
Software Engineering Challenges for Migration to the Service Cloud Paradigm
On-going Work in the REMICS Project

Parastoo Mohagheghi
SINTEF ICT
Oslo, Norway

Parastoo.Mohagheghi@sintef.no

Thor Sæther
DI Systemer AS

Trondheim, Norway
Thor.Saether@disystemer.no

Abstract—This paper presents on-going work in a research
project on defining methodology and tools for model-driven
migration of legacy applications to a service-oriented
architecture with deployment in the cloud; i.e. the Service
Cloud paradigm. We have performed a comprehensive state of
the art analysis and present some findings here. In parallel, the
two industrial participants in the project have specified their
requirements and expectations regarding modernization of
their applications. The SOA paradigm implies the breakdown
of architecture into high-grain components providing business
services. For taking advantage of the services of cloud
computing technologies, the clients’ architecture should be
decomposed, decoupled and be made scalable. Also
requirements regarding servers, data storage and security,
networking and response time, business models and pricing
should be projected. We present software engineering
challenges related to these aspects and examples of these in the
context of one of the industrial cases in the project.

Keywords-cloud computing; service-oriented architecture;
methodology; software engineering, migration

I. INTRODUCTION
REMICS (REuse and Migration of legacy applications

to Interoperable Cloud Services [17]) is a research project
supported by the European Commission that started in 2010
and will run for three years. The project’s main objective is
to develop a set of model-driven methods and tools that
support organizations with legacy systems to modernize
them according to the “Service Cloud paradigm”. In our
view, the cloud computing paradigm enhances thinking of
IT companies as service providers. We therefore talk of the
“Service Cloud paradigm” that stands for the combination
of cloud computing and Service-Oriented Architecture
(SOA) for the development of Software as a Service (SaaS)
systems. As stated in [18], one of the most attractive
promises of a SOA environment is that it enables reuse of
legacy systems, thereby providing a significant return on the
investment in these systems. However, migrating legacy
systems is neither automatic nor easy.

The first phase of REMICS concentrated on performing a
comprehensive state of the art analysis on software
methodologies in general, service-oriented methodologies,
cloud computing platforms, SOA and cloud design patterns,

recovery and migration methods and tools, and verification
and validation methods. The results are now published on the
project website. In parallel, the two industrial partners in the
project have specified their requirements and developed
models of their legacy systems. In this paper we present
experiences of this phase and discuss challenges and future
work, with focus on software engineering challenges.

The remainder of the paper is organized as follows.
Section II presents state of the art relevant to our discussion
while Section III is an introduction to the REMICS approach
for migration. Section IV presents the findings regarding
software engineering challenges. Section V is an introduction
to an industrial pilot case in REMICS as an example of the
challenges of migration. Finally, Section VI contains
conclusions and future work.

II. A BRIEF OVERVIEW OF THE STATE OF THE ART
In this paper we assume that the reader has some

knowledge of SOA concepts. There are already several
service engineering methodologies such as:

• SAE, Service Architecture Engineering, which
extends the reference model by OASIS for SOA [4];

• SOAD, Service-Oriented Analysis and Design,
developed by IBM [21];

• SODA, Service Oriented Development of
Applications, developed by Gartner Research and
with emphasize on reuse [7];

• SOMA, Service-Oriented Modeling and Architecture
[2], also developed by IBM.

The above methodologies focus on activities in
developing systems based on SOA, and some with specific
focus on software reuse. For example SOAD includes the
activity of service identification which consists of a
combination of top-down, bottom-up, and middle-out
techniques of domain decomposition, existing asset analysis,
and goal-service modeling. The same activity is included in
SOMA. However SOMA also emphasizes that the design
strategy for a SOA is not bottom-up since SOA is more
strategic and business-aligned.

SMART (Service Migration and Reuse Technique)
developed by Carnegie Mellon® Software Engineering
Institute (SEI) [18] is another methodology with focus on
modernizing legacy systems to a SOA. It is defined as a

process to help organizations to make initial decisions about
the feasibility of reusing legacy components as services
within a SOA environment. The implementation of SMART
involves five major composite activities: establishing
stakeholder context, describe existing capability, describe the
SOA state, analyze the gap, and develop migration strategy.
We found this process especially relevant in our context.

