
Real Time Algebraic Surface Visualization
Johan S. Seland

Centre of Mathematics for Applications, University of Oslo, Norway.

johans@cma.uio.no

Tor Dokken

Sintef Applied Mathematics, Oslo, Norway.

tor.dokken@sintef.no

Abstract
We demonstrate a ray casting type technique for rendering algebraic sur-

faces using programmable graphics hardware (GPUs). Our approach al-

lows for real-time exploration and manipulation of arbitrary real algebraic

surfaces, with no pre-processing step, except that of a change of polyno-

mial basis.

The algorithm is based on the blossoming principle of trivariate

Bernstein-Bézier functions over a tetrahedron. By computing the blos-

som of the function describing the surface with respect to each ray, we

obtain the coefficients of a univariate Bernstein polynomial, describing the

surface’s value along each ray. We then use Bézier subdivision to find the

first root of the curve along each ray to display the surface. These compu-

tations are performed in parallel for all rays and executed on a GPU.

Overview of our method
For a function f : R

3 → R, an implicit surface can be defined by the level

set of the equation f (x,y,z) = c, where x,y,z,c ∈ R. By reordering the

terms, we can, without loss of generality, just consider the zero-set of the

function, e.g. f (x,y,z)− c = 0. For this work, all functions and surfaces

are considered to be real-valued. If the function f is an algebraic polyno-

mial, the resulting surface is called an algebraic surface. Such surfaces

can easily describe intricate, smooth shapes with varying topology, and

also allow for the interpolation and blending of such surfaces. Their poly-

nomial nature also makes it easy to find analytic directional derivatives,

normals and curvature.

Our algorithm is based on the classical ray casting approach, where rays

pass from the eye, and we wish to find the location of each ray’s first in-

tersection with the surface. For a given algebraic surface f (x,y,z) = 0 of

total degree d, we are only interested in intersections inside a view vol-

ume V . Hence, it is natural to only consider the segment of each ray

inside V . Let f and b represent the front and back coordinate of the ray

as it enters and leaves V . The segment is then given by the parametriza-

tion p(t) = (1− t)f + tb, t ∈ [0,1]. We combine this parametrization with

the equation of the algebraic surface, yielding a univariate polynomial

g(t) = f (p(t)) of degree d. Now the problem of finding the closest in-

tersection to the eye point, can be reformulated to finding the smallest

t ∈ [0,1] such that g(t) = 0.

By using the ray casting formulation, the process of extracting the zero

set of one multivariate polynomial, has been replaced by a multitude of in-

dependent root finding problems. The GPU is well suited for such parallel

computations, and we summarizes our algorithm as follows:

1. Issue spanning geometry to the GPU. The spanning geometry defines

our view volume V , and initiates rendering.

2. Let the GPU rasterize the spanning geometry into a set of fragments,

yielding the coordinates f and b for each ray.

3. Find the univariate polynomial, g(t), representing the value of the alge-

braic surface along each ray.

4. Find the smallest t such that g(t) = 0. If no zeros are found, we discard

the fragment.

5. For the surviving fragments, calculate the final depth and color by using

information from the algebraic surface.

pixel plane

f

B[f〈4〉]

B[f〈3〉,b]

B[f〈2〉,b〈2〉]

B[f,b〈3〉]

B[b〈4〉]

b

f̃ b̃

b̂f̂

V

FIGURE 1: For each ray segment inside the view volume V , we find

the front (f) and back (b) vectors in barycentric coordinates. Then we

use blossoming to find the coefficients of the univariate Bernstein-

Bézier function along each ray.

Related work
Several other works discuss ray casting like algorithms on the GPU, and

current interest is high. However, direct hardware support still seems to

be a long way of, and most approaches involve a considerable amount of

tweaking in order to execute on a GPU. Donnelly [1] uses sphere tracing

to effectively implement bounded displacement mapping using fragment

shaders. Loop and Blinn [2] has demonstrated rendering of algebraic sur-

faces, which is very similar to our approach. Their focus has however been

on rendering piecewise surfaces spanned over a large number of tetrahe-

drons. However, they use analytic root finding algorithms, thereby limiting

the maximum degree of surfaces they can visualize to general quartic sur-

faces, as it is not possible to analytically solve general equations of degree

5 and higher.

FIGURE 2: A quintic surface, having the maximum possible num-

ber of ordinary double points, 31. It is also known as a Dervish

surface.

The Bernstein basis
For the space of real polynomials of total degree d, it is well known that

they can be expressed in the Bernstein-Bézier (BB) basis, which is prefer-

able for use in computations since it is numerically optimal[3].

The Bernstein basis functions Bd
i of degree d can be expressed as:

Bd
i (βββ) =

d!

i!
βββi, |i| = d, |βββ| = 1. (1)

Here, βββ = βββ(x) = (β1(x), . . . ,βs+1(x)) denotes the barycentric coordinate

of a point x ∈ R
s with respect to a set of base points, (v1, . . . ,vs+1) ∈ R

s,

which form a non-degenerate simplex Σs = conv(v1, . . . ,vs+1). For in-

stance, the 2-simplex is a triangle and the 3-simplex a tetrahedron. A

polynomial then takes the form f (x) = ∑i biBd
i (βββ).

The de Casteljau algorithm provides a fast and numerically stable way

of evaluating a BB-polynomial. Let bi denote the coefficients of an alge-

braic function in BB-form and compute repeated convex combinations of

the base points by setting:

br
i(βββ) =

s+1

∑
j=1

β jbr−1
i+e j

(βββ), b0
i (βββ) = bi,

e1 = (1,0, . . . ,0), . . . , es+1 = (0, . . . ,1).
(2)

The de Casteljau algorithm also admits a subdivision formula for Bézier

curves, and the control polygon of such a curve converges to the curve

itself. In particular, such a curve have no more roots than there are sign

changes in the control polygon.

