2B Data Exchange. Volume X – No. X/2001

1. Introduction

Improving the level of automation of data exchange between B2B systems is widely
regarded as a key enabler for agile interoperability and scalability in B2B collaborations
(Bussler, 2003). Techniques and tools have been proposed to improve automation in data
exchange in special for concrete representation formats such as XML, however, generic
approaches that can easily handle different data formats are currently missing, hindering the
agility and scalability of B2B data exchange, and in general the interoperability of B2B
systems and applications.

Rather than focusing on a specific data representation format, we introduce a generic
technique and tool for design- and run-time support of B2B data exchange, based on the
OMG Model Driven Architecture1 approach. The use of model-driven approaches for data
mapping/exchange hasn’t been yet widely investigated in the community. With this paper we
aim at providing a solution to the end-to-end data exchange problem based on the use of
OMG MDA framework which we use for high-level, abstract specification of schemas and
mappings between them, as well as for run-time execution of mappings.

Figure 1 provides an overview of the elements involved in a typical B2B data exchange
between two companies X and Y. Company X, the initiator of the exchange, wants to send
the Source Instance (e.g. an invoice document) to Company Y. The Source Instance
document is compliant with a schema, Source Schema (e.g. an invoice schema), made
available by Company X such that the receiver of its instance document, Company Y, can
understand the structure and meaning of such a document. Company Y processes data (i.e.
Target Instance) according to its own schema Target Schema. In the typical case that the
target schema differs from the source schema, then company X is faced with the problem of
having to process the Source Instance document which it does not understand.

Figure 1. Generic design-time and run-time data transformation (adapted from Liao et al, 2010)

1 http://www.omg.org/mda/

Company Y

Target
Instance

Target
Schema

Transformation
Layer

Schema

Transformation

Instances
 Transformation

Company X

Source
Instance

Source
Schema

Design-Time
Run-Time

A Model-driven Approach to Interoperability in B2B Data Exchange 3

The core challenge in such as scenario is to generate the Target Instance document from
the Source Instance document, given the Source Schema and the Target Schema. A
Transformation Layer is usually designed to address this challenge by providing means to
map the Source Schema to the Target Schema at design time, and by providing an engine
that implements the schema mappings at run time when the Target Instance needs to be
generated from Source Instance. Since the transformation cannot be fully automated, the
core question is how to design the transformation layer in such a way that the human
intervention in the specification and execution of mappings is kept at a minimum.

The OMG Model Driven Architecture (MDA) approach appears attractive for addressing
the problem of data exchange, in particular for its support in modeling schemas and
transformations at a technology-independent level and its capabilities for automatic
generation of executable run-time transformations. The OMG MDA approach, in essence,
facilitates the mappings creator to focus on the semantic, object-oriented model behind the
different schemas and specify the mappings at a more abstract, semantic level, and
potentially enables both specification and execution of data mappings (i.e. design- and run-
time mapping) in a single, unifying framework. Rather than having to deal with
technicalities of specific data formats and their transformations at lower levels, this paper
uses the MDA approach to provide a generic a solution to the end-to-end data exchange
problem.

The remaining of this paper is organized as follows. Section 2 gives an overview of our
proposed generic MDA data exchange framework. Section 3 describes the transformation
metamodel – a core element of our framework – and its use in the specification of
transformations. Section 4 focuses on the run-time aspects of the data exchange framework,
and provides details on the generation of executable mapping rules. Section 5 gives
concludes this paper, together with some relevant related work and potential extensions.

2. Generic MDA Data Exchange Framework

Figure 2 below gives an overview of our proposed data exchange framework. The
shadowed box in the center of the figure (to which we refer to as MDI Transform Engine), is
the core part of the framework, where all the specifications and transformations take place at
the platform-independent level. The elements outside the shadowed box (source and target
schemas, their transformation, the source instance, and the generated target instance)
represent platform-specific models and transformations.

In our approach, source and target schemas (e.g. XSDs, data-bases schemas, etc) are
abstracted as platform- and technology-independent models. In our framework (and current
implementation), they are abstracted as ECore2 metamodels (depicted as Source MM and
Target MM in the figure), which are very closed to UML class diagrams. Both ECore and
UML provide advanced object-oriented mechanisms to data modeling (inheritance,
references, compositions, etc). In a similar way, the source instances are abstracted to
platform-independent models (depicted by Source M in the figure), which are processed by
our run-time executable transformations to generate platform-independent target models

2 http://www.eclipse.org/modeling/emf/?project=emf

4 A Model-driven Approach to Interoperability in B2B Data Exchange. Volume X – No. X/2001

Source
MM

MDI Transform Engine

Design-time
Run-time

Source
Schema

Target
Schema

Target
MM

Source
M

Target
M

Mappings
Specification

Executable Mappings

Target
Instance

Informal Schema
Mappings

conforms to

generate

Source
Instance

Mapping MM

transformation (PSM2PIM/PIM2PSM)

(depicted by Target M in the figure), which are then serialized in platform-specific Target
Instances.