There is extensive publication on the subject of reverse
engineering and modernization. Comella-Dorda et al. give a
survey of legacy system modernisation approaches [5]. They
distinguish between two main types of modernisation: white-
box and black-box modernisation. White box modernisation
requires an understanding of the internal parts of a system,
and involves re-structuring, re-architecting, and re-
implementing the system. Black-box modernisation is only
concerned with the input/output, i.e. the interfaces, of the
legacy system, and is often based on wrapping. Our approach
in REMICS involves some re-structuring and re-architecting
while parts of the applications will be reused in a black-box
way.

Razavian and Lago present a SOA migration framework
(SOA-MF) wherein they establish an overall process
framework for legacy migration, focusing on recovery and
re-engineering, and put it in the context of migration
methods such as SMART [16]. In their view, migration is a
process of reverse engineering, transformation and forward
engineering. Several tiers of artifacts are involved in the
migration process; i.e. code, basic design elements,
composite design elements, and concepts and business
processes.

There is also a number of migration methods developed
in various research projects. One of them is the XIRUP
process for modernization developed in the MOMOCS
project ((MOdel driven MOdernisation of Complex Systems)
[10]. The phases of the XIRUP process are preliminary
evaluation, understanding, building and migration. The
method relies on models and transformations but does not
include services and SOA.

SINTEF has extensive experience on model-driven
approaches which will be applied in the project. We will also
use methods and experiences from the SiSaS project
(Scientific Software as a Service) such as a UML profile for
migration as described in [11].

We also performed state of the art analysis regarding
cloud computing technologies. The notion of “cloud
computing” groups together several heterogeneous forms in
terms of the services provided and the types of
implementation. Regarding provided services we differ
between:

• The Software as a Service (SaaS) approach, where
the service provider makes available software in
the form of an internet service. Users access this
application, generally paying each time they use it.

• The Platform as a Service (PaaS) approach, where
the service provider makes available a
development environment that includes the
operating system, as well as a set of services

dedicated to the development, testing, deployment
and hosting of sophisticated web applications.

• The Infrastructure as a Service (IaaS) approach,
where the service provider makes a resource
virtualization platform available as a service.
Application developers can access calculation, data
storage and network management infrastructures
on demand.

There are also different types of cloud, each meeting
specific needs. The main types are:

• Public cloud in the case a service provider wishes
to provide services to public users over the
internet;

• Private cloud in the case an organization installs its
own farm of servers and deploys a cloud
computing infrastructure for its exclusive use;

• Hybrid cloud in the case an organization wishes to
combine a private and public cloud infrastructure
to gain more flexibility.

In our state of the art analysis we compared Windows
Azure [20] with Google App Engine [8] as PaaS providers
and realized that both only support public clouds but with
various architectural solutions. Regarding IaaS platforms, we
compared the Amazon Elastic Compute Cloud or Amazon
EC2 [1] with a few open source technologies such as
Eucalyptus [6], OpenNebula [14] and OpenStack [15]. Our
experiments on IaaS level platforms have shown that this
type of platform offers more flexibility than PaaS-level
platforms and also the possibility to have a private, public or
hybrid cloud. Additionally, Amazon EC2 acts as a de-facto
standard in the IaaS market and other providers try to be
compatible to it, which reduces the risk of having too diverse
solutions.

In a recent paper by Babar and Chauhan [3], they discuss
experiences and observations from migrating an open source
product to cloud. They have identified new quality attributes
important for such migration; i.e. modularity and scalability
as important for resource elasticity, portability of solutions,
and a consistent view of system for external clients. The
architecture of the open source solution (Hackystat [9]) had
two major modifications which consisted of separating data
from logic and adding an additional layer for orchestration of
requests.

