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Abstract. Nurse rostering is the process of creating a plan for nurse
working hours over a given time horizon. This problem, most variants of
which are NP-hard, has been studied extensively for many years. Still,
practical nurse rostering is mostly done manually, often by highly quali-
fied health care personnel. This underlines the need to address the chal-
lenges of realistic, applied nurse rostering, and the implementation of
advanced rostering methods in commercial software.
In this paper, we present an industrial case study of a nurse rostering
software currently used in several hospitals and other health care in-
stitutions in Norway and Sweden. The presented problem model has a
rich set of hard and soft constraints, as required by Norwegian hospitals.
Our solution approach is a hybrid: An Iterated Local Search framework
that uses Constraint Programming for initial solution construction and
diversification, and a Variable Neighborhood Descent for iterative im-
provement. The search method shows good results in terms of solution
quality and computation time on a set of real world instances. We make
these test instances available on-line.

Keywords: Nurse rostering, Iterated Local Search, Constraint Program-
ming, Variable Neighborhood Descent, Hybrid optimization, Real-world
test cases, Industrial case study.

1 Introduction

Nurse rostering is the process of creating a work schedule for hospital nurses by
matching employees to shifts over a given planning horizon, while considering
skills, competence, fairness, and laws and regulations. The output is a roster of
the working hours for the nurses that also provides an overview of staff utilization
and associated costs.

Producing a nurse roster is a complex task: The hospital typically has a con-
tinuous demand for personnel, and this demand varies over time. In addition,
the roster must follow labor laws, union regulations, as well as hospital pol-
icy. Also, the problem involves multiple stakeholders (employer, employees, and
patients), whose preferences must be taken into consideration. The main focus
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of the employer might be efficient resource utilization at minimum cost, while
an employee would like to have a fair distribution of work load and the option
to influence the planning of his or her days off. For the patients, short waiting
time and treatment by personnel with the right competence could be the main
concern.

Currently, nurse rostering is usually conducted manually, often by highly
qualified health care personnel. There are important advantages to be gained by
automating the construction and maintenance of rosters. Not only can the added
computation power lead to better rosters, it also drastically reduces the time used
in this task. Thus, time is freed up for the involved health care personnel — time
that can be better spent on clinical tasks and care.

The presented work was done in a R&D project for Gatsoft AS, a developer
of personnel management software that currently serves 80 % of the Norwegian
Hospital market. The solution approach showed very good results and was im-
plemented in their personnel management system already in 2005. Today, the
module is used by several hospitals and other health care institutions in Norway
and Sweden, and has also attracted interest from food production and trans-
portation companies.

In this paper we present the developed problem model and solution approach.
These were developed to meet performance requirements and functional speci-
fications from Norwegian hospitals. The solution approach is a hybrid between
Constraint Programming, Iterated Local Search [20] and Variable Neighborhood
Descent [13], and will be presented in the following. The test results (section 5)
show that this search method can solve large, realistic instances within reason-
able time. All test instances are from real world rostering applications, and are
available online [25].

The paper is organized as follows: Section 2 provides background information
on related research. In section 3, we describe the problem, while the solution
method is presented in section 4. Experimental results are given in section 5. We
conclude and highlight possible directions for future research in section 6.

2 Background

Nurse rostering problems (NRPs) are combinatorial optimization problems that
in most cases are NP-hard [17]. There is a large literature on different solu-
tion methods applied on NRPs. However, according to [8] and [18], only a few
methods have been tested on real world instances and even fewer have been
implemented and used in hospitals: For a more comprehensive overview of the
nurse rostering literature, see [8].

2.1 Related Work

Both complete and incomplete solution methods have been applied to the NRP.
Examples of complete methods are: Mathematical Programming [3], Goal Pro-
gramming [11], and Constraint Programming [14, 29]. Examples of incomplete
methods includes: Variable Neighborhood Search [7], Simulated Annealing [5],
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Genetic Algorithm [23], Tabu Search [6, 12], and Multi-Objective Optimization
with Variable Neighborhood Search [9].

