
MDE Adoption in Industry: Challenges and Success
Criteria

Parastoo Mohagheghi1, Miguel A. Fernandez2, Juan A. Martell2,
Mathias Fritzsche3 and Wasif Gilani3

1 SINTEF, P.O.Box 124-Blindern, N-0314 Oslo, Norway
parastoo.mohagheghi@sintef.no

2 Telefónica Research & Development, Valladolid, Spain
mafg@tid.es, jamartell@gfi-info.com

3 SAP Research CEC Belfast, United Kingdom
{mathias.fritzsche, wasif.gilani}@sap.com

Abstract. Model-Driven Engineering has been promoted for some time as the
solution for the main problem software industry is facing, i.e. complexity of
software development, by raising the abstraction level and introducing more
automation in the process. The promises are many; among them improved
software quality by increased traceability between artifacts, early defect
detection, reducing manual and error-prone work and including knowledge in
generators. However, in our opinion MDE is still in the early adoption phase
and to be successfully adopted by industry, it must prove its superiority over
other development paradigms and be supported by a rich ecosystem of stable,
compatible and standardized tools. It should also not introduce more
complexity than it removes. The subject of this paper is the challenges in MDE
adoption from our experience of using MDE in real and research projects,
where MDE has potential for success and what the key success criteria are.

Keywords: Model-driven engineering, challenges, domain-specific modeling,
performance engineering, traceability.

1 Introduction

Today’s software systems are complex in nature; the size has been growing because
of the increased functionality, heterogeneity is also becoming a bigger concern as
systems are built from several systems or include legacy code, systems are distributed
over multiple sites and there are new requirements such as dynamicity and autonomy
(self-* properties, for example self-healing). Handling each of these challenges
requires specific approaches which often include domain-specific knowledge and
solutions. However, based on the experience gained from multiple domains and
projects, some solutions may be identified as beneficial to complex software
development in general.

Model-Driven Engineering (MDE) is an approach built upon many of the
successful techniques applied in software engineering: It can be characterized by: a)
raising the abstraction level by hiding platform-specific details ; b) taking advantage

of models in all the phases of software development to improve understanding; c)
developing domain-specific languages and frameworks to achieve domain
appropriateness; and d) taking advantage of transformations to automate repetitive
work and improve software quality [6]. These are all techniques useful for complex
system development and therefore one may expect rapid adoption of the paradigm by
industry. So far, we cannot see such wide adoption, as also confirmed by a review of
industrial experiences presented in [7]. In fact, and based on the model of technology
adoption life cycle presented in [8], we think that MDE is still in the early adoption
stage. Early adopters do not rely on well-established references in making their
buying decisions, preferring instead to rely on their own intuition and vision.
However, they are keys to opening up any high-tech market segment. To be accepted
by the majority, the industry must gain confidence on the promises of MDE and have
access to proper tools and experts.

There are many challenges in complex system development, such as managing
requirements, which MDE is not a direct answer to, but it might facilitate their
handling by providing mechanisms for easy traceability between artifacts. There are
also challenges such as dealing with legacy code that may be difficult to handle and
must be either worked around or, better yet, integrated into the MDE approaches. But
there are challenges that MDE may provide an answer to based on the MDE core
practices (such as extensive modeling and the usage of transformations) as discussed
in [6].

The European research projects MODELWARE1 and its continuation
MODELPLEX2 have focused on MDE approaches and tools with the goal of making
them suitable for complex system development. Some of the companies involved in
these projects have experience from applying MDE in real projects while others think
that MDE is not yet mature enough to be taken from research projects to industry
production. This paper therefore elaborates on where we can expect added value from
MDE and what the barriers are from experiences gained in the context of these
projects. In the remainder of this paper we discuss industry expectations and
experience in Sections 2 and 3 and conclude our discussion in Section 4.

2 SAP Experience

SAP has already started working towards applying MDE concepts, and currently
employs models in various stages of business application development. The tool
called NetWeaver BPM within the Composition Environment [10] is one example
where MDE concepts are applied for efficient development of Composite
Applications. Composite Applications are self-contained applications that combine
loosely coupled services (including third party services) with their own business
logic, and thereby provide user centric front-end processes that transcend functional
boundaries, and are completely independent from the underlying architecture,
implementation and software lifecycle. With Composition Environment even the non-
technical users, such as business domain experts, consultants, etc., having no

1 http://www.modelware-ist.org/
2 http://www.modelplex-ist.org/

programming skills, are able to model and deploy customized applications suited to
their specific business requirements.

Based on our experience [5] with the currently employed MDE tools for business
processes, such as the Composition Environment, we identified the general need of
supporting non-technical users with regards to non-functional requirements, such as
the impact of their design decisions on performance, etc. Within the context of
performance engineering, for instance, such a support means guidance towards better
design / configuration that actually meets the timelines, and optimized resource
mapping against each activity in the business process.