The state of the art analysis thus returned several
interesting results that make the foundation of our work.
However, we have to extend these with our model-driven
approach taking advantage of OMG’s ADM (Architecture-
Driven Modernization [12]), KDM (Knowledge Discovery
Metamodel [13]), SoaML (Service-oriented architecture
Modeling Language [19]) and UML profiles such as in [11]
in the recovery and service modeling phases. Project partners
in REMICS are working on extending KDM and SoaML to
cover concepts related to the migration to SOA and cloud
computing paradigms. Activities relevant for our research
project will therefore be added to the migration process.
Additionally, the cloud paradigm introduces new software

engineering challenges that are discussed later in this paper
and may require new activities in the migration process that
are not covered by the state of the art.

III. THE REMICS APPROACH TO MIGRATION
The overview of the REMICS approach to migration is

depicted in Fig.1. The baseline concept is the Architecture
Driven Modernization (ADM) [12] by OMG. In this
concept, modernization starts with the extraction of the
architecture of the legacy application (the “Recover”
activity). Having the architectural model helps to analyze
the legacy system, identify the best ways for modernization
and benefit from Model-Driven Engineering (MDE)
technologies for generation of the new system. This
information will be then translated into models covering
different aspects of the architecture: Business Process,
Business Rules, Components, Implementation, and Test
specifications.

The above models will be the starting point for the
“Migrate” activity. During this activity, the new architecture
of the migrated system will be built by applying specific
SOA/cloud computing patterns.

The migration process is supported by two
complementary activities: “Model-Driven Interoperability
(MDI)” in order to manage interoperability between services
and “Validate, Control and Supervise” in order to guarantee
that the migrated system provides the required functionality
with the required Quality of Service (QoS).

While there are several methodologies for developing
service-oriented systems from scratch or with focus on
migration as discussed in Section II, REMICS has identified
several gaps in the current state of the art that will be
addressed in the project:

• Knowledge discovery is often limited to reverse
engineering of legacy code. The business process
and rules recovery is poorly addressed which are
necessary for identifying services and designing
new business processes.

• The architecture migration methods are mostly ad-
hoc and lack a comprehensive methodology
addressing dedicated design patterns and
transformations. Especially migration to cloud is a
new research area.

• Migration tools and methods need integration with
model-based development methods.

• With many different platforms in the cloud and
diverging technologies, we foresee the need for
platform independent modeling combining SOA
and cloud computing.

• There are no dedicated testing technologies for
service clouds migration validation.

Addressing these gaps will be by developing methods,
languages, transformations and tools. The REMICS
methodology will integrate all these in an agile, model-
driven service-oriented methodology for modernizing legacy
systems.

Migrate

Model-Driven
Interoperability

Validate,
Control and
Supervise

Legacy
Artefacts

Source
Architecture

Recover
Forward MDA

Through
PIM4Cloud

Service
Cloud

Implementation

Target Architecture
For

Service Cloud
Platform

Figure 1. The REMICS approach to migration

The methodology will define steps and guidelines for
migrating these systems to loosely coupled systems
deployed in a Service Cloud platform.

IV. SOFTWARE ENGINEERING CHALLENGES
The first phase of the project has focused on analyzing

the state of the art and understanding the legacy systems and
their requirements. In this section we present how the
Service Cloud paradigm introduces new challenges and
impacts the activities that are necessary in a migration
project. In some cases these are additional steps that may be
added to activities already defined in existing software
development methodologies. In other cases, new activities
should be added that meet the challenges of the paradigm.

A. Establishing the Context
The first step in migration is to decide whether it makes

sense to migrate a legacy system into services. The first step
of the SMART process is to “establish the context” which
includes understanding the business and technical context
for the migration, identifying stakeholders, understanding
the legacy system and identifying some candidate services
for migration [18]. SMART provides a set of questions to
answer which are relevant for our pilot cases as well and
have been addressed in their descriptions of legacy systems.
After this step one should determine whether the legacy
system is a good candidate for migration.

We have performed an analysis of legacy systems and
have identified some additional aspects that are not covered
by SMART:

First, we take advantage of models and MDE methods.
Therefore we focus on developing various models to
describe the context regarding software architecture,
business processes and deployment of systems for both the
legacy system and the target migrated system.