At the heart of the transformation is a mapping metamodel (depicted by Mapping MM in
the figure), which enables us to specify the schema mappings (Mappings Specifications in
the figure) in an intuitive way at the platform-independent level, based on the informal
schema mappings provided by the user. Furthermore, our framework provides support for
automatic generation of executable mappings that are used at run-time to execute the
transformation of the Source Model (source data instances) to the Target Model (target data
instances). This way, the use needs to focus on the transformations at the platform-
independent level, with the actual data exchange being fully automated.

Another way of looking at the framework is through its desing- and run-time elements.
The following process takes place when using the framework for data exchange.

Figure 2. Model-driven Data Exchange Approach – Overview

A Model-driven Approach to Interoperability in B2B Data Exchange 5

At design-time:

1. The platform-specific Source and Target Schemas are abstracted into platform-
independent source and target metamodels through a given transformation
(PSM2PIM) specific to the concrete technologies used at the platform-specific
level.

2. By using the mapping metamodel, the mappings between the source and target
metamodels are specified, based on the informal mappings provided by the user.

3. Executable mappings are generated from the mappings specified in the previous
step, and will be used during the run-time data exchange.

At run-time:
4. The platform-specific Source Instance is abstracted into a source model through

a given transformation (PIM2PSM) specific to the concrete technologies used at
the platform-specific level.

5. The executable mapping rules from step 2 are executed for the source model and
a target model corresponding to the source model is generated.

6. The target model is serialized into a platform-specific instance target through a
given transformation (PIM2PSM) specific to the concrete technologies used at
the platform-specific level.

In the following two sections we will focus on the techniques behind the MDI Transform
Engine by introducing the mapping metamodel, specifying mappings, and generating
executable transformations.

3. Platform-Independent Specification of Transformations

Platform-independent specification of transformations between a source and target
metamodel relies on the existence of a mapping metamodel. In this section we introduce our
proposed metamodel and exemplifies its use in a simple yet realistic use case.

The Mapping MM, depicted in Figure 3, is inspired by graph-based approaches (Grønmo
et al, 2009) and Aspect-Oriented Modeling approaches (Morin et al, 2010). The basic idea is
to describe mappings between model fragments (the Left-Hand-Side and the Right-Hand-
Side), at the instance level yet in a platform-independent manner. Working at the instance
level allows us to easily express constraints, filters or patterns on the mappings. The
mapping framework comes with a set of default Mapping Operations, which implements
default mapping behaviors. In addition to classic operators (e.g. copy, split, merge specific
attributes) we also provide composite adaptations which allow for example to copy all the
similar attributes (same name, same type). The metamodel is easily extensible and users can
customize it as needed:

• By defining generic adaptations that can be applied to any input and output
metamodels. In this case, these extensions can directly be integrated into the
generic framework, so that any sub-sequent derivation of the framework will
benefit from these adaptations.

6 A Model-driven Approach to Interoperability in B2B Data Exchange. Volume X – No. X/2001

• By defining domain-specific adaptation that takes into account the specific
semantics of the given input and output metamodels. In this case, these
extensions will only be integrates into the specific framework.

Since the LHS can match multiple times, we complement mappings with instantiation
strategies we introduced in (Morin et al, 2010). This allows designer to control the way the
elements of the RHS should be instantiated: every time the LHS matches, once, etc. By
default, all the elements of the RHS are instantiated every time the LHS matches. The global
instantiation strategy allows designer to specify that some elements of the RHS are global
i.e., only one instances of these elements will be created, even if the LHS matches several
times. The scoped instantiation allows designers to relate the instantiation of some RHS
elements to some LHS elements. Typically, this strategy allows handling overlapping
mappings: if a RHS element has already been created and associated to a LHS element in a
previous mapping, then it will be reused and not duplicated.

Figure 3. Mapping Metamodel

Once the mapping framework has been automatically contextualized, designers can use it
to define mappings. We adopt an interactive approach that guides the designer when defining
mappings. The idea is to automatically infer some mappings that the user can validate,
discard, or modify. We currently use simple string-based heuristic to identify potential
mappings. However, since our approach is based on platform-independent models, it could
easily benefits from the theory of model typing (Steel and Jézéquel, 2007), or from an
adaptation of the theory of bi-simulation (Nejati et al, 2007), adapted to class diagrams. The
idea would be to automatically identify fragments that match in both metamodels, based on
advanced heuristics.