Our approach is a hybrid, combining Constraint Programming (CP) with It-
erated Local Search (ILS) and Variable Neighborhood Descent (VND). Similar
hybrid approaches include [19], who combine CP with Tabu Search. However,
while they formulate a weighted Constraint Satisfaction Problem, we differen-
tiate between hard and soft constraints in a manner similar to that of CP’s
constraint hierarchy [4]. There is also a difference in CP heuristics: [19] involve
only some of the nurses in their CP model, while our CP search constructs
complete solutions for all nurses. Also, while they use Tabu Search for improv-
ing their partial solution, we use ILS to improve on our complete solution. [28]
present an early and interesting hybrid approach: They use a simplified Integer
Linear Programming (ILP) formulation of the complete model to produce an
initial solution. Tabu Search is used in a second stage to repair and improve
on the solution found by ILP. Another relevant approach is [15], where Large
Neighborhood Search is used as the algorithmic framework. Here, fragments of
low quality in the solution are destroyed, and CP assists by rebuilding the so-
lution. [7] has the approach most similar to ours. They use an iterative process
of Variable Neighborhood Search (VNS), then destroy (un-assign) shifts for the
most penalized nurses. However, their re-construction is done by a heuristic con-
struction method rather than a CP search, and the solutions so constructed are
allowed to be infeasible. These infeasibilities are subsequently removed by the
next application of VNS.

There are few systems implemented and used in hospitals. For example, Gym-
naste [22], Interdip [1], and Orbis:Dienstplan [2], which all use CP as their so-
lution method. In addition, we have ORTEC’s rostering software Harmony [23],
which use Genetic Algorithm as its solution method. The only hybrid we have
found is Plane [6], which combine simple Tabu Search with problem solving
heuristics (diversification and greedy shuffling).

3 Problem description

Based on extensive dialog with Norwegian hospitals, we believe that the proposed
model includes all important constraints for Norwegian nurse rostering. In the
following, E is the set of all employees, while D is the set of all days in the roster.
Table 1 lists the hard and soft constraints of the model.

Each shift is a member of one and only one shift category, which is a “collec-
tion” of shifts that are concurrent (day shifts, evening shifts and night shift). A
manpower plan (cover requirement) is a table summarizing how many employ-
ees that are needed for each shift on the different weekdays. The inclusion and
parametrization of individual constraints will vary between problem instances. A
feasible solution must satisfy all included hard constraints. The objective func-
tion of the problem, f , is a weighted sum of the penalties derived from violating
the soft constraints. For an exact mathematical definition of the problem, please
see [26].
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Hard constraints Soft constraints

HC1: Maximum one shift is assigned on
each day to each employee.
HC2: The manpower plan must be cov-
ered exactly on each day (’cover require-
ment’).
HC3: The sum of working hours for each
employee must not deviate too much with
respect to the employee’s contracted hours
(typical for Norway). Note that within the
hard limits of HC3, the deviation is mini-
mized by soft constraint SC6.
HC4: Employees can only work shifts for
which they have the required competence.
HC5: There must be a minimum time be-
tween shifts on consecutive working days.
HC6: Every week must have a minimum
continuous free period.
HC7: The maximum weekly working time
must not be violated.

SC1: Avoid too many consecutive working
days with the same shift category.
SC2: Avoid too many consecutive working
days.
SC3: Avoid too few consecutive working
days with the same shift category.
SC4: Avoid too few consecutive working
days.
SC5: Minimize deviation from minimum
and maximum number of shifts in each cat-
egory.
SC6: Minimize deviation from the em-
ployee’s contracted hours. While HC3 pro-
vide a minimum and maximum limit for
the sum working hours, this constraint
tries to minimize the distance to the con-
tracted number of working hours within
those limits.
SC7: Cluster days off as much as possible.
SC8: Maximize wanted shift patterns.
SC9: Minimize unwanted shift patterns.

Table 1. Hard and soft constraints.

4 Solution method

We employ a hybrid solution approach combining Constraint Programming (CP)
and Variable Neighborhood Descent (VND) in an Iterated Local Search (ILS)
framework. All parts of this hybrid algorithm were implemented using SINTEF’s
in-house optimization library, SCOOP.

keywordstyle
1 IteratedLocalSearch
2 x∗ ← x ← CPBuild(x0)
3 repeat
4 x ← VariableNeighborhoodDescent(x)
5 x∗ ← Accept(x, x∗)
6 repeat // Diversification
7 x′ ← DestroyPartsOfSolution(x)
8 x′ ← CPBuild(x′)
9 until x′ is a legal solution

10 x ← x′

11 until some termination condition is met
12 return x∗

Listing 1.1. The iterated local search scheme.