Second, we felt that there should be more focus on the
expectations of the stakeholders before taking a decision on
whether to modernize the legacy system or not and what
migration strategy to choose. We therefore added the
following activities to the phase of establishing the context:

• Describe disadvantages of legacy solution. The
problems should be identified in order to motivate
migration. Examples from our pilot cases are
maintenance expenses, scalability problems and the
obsolescence of technologies.

• Describe the expected benefits from migration.
These benefits should address the problems
described above and how they will be solved in the
Service Cloud paradigm, and may include
additional benefits as well. Examples are a single
point for installation and maintenance, improved
performance and improved scalability.

• Describe the disadvantages of the migrated
solution. The migrated solution may have
disadvantages as well, for example no control of the
infrastructure in a PaaS solution, unknown
technologies, and less portability of the solutions.

The above information is important to gather before the
feasibility decision point.

B. Modernizing the Software Architecture
Although the migration process in REMICS is in its

initial phase, experimentation with cloud technologies and
the state of the art analysis have highlighted some challenges
that should be addressed regarding modernizing the software
architecture of legacy systems.

The SOA paradigm implies the breakdown of
architecture into high-grain components providing business
services. These components should be loosely coupled and
have clear functionality. It should be possible to reconfigure
services or compose them in new ways to support new tasks.
Modernizing the architecture of a legacy system to SOA thus
requires developing models of new business processes,
identifying services both top-down and bottom-up, and then
deciding how to transform the current architecture to the
migrated one, probably in a semi-automated way. The
MOMOCS project has advised taking advantage of model-
to-model transformations in this process [10]. We will also
develop transformations when possible, as also done in the
SINTEF project SiSaS (Scientific Software as a Service) and
explained in [11]. However, the process requires intensive
involvement of experts both in the recovery phase and in the
migration phase and manual work as well. The SMART
report has identified some challenges of migration such as
separating business logic from APIs and changing the
synchronous behavior of legacy systems to the asynchronous
behavior of services which requires taking advantage of
SOA patterns.

Adding the cloud paradigm introduces new challenges to
the architecture modernization phase. Componentization of
architecture should enable scalability and thus make possible
the multiplication of a number of instances of the same

component if taking advantage of IaaS technologies. On the
other hand, when creating a cloud application, it is necessary
to ensure that the application can run on a set of low
performance resources, to cope with network latencies in a
loosely coupled environment. The decomposition and
decoupling aspect is thus similar to SOA while the
scalability concerns are added. Babar and Chauhan mention
that there is also need for new architecture evaluation
methods since the existing methods do not emphasize cloud
quality attributes such as scalability and accessibility [3].

Finally, the constraints introduced by cloud computing
technologies should be considered. For the pilot cases in
REMICS, we have evaluated both PaaS and IaaS solutions.
The problem with the PaaS solution is that there is a
significant dependence between the services these platforms
offer and the client application. Thus these technologies may
not be suitable for the migration of some legacy applications.

C. Modernizing Data
The legacy applications in REMICS are quite data-

centric and data security is an important aspect. For taking
advantage of data storage facilities provided by cloud
computing technologies, the legacy systems databases
should be modernized. One of the applications for example
doesn’t have the three-layered model of Model-View-
Controller and the business rules are in the database. Thus
there is a need for separating business rules from data. In
this process they will also remove redundant data and
simplify the databases.

However, one of the concerns with introducing the cloud
computing paradigm is data security. Therefore the
companies should address the question of whether to take
advantage of a private or public cloud and which data
should be stored where. In one case, the databases will be
deployed in a private cloud or be kept outside a public cloud
solution. The second case targets a public cloud solution and
depends on their security management.

