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Abstract—Cloud storage services are gaining more and more
attention. Surveys suggest that the confidentiality issue is one of
the major obstacles for users to use cloud storage services to
keep sensitive data. This paper proposes to deploy a Redundant
Array of Independent Net-storages (RAIN) for confidentiality
control in Cloud Computing. The RAIN approach splits data
into segments and distributes segments onto multiple storage
providers, without having to trust each provider. By keeping
the distribution of segments and the relationships between the
distributed segments private, the original data cannot be re-
assembled. When the segments are small enough, each segment
discloses no meaningful information to others. Hence RAIN is
able to ensure the confidentiality of data stored on clouds. A
formal model of the proposed approach has been developed to
articulate the process. Security analysis has been performed, indi-
cating that the proposed approach can implement confidentiality
protection without the need of encrypting the data.

I. INTRODUCTION

Security concerns are frequently cited [1], [2] as one of the
major obstacles to cloud computing adoption. In a traditional
outsourcing scenario, technical and organizational security
mechanisms contribute to protect a customer’s data, but the
most important factor is that the customer establishes a trust
relationship with the provider. This implies that the customer
acknowledges that if the provider is evil, the customer’s data
may be used improperly [3].

Cloud Computing can be thought of as outsourcing taken to
the extreme, where both storage and processing is handled by
one or more external providers, and where the provider(s) may
be in a different jurisdiction than the customer. Not knowing
where your data is physically located may be uncomfortable
to the customer, and personal data may even be illegal to
export from some jurisdictions [4]. Settling disputes is more
challenging when the provider may be on a different continent,
which is all the more reason to limit the degree to which the

customer has to trust the provider. This is the “need to know”
principle in a nutshell - if the provider does not need to read
the information, why should it be allowed to? [5]

In this paper, we continue on a path toward a Cloud
Computing scenario where the dependency on trust will be
reduced by ensuring that each actor gets access to sufficiently
small units of data so as to minimize confidentiality concerns.
Thus, our approach is the opposite of the aggregation problem
in database security since we de-aggregate the sensitive data.

The remainder of the paper is structured as follows: In
Section II we outline the background for our contribution,
and in Section III we sketch our solution. We present a formal
model in Section IV, and provide a security analysis in Section
V.We discuss our contribution in Section VI, outline further
work in Section VII, and offer our conclusions in Section VIII.

II. BACKGROUND

Cloud computing provides on-demand services delivered
via the Internet, and has many positive characteristics such
as convenience, rapid deployment, cost-efficiency, and so on.
However, we have shown [5] that such off-premise services
cause clients to be troubled by a number of common security
concerns:
• Data Availability
• Data Confidentiality
• Data Integrity
In previous work [1], we identified five deployment models

of cloud services designed to ease users’ security concerns:
• The Separation Model separates storage of data from

processing of data, at different providers.
• The Availability Model ensures that there are at least

two providers for each of the data storage and processing
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tasks, and defines a replication service to ensure that
the data stored at the various storage providers remains
consistent at all times.

• The Migration Model defines a cloud data migration
service to migrate data from on storage provider to
another.

• The Tunnel Model defines a data tunneling service
between a data processing service and a data storage
service, introducing a layer of separation where a data
processing service is oblivious of the location (or even
identity) of a data storage service.

• The Cryptography Model extends the tunnel model by
encrypting the content to be sent to the storage provider,
thus ensuring that the stored data is not intelligible to the
storage provider.

We have shown that through duplication and separation of
duty, we can alleviate availability and integrity concerns, and
to some extent also confidentiality, by implementing encrypted
storage. However, even with encrypted storage, we still have
to trust the encryption provider with all our data.

The main motivation for confidentiality control in the cloud
is currently various privacy-related legislation forbidding the
export of sensitive data out of a given jurisdiction, e.g. the
Privacy legislation in the EU [4]. The current solution to this
problem has been to offer geolocalized cloud services, where
a customer may request the cloud provider to ensure that the
sensitive data is only stored and processed on systems that
are physically located in a geographically defined area, e.g.,
within the borders of the European Union. However, since
cloud service providers typically run global operations, even
data that physically reside in one jurisdiction will in principle
be accessible from anywhere in the world.