We implemented such performance related decision support as an extension of
MDE. By implementing this extension, named Model-Driven Performance
Engineering (MDPE), we realized the need for supporting requirements with respect
to non-functional aspects, especially performance. The implementation of MDPE
heavily uses the MDE concepts such as meta-modeling, transformations, model
weaving and mega-modeling. For instance, ten different meta-modeling languages are
employed in order to make the process usable for a number of domain-specific
modeling languages. During the implementation of MDPE, we recognized that the
application of MDE concepts enabled us to focus on the creative tasks of development
rather than repetitive coding. For instance, code generation for our meta-models saved
us significant development effort. The only place where a significant amount of
coding effort was required was for the integration of MDPE into the existing tool
infrastructure.

Meta-model extension is the generally employed technique for model annotations,
such as done with profiles in the case of UML [3]. However, this is not applicable
while dealing with the proprietary models. The application of model weaving enabled
us a high degree of flexibility as we are able to annotate any kind of proprietary
model with the help of a generic editor [3]. Higher-order transformations are used to
enable traceability in our approach [4]. Additionally, mega-modeling enables us to
locate our model artifacts, such as the tracing models related to the models in our
transformation chain [1].

As for the challenges, we experienced that MDE concepts are on the one hand very
systematic and efficient, but on the other hand also difficult to understand for
developers as they require quite a high level of abstraction and training. Also, the
MDE tool support is sometimes not mature enough. Especially the available tooling to
define model transformation chains lacks capabilities of modern IDEs (Integrated
Development Environments), which could decrease the development time for model
transformations significantly.

Concluding, based on the experiences gained with the development of MDPE, we
are optimistic regarding the capabilities of MDE in case the tool support improves,
and the MDE community meets the challenges associated with the MDE process,
such as providing support for dealing with non-functional aspects of system
development.

3 Telefónica Experience

In [2], we have discussed the experience of Telefónica in moving from a code-centric
to a model-centric software development. Earlier efforts in modeling failed due to the
complexity of UML, the lack of proper tools and the inability to maintain models in
synch with code, among other issues. Due to the above problems with UML, we
decided to develop our own programming tools and frameworks addressing the
problem domain. But without any industry standards to rely on, this approach had no
future in the long term and was also difficult to use for non-technical staff, such as
telecom domain experts, as it did not have the required abstraction level.

This was an experience from eight years ago, but not so many things seem to have
fundamentally changed. What we look for is a domain-specific modeling (DSM)
language integrated in a development environment that will permit the modeling of
our basic domain concepts, such as interfaces, devices, networks, protocols and
services. We also emphasize adhering to current industry standards in the domain,
since we now look for a domain-specific solution, not a company-wide solution.
Other requirements are: a) the ability to model in multiple abstraction levels, hiding
details as desired; b) the integration of model verification tools based on OCL or other
constraint languages and c) the composition / weaving of the models at run time to
reflect the changes in the network’s operational status. Some of these approaches are
further discussed in [9].

In the road toward these objectives we foresee numerous challenges. First of all,
the UML standard has evolved but, with this evolution, the syntax has become even
more complex and the necessary supporting mechanisms and tools for dealing with
this added complexity are not yet available. Even something as conceptually simple as
exporting a UML diagram from one tool to another has not been accomplished yet
with ease. On the other hand, developing a DSM solution requires high skills related
to meta-modeling and tool development. Also a big concern with Domain-Specific
Languages (DSLs) is getting the people in that domain to agree upon a standard
syntax. Another challenge is having that DSL interact properly with anything outside
of its domain, having a different underlying syntax to that of other languages.

Model synchronization (for example applying multiple profiles to a source model)
and roundtrip engineering are yet to be addressed successfully and mechanisms for
dealing with very large and complex models, such as hierarchical models, traceability
and model management in general are also in an inception phase right now, at least
regarding to the aspect of tool support. The evolution of meta-models, in a business as
dynamic as ours, is also a big concern and tools have much to improve in order to
adequately manage variability at meta-model level and not only at model level. All
these features are important to make a full-fledged MDE process work in complex,
real-life projects.

Another challenge for organizations wanting to get started in MDE, closely related
with the previous idea of managing all these artifacts, is that they may end up dealing
with more complexity than anticipated at first. From our experience in the field we
have gotten the impression that, if not adequately managed, the development of
complex systems with MDE gets treated with more complexity. The underlying
problem here is: are the techniques for handling complexity in danger of making the
software engineering process itself too complex? To adequately address complexity

we have to substitute it for something simpler not for something different but equally
complex.

It is our opinion also that there are some basic milestones a new technology has to
go through for it to be considered mainstream. To start with, we need a proper context
for it to flourish and be nurtured in. The fabric of this context is made of the proper
professionals with the proper knowledge and expertise and supporting material which
helps in turn to create these professionals. We are seeing shortcomings in this regard
so far. The community is in fact there and growing but perhaps it is not reaching
critical mass yet. We also see a gap between the academic and industrial worlds that
needs to be bridged. In the past, new paradigms have been promoted by well-known
professionals lending credibility and raising interest in the new approach. This has to
be accompanied by the development of high-quality literature, tutorials and proper
material to draw new professionals in.