To illustrate the use of the metamodel for specification of transformations consider the
following example where invoices are send from a source system to a target system. By a
given transformation, the source invoice schema is abstracted in the ECore metamodel
depicted in Figure 4. Invoices can be either simple or composite invoices. Simple invoices
contain some statements (with the price), while composite contains other invoices (simple or
composite). Each invoice has a date and a status, modeled as a string.

A Model-driven Approach to Interoperability in B2B Data Exchange 7

Figure 4. Source MM linked to the Mapping MM (via LHSelement)

By a given transformation, the target invoice schema is abstracted to the ECore
metamodel depicted in Figure 5. Here, the invoices have a flat structure and also contain
some statements. Note that the date attribute is hold by the statements and not by the invoice.
The state of the invoice is reified by the State abstract class, which has two concrete sub-
classes: Payed or Waiting.

Figure 5. Target MM linked to the Mapping MM (via RHSelement)

The informal mappings between the source and the target schemas are as follows:

1. All the source invoices with an “OK” status are used to generate target invoices
with Payed state.

2. All the source invoices with an “NOK” status are used to generate target
invoices with Waiting state.

3. All the source simple invoices and their source statements are used to generate
target invoices associated with target statements as follows: the price of the
target statements should be copied from the corresponding source statements

8 A Model-driven Approach to Interoperability in B2B Data Exchange. Volume X – No. X/2001

and the date of the target statements should be copied from the corresponding
source invoices.

These informal mappings are captured in our framework by instantiating the mapping
metamodel, as illustrated in Figure 6.

Figure 6. Mappings specification

In the first mapping the left-hand side is a simple invoice with its attribute status equals
to “OK.” This will basically match any simple invoice from the source data and filter these
data according to the value of the status attribute. The second mapping is similar. The third
mapping uses two “Clone aligned content” adaptations, which will actually copy all the
aligned attributes (same name, compatible types) of the source into the target. The engine
currently provides a limited support (based on the name of the classes) to infer these
adaptations. Since the mappings are overlapping, the use of “Per Element Match” strategies
makes it possible to reuse some elements that have been created by a previous mapping, in
order to avoid inconsistent duplication of data.

4. Generation of executable mappings and run-time data exchange

For the platform-independent mappings specifications (such as those in Figure 6) to be
usable at run-time for data exchange, executable transformations need to be generated. Our
framework has been designed to automatically compile executable code (Java and Drools

Mapping #1

Mapping #3

A Model-driven Approach to Interoperability in B2B Data Exchange 9

Expert3) from the specifications of mappings, using a 2-pass visitor implemented in Kermeta
(Muller et al, 2005). The first pass declares model-elements and manages their attributes,
while the second pass is responsible for managing (potentially cyclic) references among
elements. This generated code directly manipulates graph of objects (Source M and Target
M) in memory. We use the persistency API of the source and target systems to load and save
data from/to different sources e.g, EMF models saved into XMI, XML files, data bases, etc.

The following script illustrates the result of the first mapping described in the previous
section. The when clause corresponds to the LHS. We use Drools Expert to automatically
identify the pattern defined in the LHS of the mappings. Drools implements and extends the
Rete algorithm with object-oriented optimizations. We can generate Drools code from any
arbitrary pattern. The more precise the pattern is, the more reduced the set of matched places
will be. This could be useful to migrate a precise sub-set of the input data. The first line of
this clause specifies that the rule is looking for any simple invoice, which have a status
equals to “OK.” The second line of this clause is actually not used for this mapping. It re-
declares the simple invoice variable and links it to the former declaration (this ==...). In
more complex mappings including references among elements (such as the 3rd mapping), this
second declaration is responsible for handling references among elements. Since Drools
(similarly to Java) does not allow referring to variables which are declared after a given
statement, this two-staged declaration of variables makes it possible to handle (potentially
cyclic) references.

rule "OK_simple_invoice_to_payed_invoice"
when
 LHS__SimpleInvoiceDecl: SimpleInvoice(status == "OK")
 LHS__SimpleInvoice: SimpleInvoice(this == LHS__SimpleInvoiceDecl)
then
 Invoice RHS__Invoice = null;
 Payed RHS__Payed = null;

 //Code dealing with the instantiation of the elements,
 //depending on the strategy. See Morin et al. MODELS 2010.