Lecture Notes in Computer Science: A hybrid approach for nurse rostering 5

Listing 1.1 shows a high level pseudo-code of the algorithm. The search is initi-
ated in line 2 where CP is used to create an initial feasible solution. This becomes
the starting point of the improvement phase in the ILS algorithm. More details
on the procedure CPBuild can be found in Section 4.1. In line 4, VND is run
to improve the current solution x. For more details about the VND algorithm,
see Section 4.2. The VND can get stuck in local optima and the purpose of
the diversification step in lines 7 and 8 is to escape these. We employ a ruin
(DestroyPartsOfSolution) and recreate (CPBuild) methodology for this diversi-
fication; see section 4.3 for a detailed description. The procedure Accept (line 5)
simply accepts x as the new best solution if it improves the objective value. The
search terminates when a pre-set time limit is reached, when a solution with
zero penalty is found, or upon manual interruption by the user. Throughout the
search we only store the best found solution (x∗) at any time. Inferior solutions
found during the search are discarded.

4.1 Initial solution construction

The procedure CPBuild applies CP search on a Constraint Satisfaction Prob-
lem (CSP) involving only the hard constraints. In line 2 in Listing 1.1, CP-
Build constructs a complete feasible initial solution from scratch. We will later
(in section 4.3) describe how CPBuild is used in the diversification step of the
algorithm, to complete partial solutions where only some of the variables are
instantiated.

The CSP model has a set of variables X = {Xed}, where e ∈ E and d ∈ D
indicates the corresponding employee and day, respectively. Each variable has a
finite domain of discrete shift code values. A set of hard constraints restrict the
domain values that any subset of variables can take simultaneously. A feasible
solution contains an assignment of a shift code value to every variable Xed in such
a way that all the hard constraints are satisfied, and the procedure terminates
as soon as as such a solution is found. If the procedure cannot find a feasible
solution within an allocated time limit it will return a solution satisfying as many
of the hard constraints as possible. This is ensured by first finding a solution
that satisfy the two hard constraints, HC2 and HC3 (and HC1 implicitly by
modelling). For our test cases, finding such ”basic solution” is always possible
and in general fast, if the rostering problem is set up with the right amount
of personnel (which it typically true since this is used in hospitals where the
cover / manpower plan is adjusted to the amount of available personnel). Next
we try to find a solution where all the hard constraints in the problem are
satisfied, if that works, this solution becomes the initial solution. If not; different
combinations of the constraints are tried, in a pre-defined order. When the time
limit is reached, the solution involving the most important / highest ranked
constraint combination is returned.

The hard constraints HC1 and HC2 in Table 1 are always required to be sat-
isfied and to ensure this, the time limit can be exceeded. Those hard constraints
that are not satisfied are relaxed and added to the set of soft constraints that
form the basis for the objective function used in the subsequent local search.
Note that this happens very rarely, and did not happen in any of our tests.
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Therefore, in the following discussion we assume that CPBuild always returns a
feasible solution, satisfying all hard constraints.

We use a MAC CP search algorithm (from our SCOOP library) that establish
arc consistency before and search and maintain it during search. The algorithm
uses a depth first search with dynamic variable and value orderings. A standard
CP search algorithm usually first selects a variable to instantiate, and then a
value (or vice versa). In our CP search algorithm the variable and value selection
is interconnected: The algorithm first partially orders variables by day, then
orders shift values by criticality, and finally orders the variables by employees.
The details of this selection procedure are as follows:

1. Select days, most critical first. The first variables to consider are those
concerning weekend days. This is because the model requires that “weekends
off” for the employees are specified as problem input. Thereafter the weekday
variables are ordered in sequence of the last Friday to the first Monday of
the plan.

2. Select shift, most critical shift category first. The shift categories
are first ordered by descending value of the ratio pdc/ndc where pdc is the
required number of shifts of category c left to assign on day d and ndc is the
number of employees with shifts of category c in its domain on day d in the
current solution.
For example, assume that there are five night shifts and two day shifts left to
assign on day d. Eight employees have night shifts (c=1) and four employees
have day shifts (c=2) in their domain on day d. By looking at the ratios
pd1/nd1 = 5/8 > pd2/nd2 = 2/4, we see that the next shift to assign will be
a shift from the night shift category. We use a lexicographical ordering of
shift codes within each shift category.