If we modify the de Casteljau algorithm by introducing a sequence of

parameter points, (βββ1, . . . ,βββd) and use a distinct point at each level of re-

cursion, we arrive at the blossom of the polynomial, which we denote as

B. The blossom is given by:

B(f)[βββ1, . . . ,βββd] = pd
0, where pr

i =
s+1

∑
j=1

βr j p
r−1
i+e j

, p0
i = bi. (3)

The key to finding a curve representing the value of f along the line seg-

ment xy is a surprising property of the blossom, which we summarize in

the following lemma:

Lemma 1 Given two points ααα = βββ(x) and γγγ = βββ(y), x,y ∈ Σs and
a multivariate BB-polynomial f (βββ). Then the straight line segment
from x to y is mapped to a univariate BB-polynomial of degree d,
and its coefficients are given by repeated blossoming of the endpoints,
B(f)[ααα〈d〉],B(f)[ααα〈d−1〉,γγγ], . . . , B(f)[γγγ〈d〉].

To summarize, the blossom provides us with the algorithms needed to

convert a trivariate polynomial into a set of univariate polynomials with

respect to each ray.

FIGURE 3: The quartic surface x4 − 2x2y2 + y4 − 2x2z2 − 2y2z2 −
16z2 + z4 = 0. The encircled white dots illustrate numerical insta-

bilities.

GPU implementation

To initiate our algorithm, we must send geometry encompassing the

barycentric domain to the GPU. Theoretically any convex shape will suf-

fice, but in practice shapes for which it is trivial to calculate the barycentric

front and back coordinates for each ray are best suited.

Blossoming The most computationally demanding subtask of the visu-

alization is the calculation of the coefficients of the curve representing the

value of f along each ray. We find these coefficients by blossoming and

form an algorithm based on (3).

If recursion had been supported by the GPU, we could have imple-

mented (3) directly. However, current generation GPUs do not support

recursion, so for a given degree d, we use the CPU to unroll the recursion

and generate a long expression of shader source code, which represents

the blossom. We use uniform variables to represent the coefficients of the

surface, and Since the blossom is recalculated for every frame, this allows

us to easily modify the surface by altering the coefficients, allowing for

real-time shape manipulation.

Root finding Because of its simple data structure, we decided to use a

heuristic root finding method based on recursive subdivision of the coeffi-

cients, as described by Schneider [5]. The idea is to recursively subdivide

the polynomial in half by using the de Casteljau algorithm (2). At each

level of recursion we count the number of sign changes in the coefficients,

and if both sets of coefficients contain sign changes we choose to continue

to subdivide the leftmost of them,while storing the other one as we might

need to unwind the recursion if the first one turns out to be a false zero.

If only one set of coefficients has sign changes, we of course choose this

one for further subdivision. This effectively uses the Bézier convex hull

property to ensure that a zero is within an interval given by the coefficient

endpoints.

Since it could happen that there is a false zero we must be able to unwind

the recursion and choose another interval to subdivide. On a regular CPU

this would be trivial, but as the GPU lacks a stack we store the other po-

tential coefficients and the recursion level, and when we detect a false zero

we unroll to the last set of potential coefficients. The number of possible

false zeros is bounded by the degree of the surface, so we know in advance

how many sets of coefficients we might need to store. We terminate the

recursion when we can decide that there is no root (no sign changes of the

coefficients), or when we reach a fixed level of subdivisions.

Conclusion and future work

Our work presents a real-time rendering strategy for algebraic surfaces up

to total degree five. However, as GPU technologies advance we believe

it can be improved further. The two most obvious issues, and thus prime

candidates for further work, are to increase rendering speed and the degree

of surfaces we can visualize.

Using our current root finding algorithm, we are able to stably isolate

roots for polynomials up to degree 10, the limiting factor being that we

run out of temporary registers on the GPU. DX10 GPUs will greatly in-

crease the number of such registers.

Our current approach is computationally intensive, and we are currently

experimenting with other methods, such as B-spline knot insertion[4] or

hybrid methods like Brent-Dekker. However, these methods are very dy-

namic, and effective GPU implementations are not trivial, and will proba-

bly be based on multipass methods.

Our current blossoming algorithm is very poor at utilizing the vector-

ization possible within each fragment pipeline. The approach of [2] uses

tensor contraction, which has a higher computational complexity than our

method, but is very effective on a GPU. Efficient blocking of discrete B-

spline matrices could be a way to get the best of both worlds, and be the

key for effectively rendering high order surfaces.

Acknowledgements

This work was supported by contract number 158911/I30 of The Research

Council of Norway.

References

[1] W. Donnelly. GPU Gems 2, chapter Per-Pixel Displacement Mapping

with Distance Functions, pages 123–136. Addison-Wesley, 2005.

[2] C. Loop and J. Blinn. Real-time GPU rendering of piecewise algebraic

surfaces. ACM Trans. Graph., 25(3):664–670, 2006.

[3] T. Lyche and J. M. Pẽna. Optimally stable multivariate bases. Advances
in Computational Mathematics, 20:149–159, 2004.

[4] K. Mørken and M. Reimers. An unconditionally convergent method

for computing zeros of splines and polynomials. Mathematics of Com-
putation, To appear.

[5] P. J. Schneider. Graphics gems, chapter A Bézier curve-based root-

finder, pages 408–415. Academic Press Professional, Inc., San Diego,

CA, USA, 1990.

Centre of Mathematics for Applications P.O.Box 1053 Blindern,
NO-0316 Oslo, Norway