D. Managing Non-Functional and QoS Requirements in
the Cloud
The analysis of cloud computing platforms showed that

these differ in characteristics such as load balancing,
interoperability and convergence of the platform with other
cloud computing platforms on the market, data storage
system used by the platform, and fault tolerance
mechanisms. Understanding the consequences requires more
experimentation since there is yet little knowledge on these
platforms. Therefore while selecting a cloud solution solves
some problems of application providers, understanding these
technologies is a new challenge. Requirements regarding
servers, data storage and security, networking and response
time should therefore be projected.

E. Verification and Validation in the Cloud
Each type of cloud (SaaS, PaaS and IaaS) abstracts the

underlying layers and users do not have the possibility to
control those. Also there are differences between public and

private clouds regarding the degree of control. Babar and
Chauhan emphasize the heavy reliance on cloud
infrastructure providers and the fact that testing a software
system deployed in cloud is different from testing traditional
systems in many aspects [3]. Performance of the application
depends on how effective virtual resources are managed by
a cloud provider and testing should be performed on regular
basis.

The major benefit of the public cloud from the
application designer stand point is the ease of deployment,
scalability and elasticity of the resources. However, the cloud
comes with a cost; i.e. the application has to be capable to
run on a set of relatively low performance servers. In a
public PaaS solution, the scalability, elasticity and resources
are managed by the PaaS provider and are out of the control
of users. Thus the user needs to test the solution with these
considerations and also monitor the cloud performance. At
the IaaS level, scalability is managed by the application
designer. However, the cloud paradigm allows new approach
to scalability which is resource elasticity, i.e. the possibility
to easily pop-up new instances of computation resources.

We therefore foresee to develop new methods for
predicting the performance of applications and QoS in the
cloud which will be addressed by the “Validate, Control and
Supervise” work package in the REMICS project.

F. Introducing Agility into the Migration process
Our goal in REMICS is to provide an agile model-driven

software engineering methodology to support migration to
the Service Cloud paradigm. Agile methodologies are light,
iterative, and with emphasis on continuous testing. They are
popular in the industry and there exists several variants of
them, although most for forward engineering of
applications. However there is a dilemma between the large
effort required in modernizing the software architecture and
data early in the migration process and the agile approach of
delivering software early. In the migration process, an
iteration on architecture modernization is necessary before
services are modernized part by part. We will address this
challenge in the REMICS methodology and provide
guidelines that combine the migration requirements with
agile and iteration-based development.

G. New Business Models
Cloud computing technology providers have different

invoicing strategies. While in principle the users pay for the
resources consumed, this may for example be based on
minutes or hours of usage or the number of transactions.
Thus before selecting a provider, information regarding
business model of the provider and the characteristics of the
application using the services of a provider should be
collected.

One of the motivations of companies for moving to
cloud as service providers is to take advantage of the pay-
per-use model. They should therefore develop new business
models according to their context and the cost of services
they use.

V. PILOT CASE IN REMICS
In this section we provide examples of the above

challenges in the context of one of the pilot cases in
REMICS.

DI Systemer (DISYS) is a Norwegian software vendor
within the ERP (Enterprise Resource
Planning)/Accounting/CRM (Customer Relationship
Management) domain participating as a Small and Medium
Enterprise (SME) partner in the REMICS project. DISYS
has about 50 employees and a turnover of EUR 7 Mill in
2010. Key software products and services are CRM,
accounting, payroll, invoicing, web portals and Application
Service Provider. Fig. 2 shows the DISYS use case in
REMICS.

The product portfolio is developed with different tools
and languages and has evolved during decades. The
following tools/languages are being used in the software
development: COBOL, Delphi, C# .NET, ASP .NET, and
UML for modeling. The software is consumed by the
DISYS customers in different runtime environments:
desktop standalone installations, and traditional
Client/Server solutions in a Local Area Network (LAN).
Some users also host the DISYS software in virtual
machines executed in DISYS ASP centre or in their own
data centre. There are practically no shared resources, i.e.
there is one software installation per DISYS customer. Each
customer has several users, typically in the range from 10 to
50. Accordingly, the present software portfolio comprises a
conglomerate of software components of different kinds and
exhibits a fairly high degree of interdependencies and few
services, and a substantial part of the components are built
upon legacy tools and technology.