3. Select employee for the shift according to employee’s ’need’. The
selected shift is assigned to the variable on the selected day that correspond
to the employee that ’needs’ this shift the most. We define mec as the de-
sired number of shifts of category c for employee e. Initially, mec is computed
by adding all shifts required from the manpower plan for all days and all
employees over the planning horizon and computing employee e’s share ac-
cording to his/her contract. This number is updated during the search, as
shifts are assigned to the employee. Following the previous partial ordering
described above, the variables are now ordered by descending mec value for
the corresponding employees. If we continue with the previous example, then
for day d, the next shift to assign is from the night shift category (c=2). We
assign it to the employee e with the highest me2.

4.2 Variable Neighborhood Descent

When the construction algorithm CPBuild has created a feasible solution, either
as an initial solution (line 2) or as part of the diversification step (line 8), VND
is applied to locally refine the solution. The basic VND algorithm is described in
[13]. Our implementation cycles through a set of basic neighborhoods, performing
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a first-improvement Descent local search for each of them. The search terminates
when no improving neighbors can be found in any basic neighborhood (i.e. in
a local optimum), or when the total improvement over a certain number of
iterations is less than a set fraction of the best found objective value (’flattening’).
We use the following three basic neighborhoods:

1. 2-Exchange: This neighborhood consists of all moves where two shifts are
swapped on the same day between two different employees, as illustrated in
Thursday’s column in Figure 1.

2. 3-Exchange: All moves where three shifts are swapped on the same day
between three different employees, as illustrated in Monday’s column in Fig-
ure 1.

3. Double 2-Exchange: All moves that swap shifts between two employees
on two days. Such moves are made up of two 2-Exchange moves on different
days for the same two employees. Note that the two days are not necessarily
consecutive. The two shifts that are moved must belong to the same shift
category. This move is illustrated in Saturday’s and Sunday’s columns in
Figure 1.

Before we added the Double 2-Exchange neighborhood, we experienced that
the hard constraint concerning working hours for employees (HC3) often pre-
vented the removing or adding of a free-shift to a roster using 2-Exchange. The
Double 2-Exchange operator makes it easier to preserve the working hours when
moving a free-shifts because exchanging a working shift with a free shift on one
day, will be coupled with a free shift being exchanged with a working shift on the
other day in the move. This preserves the number of shifts of different categories
for both employees, thus improving the likelihood of an improving move.

Employee 1

Employee 2

Employee 3

Employee 4

Employee 5

Mon Tue Wed Thu Fri Sat Sun

E D N E E

D E N D

D N D

N E E

E D N N

k
kk

k
k

kk
kk

Fig. 1. Example of 2-Exchange (Thursday) and 3-Exchange (Monday), and Double
2-Exchange (Saturday+Sunday) neighborhoods. All blank cells are free shifts.

The above neighborhoods are used in many local search applications for the
nurse rostering problem. The most basic move operator in nurse rostering is the
replace move [21] which corresponds to (in our model) moving a shift from one
employee to another. The 2-Exchange move can be viewed as a combination of
two opposite replace moves.
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Note that soft constraint SC8 is challenging for local search methods: The
obvious objective function to use is the number of complete wanted patterns
in the solution. However, such a function is lacking because its value is only
reduced when a new complete pattern is found. This motivates keeping patterns
that are already found, but there is no explicit mechanism that actually drives
the local search in the direction of completing patterns. To introduce such a
driving mechanism in our method, we use a modified penalty function [26] which
decreases the penalty as we get closer to completing a wanted pattern. For
instance, let D,D,D,E be a wanted pattern: When evaluating part of a roster
with D,D,F,E (3 out of 4 shifts correct) against one with N,D,F,E (2 out of 4
shifts correct) the first combination (D,D,F,E) receives the lowest penalty. We
use a fixed number from which we subtract the squared (normalized) Hamming
distance. This is then a function with the property that a pattern with two
wrong shifts are penalized harder than two patterns each with one wrong shift.

4.3 Neighborhood reduction

The neighborhoods, described in Section 4.2, are rather large. For example, the
2-Exchange neighborhood has a size of order |E|2|D|. We use focal points to
significantly reduce the size of the neighborhoods. A focal point identifies features
in the solution which is expected to be critical to further improvement of the
objective value. We create one focal point for each variable that is involved in
a violation of one or more of the soft constraints. During the VND search, each
neighborhood is reduced to those moves that somehow involve one or more focal
points. When a move is performed, the list of focal points is updated. This is
comparable to the “Cost-based Neighborhood” idea presented by [10] in which
the authors focus the search effort on the part of the problem which has the
greatest effect on the objective. In that work, however, more effort was done in
evaluating several candidate improvements, in contrast to our first-improvement
strategy. Analogous ideas exists in the project scheduling literature, where local
search neighborhoods can be focused on critical paths in the project graph. Also,
the Fast Local Search algorithm of [27] is similar.