 RHS__Invoice.setState(RHS__Payed);
end

The then clause of the script corresponds to the RHS. All the elements of the RHS are
first declared and set to null. Then that are properly instantiated according to their associated
strategy, as described in (Morin et al, 2010). Finally, the mapping operations are compiled
into set primitives that properly manage the attribute and references of the RHS elements.

This script is finally executed on source data such as the one illustrated on the left side of
Figure 7.4 By applying the script, we obtain the data depicted on the right of Figure 7. In
particular, the composite structure of the have been flattened, and the string-based status
have been transformed into explicit states. The overall execution takes about 5 seconds for
mapping 2000 statements (serialized in around 5000 lines of XMI) on an Intel Core i7-
620M@2.67GHz, 8Gb RAM, Win7 64 bits.

3 http://www.jboss.org/drools/drools-expert.html
4 The relationships between instances of SimpleInvoice and instances of Statement have been omitted for clarity
purpose. The simple invoices contain the statements located in the same column.

10 A Model-driven Approach to Interoperability in B2B Data Exchange. Volume X – No. X/2001

Figure 7 Runtime Data Exchange

5. Related Work, Conclusions, and Outlook

Although the problem of mapping between data structures has been extensively studied
for many years now, with schema mapping being a well established research field (Bernstein
and Melnik, 2007; Smith et al, 2009), the use of OMG MDA for data mapping/exchange
hasn’t been yet widely investigated in the community. With this paper we provided a
preliminary solution to the data exchange problem based on the use of OMG MDA as a
mechanism for platform-independent specification of schemas and mappings between them,
and generation of executable mappings to be used at run-time for data exchange. Our
approach allows the mappings creator to focus on the platform-independent models behind
the platform-specific schemas and specify the mappings at a more abstract, semantic level,
rather than having to deal with technicalities of platform-specific schemas. With the use of
automatic generation of executable mappings, the proposed framework allows both
specification and execution of data mappings (i.e. design- and run-time mapping) in a single,
unifying framework.

Our approach is inspired by the SmartAdapters aspect model weaver (Morin et al, 2010).
While Aspect-Oriented Modeling approaches (Whittle et al, 2009; Reddy et al 2006) are

Source Model Generated Target Model

A Model-driven Approach to Interoperability in B2B Data Exchange 11

usually concerned with endogeneous weaving, our approach is focused on the
interoperability of exogeneous (yet, with some similarities) data. An aspect-model weaver
basically takes two models conforming to the same metamodel and produces a third model,
also conforming to the same metamodel. Our model-driven mapping engine takes a model
conforming to a given metamodel and produces a model conforming to another metamodel.
Despite this difference, we were able to reuse the SmartAdapters tool-chain in our
framework (especially the Drools+Java code generator) with minor modifications.

Our approach to Model-Driven Interoperability is based on the definition of mappings at
the instance level. More precisely, we define mappings between patterns (fragments of
model). This allows designers to easily filter data based on patterns, or on the values of
attributes in order to identify different sub-sets in the source data that should be migrated
according to different strategies. However, one of the main drawbacks of working at the
instance level is that dedicated tools (such as advanced graphical editors) should be
implemented or adapted for each source/target metamodels. Different from our approach,
ModMap (Clavreul et al, 2010) proposes to define mappings at the metamodel level.
Mappings are defined in a graphical way by defining links between classes defined in ECore
diagrams. These tools and the mappings have been used to generate some AspectJ code in
order to align APIs of legacy systems (written in Java) and enable their interoperability. It
could however be possible to generate other type of code e.g., the code we generate to enable
the interoperability of data. While this tool is very useful and easy to use to define mappings
between classes, it is very cumbersome to define mappings among patterns (classes and
references).

The work presented in this paper can be considered in the wider context of MDE model
transformation techniques and languages (Czarnecki and Helsen, 2003; Mens and Van
Gorp, 2006) such as ATL Transformation Languages (ATL).5 ATL also relies on graph-
based transformations, similarly to our approach. However, our approach provides high-level
constructs (such as the strategies) and mapping operators to control and ease the definition,
which should be coded by the designers in ATL to achieve the same result. Another
difference is that ATL, as well as most of the model transformation languages focuses on the
manipulation of EMF-based models. Our approach intends to manipulate data coming from
different sources such as XML files or databases.

The recent work in (Liao et al, 2010) provides a solution (FloraMap) to the data
exchange problem with a focus on XML data exchange. It proposes the uses a logical rule
language (Frame Logic) for formalization of schemas, instances, and transformations.
Whereas it addresses the same problem and goes in the same direction of using a platform-
independent approach for specification and execution of mapping, the approach presented in
this paper strives to be more general through the use of well established OMG MDA
technologies.