Figure 2. A simplified view of the DISYS use case in REMICS

The need for modernization of legacy software
components has become more and more prevailing in view
of partly poor legacy source code quality, problems with
adding functionality or expanding software solutions, poor
or missing documentation, and developers no longer
working at the company.

The software modernization process at DISYS has been
a bottom-up approach by re-implementing parts of the
legacy COBOL programs step by step with more modern
tools and languages. This modernization process started
about ten years ago, where UML and Model-Driven
Development (MDD) was introduced to generate Delphi
source code as replacement for the legacy COBOL source
code. However, there is still a considerable volume of
legacy COBOL source code to modernize. The REMICS
approach to software modernization is interesting in this
context of several reasons. Firstly, the knowledge discovery
process to represent complex and voluminous legacy
COBOL code and enable inspection and manipulation in
UML models is considered to be valuable because we would
then be able to extract semantics and data structures hidden
in the source code and maybe in the head of former
employees. Secondly, our MDD experience gives us an
expectation of the potential from the use of UML in the
migration process. Thirdly, the deployment of a part of our
legacy COBOL source to the service cloud is interesting,
but also challenging, as discussed below.

In REMICS, we have performed an analysis of our case
according to the process described in Section IV, under
establishing the context. We have modelled the “as-is” and
“to-be” business processes, software architecture and
deployment. The main disadvantages of the current solution
are identified to be:

• The report consumers do not have direct access to
the system to initiate reports or change them
according to their needs;

• DISYS software developers must develop and
maintain reporting software in different software
projects and programming tools;

• New and amended reports and report layouts must
be programmed and installed at the user’s runtime
environment as a part of a general software update;

• The sales department must keep track of several
software products;

• There is no simple way to integrate reporting with
data from 3rd party data providers.

We expect the following advantages of the target
solution as SaaS and deployed in cloud:

• Obtain one reporting program solution common for
all our deployment platforms;

• Distribute new reports to users without having to
compile and deploy new programs to every single
customer installation, i.e. deploy reports to one
single location, e.g. Windows Azure;

• Enable layout customization to customers without
involving development support from software
vendor;

• Web based reporting: there should be no need to
install anything else than a web browser to retrieve
reports;

• Enable report consumption on mobile devices;
• Include new users of DISYS software and increase

knowledge of company brand (market value);
• Replace the numerous reporting program

installations (one per customer) with one
deployment in the service cloud;

• Save costs by reducing the need for support during
installation and use;

• Meet scalability issues by requesting more hardware
from the service provider when needed;

• Enable payment per use.
An additional motivation for participating in the

REMICS project is to experiment with new technologies in
order to understand their impact on our market.

We don’t see any disadvantages in modernizing our
software architecture to SOA while the cloud technologies
may offer some challenges, especially regarding portability
if we are not satisfied with one platform.

Specific software engineering challenges in our case are
so far identified to be:

A. Modernizing the Software Architecture
Our software components are relatively highly

integrated and exhibit a high degree of interdependency. For
that reason, we have identified legacy software components
that could be modernized and migrated to the service cloud
without dependencies from the service cloud to any other
remaining software components in the traditional runtime
environment. In order to obtain that, we have to replicate
reporting data from the existing installations at the
bookkeeper’s sites where the transactions actually are
generated up to the service cloud site.

We have defined the migrated software architecture as a
combination of a modernized database in Microsoft SQL,
Web-services and Asp .NET components.

B. Selecting a Suitable type of Cloud based on Data
Management and Transfer Requirements
The data replication issue is a concern, since we have to

deal with quite large amounts of data uploaded from the
accountant’s site via the Internet up to the data storage in the
service cloud. Just for one single customer, the account
history could constitute several millions rows of financial
transactions. A deployment of the migrated system in a
public cloud could therefore be a challenge with regard to
bandwidth during data upload and possibly scalability
during data storage. However, the scalability and bandwidth
issues from data querying and report production are not
considered to constitute a problem. The data is aggregated
during the query operations and report generation and

represent a low data volume do be returned to the user’s
browser compared to the data uploading process.