Although misappropriation of data by cloud providers have
not been documented, Jensen et al. [6] show that current cloud
implementations may be vulnerable to attack. Ristenpart et al.
[7] demonstrate that even supposedly secret information such
as where a given virtual machine is running may be inferred
by an attacker, highlighting another attack path.

III. APPROACH

We have extended the deployment models [1] with a new
concept where data is split up and kept by several independent
(non-colluding) storage providers in a Redundant Array of
Independent Net-storages (RAIN) [5], in such a manner that
a single chunk does not compromise confidentiality. The data
can then be stored using one or several cloud storage providers
(duplicated according to the deployment models).

A. Using Botnets for Non-nefarious Purposes

We propose to organize the various elements in our dis-
tributed cloud architecture as a traditional multi-tier Command
& Control (C&C) botnet, e.g. as described by Wang et al. [8].

We introduce a new type of cloud service provider which
assumes the role of the botnet C&C node, and which is
in charge of assembling the information and presenting it.
This keeps all processing in the cloud, but leaves us with
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Fig. 1: Divide-and-conquer Cloud Security

the problem that we have to trust this provider with our
information. The resulting configuration is illustrated in Figure
1.

The key property of the solution is that all the subnodes
(cloud processing providers) and leaf nodes (cloud storage
providers) only get to observe a small subset of a user’s data,
and that these nodes are prevented from associating a given
piece of data with a specific user, or with other pieces of
the same dataset. Ultimately, it will be like breaking open
a large number of jigsaw-puzzles and distributing the pieces
among storage providers – a single provider will not be able
to determine where the pieces come from, or even if they are
part of the same puzzle.

Referring to Figure 1 again, we would need to employ three
different cloud cryptography providers for the tunnels from
the C&C node to the subnodes. Of course, if the number
of subnodes becomes large enough, it would be necessary to
introduce additional tiers in the hierarchy, in order to minimize
re-use of cryptography provider in any one node. We also
assume that communication from the user to the C&C node
is protected by, e.g., conventional TLS.

Note that we do not propose to make the cloud processing
provider work with encrypted data; the confidentiality control
is achieved through the de-aggregation of information, and
hiding the relationships between the processing providers.
Also note that assuming the volume of such “botnet com-
putations” is large enough (i.e., many enough users employ
this technique), it is also possible to re-use providers, since
it will not be possible for a provider to relate two different
processing tasks with each other.

B. Example

To illustrate the concept, we will in the following consider
the storing of bitmap images in the cloud. Figure 2a shows
a 480X480 image. The image is sliced into a 10X5 grid,
of 48X98 pixels each. For our purposes, a single slice of
the picture does not reveal much useful information to the
observer, and this information can be stored unencrypted as
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(a) Original Lena Image (b) Randomly Segmented Lena Image

Fig. 2: Segmentation and Randomization

Fig. 3: An Individual Slice

long as it is not possible to combine it with the other slices.
sample slice from the original image. Figure 3 does not give
much information about the original image, not to mention
any information on the girl Lena in the image.

The C&C node performs the slicing of the image, and
randomly distributes the slices among (say) 10 subnodes. Each
subnode then stores the slices independently using as many
cloud storage providers as available (ideally one for each
slice, but even for this small example we would probably be
hard pressed to find 50 independent providers). To prevent
observability, the subnodes may use an encrypted tunnel to
transfer the data to the storage providers.

It is the responsibility of the C&C node to keep track of
which subnode has received which slices, but also to record
the location. When the image is to be retrieved, the user will
instruct the C&C node to fetch all the slices.

Admittedly, this is a toy example, with all the real process-
ing being performed by the C&C node – the real challenge
comes when it is required to perform complicated processing
on each subnode. This will also introduce the need for more
sophisticated “slicing” of data.