4.4 Diversification

The purpose of the diversification step (line 7 and 8 in Listing 1.1) is to escape
local optima and areas of the search space where little improvement is found
(’flattening’). We do this by making a major change to the current solution by
ruin-and-recreate [24]. The “ruin” mechanism removes the shift assignments for
a subset (E ′) of the employees. A partial CSP solution is created, based on the
partially ruined solution (x′), where some of the variables are instantiated while
those variables involved in the above “ruin” process get their full, initial domains.
This partial solution becomes the input to CPBuild which then constructs a new
feasible solution.

The number of rosters to ruin is picked randomly between 2 % and 30 % of
the total number of rosters. Half of the rosters to ruin are randomly selected,
while the other half are those that produce the highest penalties. We focus partly
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on the parts of the solution that have the largest potential for improvement —
similar to the focal points of the VND, but also include some randomly chosen
rosters to avoid recreating the same, high penalty solution, and intensify the
diversification.

If a feasible solution is not found by CPBuild within a given time limit, the
algorithm retries DestroyPartsOfSolution with a different selection of randomly
chosen rosters. The time limit is equal to the time used when creating the initial
solution. Our experience is that this happens very rarely.

5 Computational experiments

5.1 Test cases

The presented problem model and solution method were designed for integra-
tion in the leading nurse rostering system in the Norwegian market. The aim in
this context was to develop a robust solution method that could solve a wide
range of realistic problem instances as they occur in the hospitals. The model
has a very similar structure to those found in common academic benchmark
problems such as those at http://www.cs.nott.ac.uk/∼tec/NRP/. There are,
however, some differences. For example, most benchmark problems involve time
limited “horizontal” constraints (constraints for one employee) while our hori-
zontal constraints spans over the complete planning horizon (except for HC7).
Furthermore, we assume the assignment of free weekends to be part of the prob-
lem input, which is not common in benchmark problems. Also, our functional
requirement demanded that the manpower plan (cover requirement) must be
covered exactly — it is a hard constraint that we implicitly handle by algorithm
design. In the literature, some flexibility in the coverage is normally allowed,
often modeled as a soft constraint.

Table 2 describe our seven test cases (OpTur1 – OpTur7). The first four rows
provide general information for each case (e.g. number of employees to schedule,
number of hours for the complete scheduling period, etc.). The following rows
provide the parameterization for the constraints (see Table 1 in section 4 for more
information about the individual constraints). In Table 2, the shift categories
“Day”, “Evening”, and “Night” are represented by “D”, “E”, and “N”. For
example: For the case OpTur2, the hard constraint “HC5: N → E” forces the
minimum time between consecutive shifts in the night category (N) and the
evening category (E) to be at least 8 hours. An empty cell signifies that the
corresponding constraint is not used in the test case. The notation ’10/8’ in for
instance OpTur6’s three HC5 constraints, sets this minimum time to 10 and 8 for
weekends and weekdays, respectively. The symbol ’-’ means that the constraint
parameter is not set (e.g. SC1 in OpTur2 has no specific maximum limit for day
shift (D) while it only allows 4 consecutive evening shifts (E) and night shifts
(N).

Each of our seven test cases contain a mix of employee contracts. E.g. most of
the 51 employees in OpTur1 are on standard Norwegian nursing contracts with an
average 35.5 hours working time is s. The same test case also involves contracts
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with an average of 26.6, 17.7, 8.9 and even 4.4 hours/week. Other important
aspects of each test case concerns skills, nurse contracts, shifts, manpower plans
patterns, etc. A complete description of all test cases can be found in [25].