As a consequence of the bandwidth concern, we
considered a private cloud deployment as an alternative.
DISYS is serving its own data centre for the customers and
data replication would be local within the data centre.
However, also this deployment solution could become a
challenge if the reporting centre was offered to other DISYS
software users not hosted in our data centre. In such a case,
their data would have to be replicated from their respective
account data tables and up to the private service cloud via
the Internet. Hence, we may face a similar bandwidth
problem with the private cloud as with the public cloud.
Database scalability could also become a problem from high
loads during data storage in particular because of database
server license costs, additional hardware etc.

A private cloud deployment will to a certain degree
simplify security against data theft since DISYS can move
and manipulate data within a more controllable environment
than a public service cloud. However, a private cloud
deployment still has to maintain data security for reporting
data between respective customers, i.e. accounting data
from one customer must not be available to another. In a
public service cloud deployment however, DISYS rely
totally on the security offered at the public cloud platform.

C. Managing Interoperability Issues
One of the goals of the migration to the Service Cloud

paradigm is to facilitate integration of our data with 3rd part
data providers. This is in line with the vision of SOA and
cloud computing paradigms to allow new service chain
models. There is accordingly a need for defining a data
mapping from numerous source data providers to a model
representation at the report data storage in the migrated
system, possibly via a standardized canonical model.
Contrary to the COBOL data structures in the legacy data
storage of the DISYS programs, the third party data
provider data storage is a MS SQL database. This challenge
is to be addressed by the research in REMICS on model-
driven interoperability.

D. Specifying QoS Requirements
It is difficult to quantify the total number of

simultaneous requests to the migrated system, but as a
coarse estimate we could say that the number of
simultaneous requests from data upload by the accountants
could constitute 1000 instances whereas the number of
simultaneous requests from report consumers could be
estimated to 200. Both estimates are given for a single
report server installation serving all customers of DISYS.
When the migrated system has been established and put into
use, the volume of data stored would increase steadily
whereas the number of requests is expected to remain stable
both from the data providers and the report consumers.

Loss of data in the reporting SQL databases is not
critical, since the database may be reinstated by replicating

data again from the data provider (the accountants COBOL
data storage).

E. Testing the Migrated Solution
We should test the migrated solution to verify that the

functionality and data integrity has been preserved during
the knowledge discovery and migration process. One way
to perform this is to compare the content of the data
structures which are actually used in generation of the report
per se.

Testing the performance, load-balancing and security of
the migrated solution is a concern since the results depend
on the Internet bandwidth, load-balancing and security
mechanisms of the cloud service provider. We have to
identify scenarios for testing and understand the
technologies better during the implementation and
validation phases.

VI. CONCLUSIONS AND FUTURE WORK
In this paper we have presented some software

engineering challenges that are identified so far in the
REMICS project related to the migration of legacy
applications to the Service Cloud paradigm. One problem is
that the cloud computing technologies are proprietary
environments that will require great effort to understand the
technologies involved and constraints placed on service
consumers and providers. IT organizations roles in the value
chain change since they will be more and more service
consumers that depend on the availability and performance
of the services provided by cloud technology providers.

Some identified software engineering challenges are
related to establishing the context and understanding the
technologies and business models, while others are related
to the modernization step of legacy applications (software
architecture as well as data) and testing the solutions. New
quality requirements such as scalability and storage become
important in the migration and the service users should be
able to project their requirements regarding these. The goal
of REMICS is to provide an agile, model-driven, tool-
supported methodology that takes advantage of the state of
the art and includes additional steps when necessary.

Research in REMICS continues in the coming months
with the extraction of models from legacy code and
modernizing the architecture of the two pilot cases. In
parallel we work on the methodology that will be accessible
on the project website and also implemented in the Eclipse
Process Framework (EPF).