Note that, without the proper knowledge of the distribution
of the slices, it is very unlikely that the original image can
be reconstructed. Given all the slices, it is still not easy to
reconstruct the original image, if the number of slices is large
enough. Figure 2b is an example of the reconstructed image
without knowledge of the slices’ order. The reconstructed
image does not look much like the original image. If the image
is sliced into even smaller slices, the reconstructed image
would be even more different from the original image.

C. Criteria

Since we perform the slicing and distribution of data in
order to achieve data confidentiality, it is important that
the slicing and distribution process adheres to the following
criteria:

• Data must be sliced into segments small enough such
that each segment bears no meaningful information to
malicious entities. With data sliced in this way, malicious
entities may be able to access an individual data segment,
but the access to the data segment should not compromise
the confidentiality of the data as a whole.

• Data segments must be distributed in a random manner,
such that it is not possible to establish the relationships
between data segments without knowledge of the original
data. The relationships between data segments are kept
secret by the data owner.

IV. FORMAL MODEL

Let D be a piece of data to be split and stored on a cloud,
split be a function that splits D into a sequence H of smaller
segments such that H = (d1, d2, ..., dn) where n is the number
of segments D shall be split into.

H can be represented as H =< Ds, Rs > where

• Ds = {di|i = 1, ..., n}
• Rs = {< di, di+1 > |i = 1, ..., n− 1}.
Note that Ds is the set of all segments D is split into. Rs

is the set of relations between the segments in Ds, specifying
the order of the segments.

Let M be the set of cloud providers that are providing cloud
storage services. ∀mi ∈M , there is Di ⊆ D such that

n⋃
i=1

Di = D (1)

Dj

⋂
Di = � (2)

Hence, ∀di ∈ D and di ∈ Dj , di is stored on mj ∈M .
The criteria that must be imposed can then be formalized

as follows.

• ∀di ∈ D, di does not disclose any information about D.
• DD = {Di|i = 1, . . . , n}. DD is a set representing a

random partitioning of D such that

p(di ∈ Dj) ≤
|DD|
D

(3)

where p(di ∈ Dj denote the possibility that di ∈ Dj

holds, |DD| and |D| represent the number of elements in
the set DD and D respectively.

The above model specifies that, for a given piece of data D,
it would be splitted into multiple segments, which comprise
of the set Ds. The segments are then organized into groups,
let say D1, D2, . . . , Dk. The groups comprise the set DD.

The sequential relations between the elements in Ds is
represented by the set Rs, which specifies the predecessors
and the successors of each elements in Ds.

To protect the confidentiality, data segments are managed
by different cloud storage services, with Di managed by cloud
storage service mi.
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Fig. 4: Sequential Segmentation

Fig. 5: Random Segmentation

A. Data Segmentation

The criteria stated in section III mandate that the data
segmentation must make sure that each data segment bears
no sensitive information of the original data.

The segmentation does not mandate the size of each each
segment as the size has not direct relationship with the
information of the segment bears. Commonly, the bigger a
piece of segment, the more information it may bear. Thus a
bigger segment is more likely to bear sensitive information.

The criteria do not impose any restriction on the way the
original data is segmented. A most simple way to segment
data is a sequential segmentation, by which the original data
is treated as a binary stream and is divided into multiple
substreams in their original order, as illustrated by Figure 4.
An alternative way to segment the original data is to pick digits
from random positions of the original data and put them into
different segments. Figure 5 shows a case of data segmentation
based on the random segmentation approach.

The segmentation process is in fact a permutation of the
original data, followed by dividing of the permutated data.

The dividing of the data is to control the length of each
segment to avoid having too much information in a single
segment. The permutation of the original data is to diffuse
the data in a way that the new presentation bears very limited
information on the original data. Combining the division and
permutation could greatly reduce the amount of information
beared by a single segment.