OpTur1 OpTur2 OpTur3 OpTur4 OpTur5 OpTur6 OpTur7

General information:
# of employees 51 83 29 30 20 54 15
# of hours to schedule 19170 12819 4159.5 17352 2280 18978 2209.5
# days to schedule 84 42 42 168 28 84 42
# of shifts in use 9 9 8 8 9 5 6

Hard constraints:
HC1 Yes Yes Yes Yes Yes Yes Yes
HC2 Yes Yes Yes Yes Yes Yes Yes
HC3 Yes Yes Yes Yes Yes Yes Yes
HC4 Yes Yes
HC5: (N → E) 8 8 11 11 11 10/8 11
HC5: (E → D) 8 9 11 9 8 10/8 11
HC5: (D → N) 8 8 11 11 11 10/8 11
HC6: 32 32 32 32 32 32 32
HC7: 54 50 48 48 48 54 48

Soft constraints:
SC1: (D,E,N) 6,3,4 -,4,4 5,2,4 4,3,4 3,2,3 -,-,3 -,-,4
SC2: 6 6 12 7 5 6
SC3: (D,E,N) -,-,2 2,2,2 -,-,2 2,-,2 -,-,2
SC4: (Not used in any of the test cases)

SC5: D 0/10
SC5: E 0/10 0/5
SC5: N 3/10 2/6
SC6: Yes Yes Yes Yes Yes Yes Yes
SC7: Yes Yes Yes Yes Yes Yes
SC8: 1 p. 1 p. 3 ps.
SC9: (Not used in any of the test cases)

Table 2. Overview of the seven test cases; characteristics and parameterization of the
constraints used.

5.2 Experimental results
We have conducted the experiments described in this paper on a PC (Intel Core2
Duo CPU at 2.53 GHz with 4 GB RAM) running 64-bits Windows 7. Through
extensive testing we have determined the values for the different parameters
of the algorithm. The most important of these are: first-improvement (rather
than best-improvement) in the VND, the number of rosters to destroy in the
diversification step (random number between 2 % and 30 %), and the “flat”
criterion in VND (less than 5 % change in the objective value over the last n
iterations, where n = 50

√
|D||E|).

The algorithm contains random elements in the neighborhood generation
for VND and in the ruin part of diversification (see Listing 1.1, Section 4).
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Therefore, to statistically verify our results, we have run every test case 66 times
(the exact number was determined by our experimental setup), terminating each
run after 1200 seconds. Table 3 presents some statistics of the results, taken
over all runs. Line 2 shows the number of backtracks in the CP search used
to compute an initial solution. The following rows present time spent (Mean,
standard deviation, and coefficient of variation) on each of the following parts
of the iterated local search: Generate Initial Solution (line 2), VND (line 4) and
Diversification (line 7 + 8). The row “Initial Obj val” shows the objective value
after the initial solution generation. The five last rows show statistics for the
objective values found after 1200 seconds.

OpTur1 OpTur2 OpTur3 OpTur4 OpTur5 OpTur6 OpTur7

# backtracks 199106 3994 160100 52133 294 1274 0

Initial solution

Mean (sec) 59.0 1.87 33.8 17.2 0.131 0.818 0.0694

StDev (sec) 6.25 0.0162 0.184 0.164 0.00594 0.0124 0.00713

CV (%) 10.6 0.866 0.546 0.954 4.54 1.52 10.3

VND

Mean (sec) 1141 1188 1144 1181 1104 1199 883

StDev (sec) 6.88 6.86 8.21 1.08 9.59 2.16 27.8

CV (%) 0.603 0.578 0.717 0.0914 0.869 0.180 3.15

Diversification

Mean (sec) 0.472 10.3 22.4 2.00 96.3 1.19 317

StDev (sec) 1.79 6.88 8.27 1.02 9.53 2.15 27.8

CV (%) 379 66.6 36.9 50.9 9.90 181 8.76

Initial Obj val 428 162 253 203 253 48.0 378

Final Obj val

Mean 17.0 3.09 81.7 2.48 8.34 1.83 156

StDev 6.95 0.190 1.79 0.503 1.99 0.0759 0.303

CV (%) 40.8 6.16 2.20 20.2 23.8 4.16 0.194

Min 13.1 2.82 78.1 1.56 4.48 1.66 156

Max 42.3 3.53 86.1 3.78 12.9 1.97 157

Table 3. Results for the seven test cases: Number of backtracks. Time spent on the
initial solution generation, variable neighborhood search, and diversify parts of the
algorithm, Last rows provide information concerning the objective value. All cases
were run 66 times and for 1200 seconds.