ACKNOWLEDGMENT
This work has been partly funded by the European

Commission through the REMICS project, contract number
257793, within the 7th Framework Program. We
acknowledge the contributions of consortium members
participating in the state of the art analysis, especially
Andrey Sadovykh and Antonin Abhervé from SOFTEAM,

Franck Barbier from Netfective Technology and University
of Pau, and Gorka Benguria from Tecnalia. This work is
also funded by the SiSaS project at SINTEF. SiSaS focuses
on the migration of scientific software to services.

REFERENCES

[1] Amazon EC2; http://aws.amazon.com/fr/ec2/
[2] A. Arsanjani, S. Ghosh, A. Allam, T. Abdollah, S. Ganapathy,and K.

Holley, “SOMA: a method for developing service-oriented
solutions”, IBY Systems Journal, vol. 47(3), 2008.

[3] M.A. Babar, M.A. Chauhan, “A tale of migration to clou computing
for sharing experiences and observations”, to be published in
proceedings of Software Engineering for Cloud Computing
Workshop at ICSE 2011, 2011.

[4] J. Butler, “The architecture component of the SAE reference
framework for SOA”, CBDi Journal,
http://www.cbdiforum.com/secure/interact/2007-
03/the_architecture_component.php, March 2007.

[5] S. Comella-Dorda, K. Wallnau, R.C. Seacord, J. Robert, “A survey of
legacy system modernization approaches, Technical Note No.
CMU/SEI-2000-TN-003): Carnegie Mellon Software Engineering
Institute, 2000.

[6] Eucalyptus; http://open.eucalyptus.com/
[7] Gartner reserach, URL

http://www.gartner.com/research/spotlight/asset_112573_895.jsp, last
visited in June 2004.

[8] Google App Engine; http://code.google.com/intl/en/appengine/

[9] P.M. Johnson, “Requirements and design trade-offs in Hackystat: an
in-process software engineering measurement and analysis system”,
1st International Symposium on Empirical Software Engineering and
Measurement, IEEE Computer Society, pp. 81-90, 2007.

[10] MOMOCS project website; http://www.momocs.org/
[11] J. Oldevik, G.K. Olsen, U. Brӧnner, N.R. Bodsberg, “Model-driven

migration of scientific legacy systems to service-oriented
architectures”, 1st International Workshop on Model-Driven Software
Migration, 4 pages, 2011. URL http://userpages.uni-
koblenz.de/~ist/mdsm/2011/index.php

[12] OMG ADM; http://adm.omg.org/
[13] OMG KDM;

http://www.omg.org/technology/documents/modernization_spec_cata
log.htm

[14] OpenNebula; http://opennebula.org/
[15] OpenStack; http://www.openstack.org/
[16] M. Razavian, P. Lago, “Understanding SOA migration using a

conceptual framework”, Czech Society of Systems Integration, 2010.
[17] REMICS project website; http://remics.eu.
[18] SMART report by SEI. URL

http://www.sei.cmu.edu/library/abstracts/reports/08tn008.cfm, last
visited in March 2011.

[19] SoaML; http://www.omg.org/spec/SoaML/
[20] Windows Azure; http://www.microsoft.com/windowsazure/
[21] O. Zimmermann, P. Krogdahl, and C. Gee, “Elements of Service-

Oriented Analysis and Design, an interdisciplinary modeling
approach for SOA projects”, URL http://www-
128.ibm.com/developerworks/webservices/library/ws-soad1/, last
visited in June 2004.

	I. Introduction
	II. A Brief Overview of the State of the Art
	III. The Remics Approach to Migration
	IV. Software Engineering Challenges
	A. Establishing the Context
	B. Modernizing the Software Architecture
	C. Modernizing Data
	D. Managing Non-Functional and QoS Requirements in the Cloud
	E. Verification and Validation in the Cloud
	F. Introducing Agility into the Migration process
	G. New Business Models

	V. Pilot Case in Remics
	A. Modernizing the Software Architecture
	B. Selecting a Suitable type of Cloud based on Data Management and Transfer Requirements
	C. Managing Interoperability Issues
	D. Specifying QoS Requirements
	E. Testing the Migrated Solution

	VI. Conclusions and Future Work
	Acknowledgment
	References

