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The starting point is:
Geometry representation in CAD-systems

Standardized in ISO 10303 STEP in the early 1990es.

Degree 1 and 2 algebraic curves and surfaces + torus
NonUniform Rational B-Spline (NURBS) curves and surfaces

Piecewise rational/polynomial curves and surfaces
Frequently cubic/bi-cubic, but also higher degrees allowed (and in use)

Volumes represented by description of the outer shell (and inner shell(s))
A shell is represented by a patchwork of surface pieces

A shell is not required to be watertight, small tolerances controlled gaps allowed
A surface patch is limited by edges, the edge is limited by two vertices

Double precision floating point arithmetic used 

The representation is not precise!
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Why is CAD-geometry represented this way?

ISO 10303 standardize the ideas of the late 1980s.
Monolithic 3D applications dominated
3D CAD was still immature
Computers are now at least 3 orders of magnitude faster
Memory sizes are now 2 to 3 orders of magnitude larger

Consequently 3D CAD is far from optimal but
It has penetrated all branches of industry
The industry has invested heavily in CAD
The CAD-industry has merged into a few dominant vendors
Current CAD is good enough for the average user but not for high-end 
industries such as aerospace, automotive and oil & gas industries
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CAD design often produce near singular 
transitions between surfaces

Patchwork of surface to build a larger smooth surfaces
Transition between blending surface and mother surfaces

Design intent and what the user believes happens: Tangent continuity
Result: Small gaps and near tangent continuous
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What does near singular mean?

Seen from far away –
Intersection interval

Zooming by a factor of 10x
No intersection

Many computer displays have less 
than 1200 x 1600 pixels

When visualizing an object of size 1000 
mm, the smallest visible details will be 
approximately 1mm
Production tolerance in most cases 
significantly smaller….
The displayed image also distorted by 
tessellation
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Partial coincidence
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Traditional CAD-type intersection algorithms 
focus on non-singular intersections

An intersection curve between two surfaces is transversal when 
the normals of the intersecting surfaces are non-parallel along 
the intersection curve
Sinha’s theorem (1985):

If two smooth surfaces  S1 and S2 intersect in a common loop then there 
is a point P1 inside the loop in S1, and there is a point P2 inside the loop 
in S2 such that the normal N1 in P1 is parallel to the normal N2 in P2.

If the normal fields of two surfaces do not overlap, no closed 
intersection loop is possible, and the intersection is transversal.

Repeated subdivision of surfaces with overlapping normal fields will, 
provided the intersections curve is transversal, eventually results in 
subproblems where Sinha’s theorem can be applied. (Loop destruction)
However, when the intersection is near singular it will take a very long 
time….
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Singular and near singular intersections

The relative position and orientation of curves and surfaces determines if an 
intersection is:

Transversal
Near singular (tolerance dependent!)
Singular

2 points!
2 points?
1 singular point?
An interval?

2 points?
1 singular point?
An interval?
No point?



9IMA, Non-Linear Computational Geometry,  May 31,  2007

Recursive subdivision to try to make simpler 
subproblems

Each intersection singled out in a simple subproblem
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Recursive subdivision do not efficiently sort 
out all singular or near singular situations

Difficult to decide if sculptured near parallel curves and 
surfaces intersect or not

Deep levels of recursion necessary
Where to subdivide has to be considered with care
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Most CAD-intersection algorithms have no 
quality guarantee

Simplistic algorithms are fast & often produce the correct result
Intersect triangulations of the surfaces
Lattice evaluation – intersect mesh of curves in each surface with the 
other surface to possibly generate points on all intersection branches
Marching/refinement of identified intersection tracks

Recursive algorithms slower, sometimes extremely slow
More calculations, guarantee for clearly transversal intersections
Deep levels of recursion in near singular cases
For singular intersections traditional recursive intersection algorithms will 
not work (well)

Cut off strategies necessary to avoid infinite recursion
Improved approaches needed
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Improvement of intersection algorithms by 
combining parametric and algebraic 
representations

Improved approaches for separating surfaces
Simplification of intersection problems to the parameter domain 
of one of the surfaces
Determine that two surfaces only touch along a boundary curve

Most often an algebraic surface approximating the part of the 
surface addressed suffice.
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Approximate implicitization (Dokken 97)
In stead of the global correct (high degree) algebraic 
representation we want to find an algebraic approximation to 
the curve or surface that is closer than a given tolerance in a 
defined region of interest.