The main question that an organization has to ask itself is “do I really need MDE?”
The second question relates with its ability to adapt its processes to the ones needed
from an MDE point of view (partially discussed also in [2]), adapt their staff to new
ways of looking at problems and create new layers of software development
supporting all the aspects MDE has to offer. Companies may be reluctant to change
either their structure or part of it.

To conclude, it is worth mentioning that, apart from software factories for product
line engineering (PLE), we have not seen clear evidence of other good candidates for
MDE to be fully applied to, as a complete lifecycle solution. We feel that it can be
partially applied, though, to some other scenarios like large-scale integration of
heterogeneous systems, as it is the case with Telefónica’s Operating Support Systems
(OSS), area in which we hope to start making some progress in the short term with
Model-Based Testing (MBT).

4 Conclusions

Probably most companies cannot take the risk of adopting MDE end-to-end in large-
scale projects from scratch. They should look for areas of improvement and take the
approach incrementally and integrated with their own development environment. This
is also the best way to train people. There is an initial high cost related to developing
or adopting tools and transformations. MDE is a long-term investment and needs
customization of environment, tools and processes, and training. For companies that
have a product line, MDE can pay off since this cost is amortized over several
projects. For one-of–a-kind projects this will not pay in most cases. Despite
differences in domain and the type of systems developed in the two companies, there
are common challenges as described in this paper. The most important one is the
complexity of developing an MDE environment tailored to the company needs. This
environment requires:

• Developing proper languages for communication between technical and non-
technical experts and for modeling various aspects. One of the successes of MDE
lies in bridging the gap between technical and non-technical experts. The major
challenge here is to have the required language engineering expertise since

creating own profiles or meta-models are difficult and for complex systems we
probably need several languages. Hence more domain-specific meta-models and
profiles are needed that are supported by tools and may be reused. The current
tools for developing meta-models and editors are not user friendly, the learning
curve is steep and the documentation and support is not satisfactory.

• Several tools are required for modeling, model-to-model and model-to-text
transformation, verification and simulation, and other tools to store, reuse and
compose models. There is no tool chain at the moment and companies must
integrate several tools and perform adaptation themselves.

Both of the above requirements put a high burden on companies that traditionally
used third-party tools for modeling and performed programming by hand. Training is
another major challenge here. We see advantages in gradual introduction and support
by management, as well as in the creation of teams of experts that can give support
and create the necessary tools for MDE adoption in the whole company.

Acknowledgments. Part of the ideas presented in this paper are based on conclusions
obtained in the MODELPLEX project (IST-FP6-2006 Contract No. 34081), co-
funded by the European Commission as part of the 6th Framework Program.

References

1. Barbero, F. Jouault, J. Bezivin: Model Driven Management of Complex Systems:
Implementing the Macroscope's Vision. In: 15th ECBS'08, IEEE Press, pp. 277--286 (2008)

2. Fernandez, M.: From Code to Models: Past, Present and Future of MDE Adoption in
Telefónica. In: 3rd Europen Workshop From Code Centric to Model Centric Software
Engineering: Practices, Implications and Return on Investment (C2M), co-located with
ECMDA 2008, pp. 41—51 (2008)

3. Fritzsche M., Johannes J., et al: Systematic Usage of Embedded Modelling Languages in
Model Transformation Chains. Accepted at the Software Language Engineering Conference,
SLE’08 (2008)

4. Fritzsche, M., Johannes, J., Zschaler, S., Zherebtsov, A., Terekhov, A.: Application of
Tracing Techniques in Model-Driven Performance Engineering. In: ECMDA-FA 4th
Workshop on Traceability (2008)

5. Fritzsche, M., Gilani, W., Fritzsche, C., Spence, I.T.A, Kilpatrick, P., Brown, T.J.: Towards
utilizing Model-Driven Engineering of Composite Applications for Business Performance
Analysis. In: ECMDA-FA, LNCS 5095, pp. 369—380 (2008)

6. Mohagheghi, P.: Evaluating Software Development Methodologies based on their Practices
and Promises. In Proc. Somet’08: New Trends in Software Methodologies, Tools and
Techniques, IOS Press, ISSN 0922-6389, pp. 14—35 (2008)

7. Mohagheghi, P., Dehlen, V.: Where is the Proof? A Review of Experiences from Applying
MDE in Industry. In ECMDA-FA 2008, LNCS 5095, Springer, pp. 432—443 (2008)

8. Moore, G.A.: Crossing the chasm: Marketing and Selling High-Tech Products to Mainstream
Customers. HarperBusiness Essentials, 2nd edition (2002)

9. Pickering B., Fernandez M., Castillo A., Mengusoglu E.: A Domain-Specific Approach for
Autonomic Network Management. In: 3rd IEEE MACE Workshop (2008)

10.Snabe, J.H., Rosenber, A., Møller, C., Scavillo, M.: Business Process Management: The
SAP Roadmap, SAP Press, ISBN 978-1-59229-231-8 (2008)