To summarize, in this paper we provided a preliminary report on the development of the
data exchange framework. The preliminary experimental results indicate that the approach
presented here is doable in practice. Nevertheless, there are various directions that can be
considered to further enhance the framework presented in this paper:

5 http://www.eclipse.org/atl/

12 A Model-driven Approach to Interoperability in B2B Data Exchange. Volume X – No. X/2001

1. Extensions for handling end-to-end n-m data exchanges, where multiple sources and
multiple targets can exchange data.

2. (Semi-)Automated generation of platform-independent mapping rules, where
techniques from e.g. ontology alignment techniques could be reused.

3. Address the issue of incompleteness of mappings by a coverage analysis which will
ensure that all mandatory attributes are mapped.

4. Investigate possible synergies between instance-level mappings and metamodel-
level mappings in order to mitigate respective drawbacks and combine respective
advantages.

5. Systematic validation – whereas we performed some initial experimental results for
the scalability of our framework, our approach need to be analyzed in a more
systematic way (e.g. analyze the complexity of the specification of mapping rules,
etc).

Acknowledgements. This work is partly funded by the EU projects “A Semantic Service-
oriented Private Adaptation Layer Enabling the Next Generation, Interoperable and Easy-to-
Integrate Software Products of European Software SMEs (EMPOWER)” and “Reuse and
Migration of legacy applications to Interoperable Cloud Services (REMICS).”

References

Bernstein P A, and Melnik S, Model management 2.0: manipulating richer mappings. In Proceedings
of the 2007 ACM SIGMOD international Conference on Management of Data (Beijing, China,
June 11 - 14, 2007).

Bussler C, B2B Integration. 2003, Springer, ISBN 3540434879.

Clavreul M, Barais O, and Jézéquel J-M. Integrating legacy systems with MDE In ICSE'10:
Proceedings of the 32nd ACM/IEEE International Conference on Software Engineering and ICSE
Workshops, volume 2, pages 69--78, Cape Town, South Africa, May 2010.

Czarnecki K and Helsen S, Classification of Model Transformation Approaches. In: Proceedings of the
OOPSLA'03 Workshop on the Generative Techniques in the Context Of Model-Driven
Architecture, Anaheim, California, USA.

Grønmo R, Krogdahl S, and Møller-Pedersen B, A Collection Operator for Graph Transformation. In
ICMT’09: 2nd International Conference on Theory and Practice of Model Transformations, pages
67–82, Berlin, Heidelberg, 2009. Springer-Verlag.

Liao Y, Roman D, and Berre A-J, Model-driven Rule-based Mediation in XML Data Exchange. In:
Proceedings of the First International Workshop on Model-Driven Interoperability. MDI 2010,
Oslo, Norway, ACM (2010) 89–97.

Mens T and Van Gorp P, A Taxonomy of Model Transformation, Electronic Notes in Theoretical
Computer Science, Volume 152, 27 March 2006, Pages 125-142.

A Model-driven Approach to Interoperability in B2B Data Exchange 13

Morin B, Klein J, Kienzle J, and Jézéquel J-M, Flexible model element introduction policies for aspect-
oriented modeling. In Proceedings of ACM/IEEE 13th International Conference on Model Driven
Engineering Languages and Systems (MoDELS 2010), Oslo, Norway, October 2010.

Muller P A, Fleurey F, and Jézéquel J M, Weaving Executability into Object-Oriented Meta-languages.
In MoDELS’05: 8th Int. Conf. on Model Driven Engineering Languages and Systems, Montego
Bay, Jamaica, Oct 2005.

Nejati S, Sabetzadeh M, Chechik M, Easterbrook S M, Zave P: Matching and Merging of State charts
Specifications. ICSE 2007: 54-64.

Reddy Y R, Ghosh S, France R B, Straw G, Bieman J M, McEachen N, Song E, and Georg G.,
Directives for Composing Aspect-Oriented Design Class Models. In Awais Rashid and Mehmet
Aksit, editors, Transaction on Aspect-Oriented Software Development, volume vol 3880 of Lecture
Notes in Computer Science, pages 75–105. Springer, 2006.

Smith K, Mork P, Seligman L, et al. The Role of Schema Matching in Large Enterprises, CIDR
Perspectives 2009.

Steel J and Jézéquel J-M. On model typing. Journal of Software and Systems Modeling (SoSyM),
6(4):401–414, December 2007.

Whittle J, Jayaraman P K, Elkhodary A M, Moreira A, and Araújo J. Mata: Aunified approach for
composing uml aspect models based on graph transformation. T. Aspect-Oriented Software
Development VI, 6:191–237, 2009.