Well behaved numeric method “Approximate Implicitization” have been 
developed

Proven numeric well behaved rounding error
High convergence rates
Use modified LU-decomposition or Singular Value Decomposition

Algebraic degree can be considerably lower than the theoretical exact 
degree. (For bicubic total degree 4 or 6, opposed to the exact degree 18)
Sufficiently efficient to be an efficient tool for determining intersection, 
near intersection or separation of surfaces intersected

The method is an exact implicitization method if proper 
algebraic degree chosen (and exact arithmetic used)
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The approximate implicitization factorization

Assume that the surface p(s,t) has bi-degree (n1,n2)

Assume that q has total degree m and that b is a vector 
containing the unknown coefficients of q

The combination q(p(s,t)) is a polynomial of                      
bi-degree (mn1, mn2)

Collect basis functions of bi-degree (mn1,mn2) in α(s,t)
Then q(p(s,t)) can be factorized

( ) ).,()),(( tstsq T αDbp =



15IMA, Non-Linear Computational Geometry,  May 31,  2007

The factorization

An element in D is the product of a maximum of m
coefficients of p(s,t) and a constant, where m is the total 
degree of q.

If p(s,t) is a Bezier surface of bi-degree (n1, n2) then α(s,t) is 
a Bernstein basis of bi-degree (mn1, mn2).

( ) ).,()),(( tstsq T αDbp =
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Properties of the factorization

If Db=0 and b≠0 then b contains the coefficients of an exact
algebraic representation of total degree m of p(s,t).

If α(s,t) is a Bernstein basis then                        and

Let σmin be the smallest singular value of D, then

Singular value decomposition of  D can be used to find 
approximate solutions 
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The algebraic/parametric combination used 
for separation of surfaces

Let p(s,t), (s,t)∈Ω1 and r(u,v), (u,v)∈Ω2, be two rational surfaces
Decide that two surfaces do not intersect by finding an 
algebraic surface  q(x,y,z)=0 separating the surfaces

q(p(s,t))>c and q(r(u,v))<c.

Find the approximate 
algebraic surface by 
approximate implicitization 
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The algebraic/parametric combination for 
determining the topology of an intersection

The intersection of two 
parametric curves p1(s) and 
p2(t), can be simplified if implicit 
representations of at least one of 
curves exist: q1(x,y)=0 and 
q2(x,y)=0.
The combination q1(p2(t))=0 
transforms the intersection of 
two parametric curves to finding 
the zeroes of an univariate
polynomial
Easily extended to surfaces –
use approximate implicitization 210-1-2
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Special use of approximate implicitization in 
self-intersection

As part of a recursive surface self-intersection algorithm, 
adjacent surface subpatches have to be intersected

There will always be an intersection along the common edge
An approximate implicit surface following the normal of the surface (or a 
fixed direction) along the edge between the subpatches is made, and 
used for deciding if the edge intersection is the only intersection between 
the subpatches
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An example where traditional recursive 
intersection algorithms work well

Intersection of a plane 
parametric surface and a 
varying parametric surface 
producing many 
intersection loops
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Singular intersection curves and loops
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Surface self-intersection can give complex 
intersection topology

Self-intersecting bi-cubic B-spline 
surfaces.

39 × 70 polynomial pieces
Single knots

Courtesy think3

Wire frame of surface with self-intersection 
curves. The self-intersection curves displayed 
alone to the right



23IMA, Non-Linear Computational Geometry,  May 31,  2007

Parameter domain self-intersection trace

Singular points (vanishing normal) Singular point
Ordinary point
Curve
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More details
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Intersection within intersection

A small self-intersection 
loop very close to the 
global self-intersection
The distance between 
the loops is 1/10000 of 
the width of the 
parameter domain.
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The GAIA Surface Self-intersection code
Originally we aimed at two types of self-intersections

Global. Two completely different pieces of the surface intersect. Provided 
that the surface is split into relevant sub surfaces, global self-intersections 
can be computed as surface-surface intersections..
Local. A local self-intersection will appear as a small loop or a cusp. The 
surface normal will become very small in the vicinity of a local self-
intersection

During testing we realized that cusp ridges (curves where the surface normal 
vanish) are more frequent than expected in self-intersection

The ridges do not in general follow constant parameter lines
Offset surfaces, duct type surfaces

The self-intersection code uses the GAIA surface surface intersection 
code and has posted new challenges to this code
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Future work

Improve the intersection code by:
Further testing and debugging
Improve speed of approximate implicitization
Implement new strategies for the combination of recursive subdivision 
and approximate implicitization
GPU-acceleation

To better understand what is going on we will in our Paralle3D 
project (www.sintef.no/parallel3d) 

Improve visualization tools to be able to zoom into more detail. The 
current viewers do not allow fine enough tessellation
Combine viewers for the parameter domain and 3D
Combine viewers for algebraic and parametric surfaces