B. Randomize Distribution

Once the original data is transformed into segments, the
segments need to be stored by different cloud storage services.
Segment distribution process is the process to decide each
segment be assigned to a specific cloud storage service for
storing. The distribution process needs to make sure the

distribution is random to avoid tracking of the segments.
Otherwise, segments can be identified by malicious users with
limited cost.

An ideal distribution would be a complete random distribu-
tion of the segments over the available cloud storage services.
A possible way to achieve random distribution is to randomly
pick a cloud storage service for each segment. This can be
implemented by using a sequence of random numbers. Each
of the random number in the sequence can be used to specify
which cloud storage service to store a data segment. For a
sequence of random number, denoted by R = r1, r2, . . . , rn,
the ith data segment is stored in a cloud storage service
specified by ri.

Another possible way to achieve random distribution is to
use a secret number s, and the data segment d to generate a
number n, where

n = hash(s, d)

By keeping s in private, the distribution of the data segments
will be close to random distribution.

C. Data Re-assembling

The re-assembling of the original data requires two pieces
of information.

1) The segment distribution information. The segment dis-
tribution information allows the picking of related seg-
ments from all the cloud storage services.

2) The order relations of the segments, RS . With RS , the
picked data segments can be permutated back to the
original order to construct the original data.

V. SECURITY ANALYSIS

Malicious users can either collect individual data segment
or re-assemble the complete data to compromise the data
confidentiality.

A. Compromization by a single data segment

Malicious users can randomly pick up individual data
segments if they have excessive access privilege to the cloud
storage services. Any individual data segment that is picked
by a malicious user should disclose no information on the
original data, according to the criteria of data segmentation.
Therefore, it is not possible for malicious users to compromise
the confidentiality by any single data segments.

B. Compromization by Re-assembling

Malicious users can also re-assemble the original data. The
re-assembling consists of a few steps as follows.

1) Picking all related data segments.
2) Permuting the data segments.
Picking all the related data segments requires a malicious

users to have excessive access privileges to access all the
involved cloud storage services, and also requires that the
malicious users to pick up all the data segments from all the
involved cloud storage services.
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Suppose that for each mi ∈ M , where M is the set of all
the cloud storage services, the set of all data segments stored
by the cloud storage service mi is Ni.

The number of data segments stored in M is TotalSegs
where

TotalSegs =
|M |∑
i−1

|Ni| (4)

To be able to re-assemble the original data, a malicious
user must be able to pick all the segments and permutate the
segments into the right order.

If the malicious user does not know the number of segments
the original data has been splitted into, the total number
of possible re-assembled data is NumOfAllReassembled,
where

NumOfAllReassembled =
U∑

i=1

P i
TotalSegs (5)

=
U∑

i=1

P i∑|M|
i−1
|Ni|

(6)

Where R is the upper limit of the number of segments that
a data is likely to be splitted into.

If the malicious user knows, s, the number of segments
the original data has been splitted into, the total number of
possible re-assembled data is NumOfReassembled, where

NumOfReassembled =
s∑

i=1

P i
TotalSegs (7)

=
s∑

i=1

P i∑|M|
i−1
|Ni|

(8)

Both cases require a large amount of computation to brute-
force search the complete space. Hence it is not trivial for a
malicious user to compromise the data confidentiality by re-
assembling the original data.

Though the computation complexity of the above brute-
force searching is far less than those of cryptographic al-
gorithms, the actual performance will be similar. For cryp-
tographic algorithms depend on computation complexity for
security, while the scheme proposed in the paper depends
on both computation complexity, bandwidth cost and storage
space for security. To brute-force search the complete space,
the attacker will have to retrieve all data segments from all the
cloud storage services. The number and the whole volume of
the data segments is expected to be paramount. To permutate
the data segments, the attacker will have to have extremely
large storage capability. Hence the proposed scheme is strong
in against re-assembling.

VI. DISCUSSION

Cloud service providers have been identified as potential
targets of attack simply because of the vast amounts of data
they store on behalf of their multitude of customers. In this
sense, it may be in the providers’ best interest to “know less” -
if even the provider cannot access the customers’ data directly,
there is little point in attacking them.