Finding a solution with an objective value of zero on these over-constrained
instances is very unlikely, as is the case in most real-world problems. Several of
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the soft constraints are easily parameterized in such way that violation of some
soft constraints cannot be avoided. The results show that there are differences in
how difficult it is to compute the initial solution. The number of backtracks (and
thus time spent) during initial solution construction varies from almost nothing
for OpTur5 and OpTur7, to several hundred thousand for OpTur1 and OpTur4.
This is partly connected to the problem size and how constrained the problem is.
But also because the diversification step is run many times, and the number of
times differ between the cases. (The number depends on how often the variable
neighborhood descent will end up in a local optimum or on a ”flat” plateau.)
If the diversification step is run a large number of times, the time spent on
diversification will increase compared to the initial solution construction which
is a one-time action. The most important observation to make, however, is that
the time used to generate a feasible initial solution is very fast (less than a
minute on average for all cases) compared to manual rostering, in which one
typically use days to set up a feasible roster. In this sense, the performance of
the construction algorithm is more than adequate.

After 1200 seconds, the objective value of the initial solution was drastically
improved by the ILS algorithm, in most cases by more than 96 %. This is not
surprising, since the initial solution was constructed without considering soft
constraints. The exceptions are the cases OpTur7 (378→ 156) and OpTur3 (253
→ 81.7), for which the improvements were 58.7 % and 67.7 %, respectively. Both
OpTur 3 and OpTur7 contains wanted patterns (SC8) for the weekends.

To assess how the algorithm improves the objective value over time, one can
consider the run-time distributions for each test case [chap. 4.2] [16]. Figure 2
shows such distributions for the case OpTur6, each curve representing the ob-
served cumulative fraction of all runs reaching the corresponding objective value
threshold as a function of computation time. Note that since we do not know
the optimal value, solution quality thresholds are given in terms of percentual
deviation from the best found value in any run. Observe that all runs achieved
an objective value of 24 % deviation from the best known value, or better, in
the first 162 seconds. After 1200 seconds, 10.6 % of the runs had passed the 3 %
deviation threshold, while 25.8 % of the runs resulted in an objective value of
less than 6 % above the best known objective value.

For some cases there is substantial variation in the objective value across
runs, especially for OpTur1 (cv = 40.8 %), OpTur4 (cv = 20.2 %), and OpTur6
(cv = 23.8 %). For OpTur1, this seems to happen because the best found value
for each run ends up in one of three objective value ranges; 13.1 – 14.1, 18.2
– 19.8 or above 36.3. This may indicate that there are some distinct valleys
or plateaus in the objective function surface of this problem instance. For the
two other test cases, however, the observed objective values at the time of run
termination are more or less evenly distributed between the minimum and the
maximum values.
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Fig. 2. Qualified Run-Time Distribution of OpTur6 for solution quality levels of 3 %,
6 %, 12 % and 24 % of the best found objective value, across all runs.

6 Conclusions and Future work

The case study presented here concerns a nurse rostering module that was devel-
oped for the software company Gatsoft AS and implemented in their personnel
management system in 2005. Today, the module is used by several hospitals
and other health care institutions in Norway and Sweden. The module applies
a hybrid solution approach: An Iterated Local Search framework that uses Con-
straint Programming for initial solution construction and diversification, and a
Variable Neighborhood Descent in the iterative improvement phase. The require-
ments and specifications for the model and the algorithm evolved from regular
meetings and workshops with health care personnel. We believe it includes all
the important constraints that are applied in Norwegian hospitals. In this paper,
we show that the module can solve large real-world instances within reasonable
time.

Further research involves adapting the model to handle a rigorous testing on
the standard academic benchmarks. To further improve performance, we aim
to develop massively parallel algorithms that exploit the computation power of
emerging heterogeneous hardware platforms, where graphical processing units
and multiple CPUs can be used together to produce high performance search
methods.

It is also important to extend the research context to encompass related and
practical extensions of the problem. For example, by introducing flexibility in
the model’s shifts by allowing their length, start, and end time to be dynamically
adjusted: A small changes in start or end times may allow for plans that violate
fewer soft constraints without affecting patient quality or increasing personnel
costs.

Also, nurse rosters are typically static, while the daily situations at a hospital
is very dynamic — employees get sick, take days off on a short notice, or the
staff demand temporarily increases. In Norway, the resulting personnel shortages
are normally filled through temporary work agencies, which is not only very
expensive but quite inefficient. This opens up interesting research directions,
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such as robust nurse scheduling to minimize the impact due to dynamic events.
A related problem is the dynamic re-scheduling of nurses across departments
to minimize the impact of unexpected events while maximizing the competence
build-up to obtain a more robust future personnel structure.
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