Strictly speaking, most users would probably be happy if it
were possible to impose universal usage control [9] on data
submitted to providers (a sort of “reverse DRM”, where end-
users get to control how multi-national corporations use their
data), but despite Krautheim’s efforts [10], we do not believe
this will be a reality in the foreseeable future. Thus, it would
seem that the easiest way to control what a provider does
with your information is to hide it - either through encryption
(as previously proposed for the storage providers) or through
separation.

We have specified the use of multiple cryptography
providers as well as storage and processing providers, and
it is necessary to prevent “rotation” of providers (avoid using
same provider to encrypt different versions of same data), as
one might otherwise risk all providers having all data after a
while. It is thus better to accept that each provider has partial,
albeit updated, information. However, due to the botnet-like
hierarchy, the providers do not know to whom the information
belongs, and the value of the information is practically nil.

In a real-life setting, there will be cases where very small
units of data carry a significant amount of sensitive informa-
tion, such as blood type for patients. It will thus be imperative
that not only shall it not be possible to match e.g. a blood type
to an identity, but in storage it should also not be possible to
determine what the data item refers to.

Since we place all our trust in the C&C node, it will
remain as a “single point of trust” as long as it is realized as
part of the cloud. It would have been desirable to strengthen
this by ensuring that the C&C node provider only sees the
information as we see it ourselves, preventing it from mining
stored information. However, as long as the C&C node is
required to keep track of all the data items (or slices, as in
the example), there is nothing to prevent it from accessing this
information as it pleases.

VII. FURTHER WORK

As a first step, we will implement a prototype of our divide-
and-conquer approach, specifically to gauge performance im-
pacts on typical cloud applications. One particular challenge
in this respect is to determine the optimal slicing strategy for
arbitrary data. It is likely that a trade-off between security
and efficiency will have to be made in order to capitalize
on the advantages of the Cloud Computing paradigm. The
prototype will be targeted toward a “sensitive but unclassified”
application, representing a realistic use case.

VIII. CONCLUSION

We have described an idea on how to achieve confidentiality
in the cloud through dividing data in sufficiently small chunks.
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The main contribution of this paper is as follows. Firstly,
we identify the need for protecting data confidentiality in
clouds. Secondly, we propose an confidentiality protection
approach based on RAIN, which provides data confidentiality
without the need of encryption/decryption or trust. Thirdly,
we formalize the proposed approach to articulate the methods.
Lastly, we perform a security analysis, which indicates that the
proposed approach is capable of providing data confidentiality.

ACKNOWLEDGEMENTS

This work has been supported by Telenor through the
SINTEF-Telenor research agreement, China State Key Lab
of Software Engineering [SKLSE2010-08-22], GD Higher
Education Association Lab Management Committee [Grant
No. 2010060], and China Canton-HK Research Fund [Grant
No. TC10-BH07-1].

REFERENCES

[1] G. Zhao, C. Rong, M. G. Jaatun, and F. Sandnes, “Reference deployment
models for eliminating user concerns on cloud security,” The Journal of
Supercomputing, pp. 1–16, 2010, 10.1007/s11227-010-0460-9. [Online].
Available: http://dx.doi.org/10.1007/s11227-010-0460-9

[2] Y. Chen, V. Paxson, and R. H. Katz, “Whats new about cloud
computing security?” EECS Department, University of California,
Berkeley, Tech. Rep. UCB/EECS-2010-5, Jan 2010. [Online]. Available:
http://www.eecs.berkeley.edu/Pubs/TechRpts/2010/EECS-2010-5.html

[3] Å. A. Nyre and M. G. Jaatun, “A Probabilistic Approach to Information
Control,” Journal of Internet Technology, vol. 11, no. 3, pp. 407–416,
2010.

[4] E. Parliament., “Directive 95/46/ec of the european parliament and of
the council of 24 october 1995 on the protection of individuals with
regard to the processing of personal data and on the free movement of
such data.” pp. 31–50, 1995.
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