
Existing Model Metrics and Relations to Model Quality

Parastoo Mohagheghi, Vegard Dehlen
SINTEF- P.O.Box 124- Blindern, N-0314 Oslo, Norway

{parastoo.mohagheghi, vegard.dehlen}@sintef.no

Abstract

This paper presents quality goals for models and

provides a state-of-the-art analysis regarding model
metrics. While model-based software development
often requires assessing the quality of models at
different abstraction and precision levels and
developed for multiple purposes, existing work on
model metrics do not reflect this need. Model size
metrics are descriptive and may be used for comparing
models but their relation to model quality is not well-
defined. Code metrics are proposed to be applied on
models for evaluating design quality while metrics
related to other quality goals are few. Models often
consist of a significant amount of elements, which
allows a large amount of metrics to be defined on
them. However, identifying useful model metrics,
linking them to model quality goals, providing some
baseline for interpretation of data, and combining
metrics with other evaluation models such as
inspections requires more theoretical and empirical
work.

1. Introduction

Software metrics has a long history and a wide
range of metrics are defined. Several studies have
shown that software metrics can help in improving the
software development process, understanding
complexity of software, discovering and predicting
faults and fault-prone software units, allocating
resources and estimating development and
maintenance efforts [11]. During the end of the 1990’s
and the beginning of the new millennium, models and
modeling – especially driven by the development of
UML (Unified Modeling Language) and, later, MDA
(the OMG’s Model Driven Architecture1), Mode-
Driven software Development (MDD) and MDE

1 http://www.omg.org/mda/

(Model Driven Engineering) – became increasingly
important in the software engineering community.

However, the role of models varies a lot in software
development approaches applied in companies. Fowler
has for example identified three modes of UML use2:
UMLAsSketch, UMLAsBlueprint and
UMLAsProgrammingLanguage. The emphasis of
sketches is on selective communication rather than
complete specification. Blueprints are developed by a
designer whose job is to build a detailed design for a
programmer to code up and thus models are required
to correct and complete. In the third mode, semantics is
added to UML models to make them executable. Here
models should have the quality required for the
purpose of execution. Brown has also discussed the
spectrum of modeling as presented in [29]; i.e., from
code-centric approaches where models are used to
visualize the design, to when models are used as
sketches of software to be developed (basic modeling),
when the code and the model coexist and one is
synchronized once the other is updated (round-trip
engineering), and to approaches that are model-centric
and most (or all, if possible) of the code is generated
from models or models are executable. We call the
approaches where models are widely used in software
development and for more than visualizing the design
for model-based software development, which also
covers MDE. In MDE models are primary software
artifacts and are subjects of transformations. Besides, a
system is often modeled at several different abstraction
levels and from multiple viewpoints3.

There has been some research on the quality of
models as sketches but the main focus has been on the
communication perspective. Since in model-based
software development models play a central role in
most or all development phases and several artifacts
may be generated from models, researchers have
started working on other quality aspects of models as

2 See his blog http://martinfowler.com/bliki/
3 We use the term MDE in the remainder of this paper
to cover also MDA and MDD.

well; encapsulated often in so-called quality models as
discussed in [25]. Model metrics are consequently
useful as they allow developers to predict and assess
the characteristics of models as representations of the
software system, and the quality of software systems
themselves at an earlier phase of development.

In the QiM4 (Quality in Model-driven engineering)
project at SINTEF we have developed a language and
tool for defining quality models in model-based
software development [24]. A quality model in this
context is a set of quality goals and relations between
them defined by some stakeholders based on the
purposes of modeling, and other elements such as
practices (or means) to achieve quality and evaluation
methods. These quality models can have models,
modeling languages, modeling tools, modeling process
or even transformations as targets for quality
assessment and improvement.

This paper presents our findings from a literature
review whose aim has been to summarize state of the
art related to model metrics and relate them to model
quality goals5. Section 2 presents the goals of
measurement at model level while Section 3 discusses
differences between collecting metrics from models
and source code. Section 4 gives an overview of model
metrics detected so far in the reviewed literature.
Finally, Section 5 is conclusion and discussion of gaps
and ideas for future work in order to get feedback from
the workshop participants.

2. Goals of measurement at the model level

Models often consist of a significant amount of
elements, which allows a large amount of metrics to be
defined on these [19]. E.g. UML contains elements
such as use case, classes, associations, messages,
actions, methods and states. In addition, models can
have different representations, like diagrams, XMI, or
mappings to other models. The challenging task,
however, is to define useful metrics. To select
appropriate metrics on this huge amount of
information, we need to define the goals of
measurement.

A framework that can be used to derive metrics that
serve specific goals is the Goal-Question-Metric
paradigm developed by Basili et al. [6]. GQM starts by
expressing the overall goals of the measurement. Then
questions are generated whose answers must be known
to determine if the goals are met. Finally, each

4 http://quality-mde.org/
5 The details of this review regarding publication
channels and results will be published in future.

question is analyzed in terms of what measurements
are needed to answer the question. However, GQM is a
generic approach and should be related to specific
quality goals for models. Others have therefore defined
quality models with quality goals for models in mind,
as discussed in [25]. One example is the framework
presented by Lange and Chaudron in [18] which
relates modeling purposes to model characteristics (or
model quality goals as we call them), and to some
metrics and rules, as depicted in Figure 1 and Table 1.

Primary use Purpose Characteristic

Complexity

Balance

Modularity

Communicativeness

Correspondence

Self-descriptiveness

Conciseness

Precision

Esthetics

Detailedness

Consistency

Completeness

Modification

Testing

Comprehension

Communication

Analysis

Prediction

Implementation

Code generation

Maintenance

Development

Figure 1. Modeling purposes and model
characteristics presented in [18]

In Table 1 we have only shown four out of the 18

metrics and rules proposed in [18]. Here “DIT” stands
for “Depth of Inheritance Tree”, “Coupling” is the
number of other classes a class is related to, “NCU” is
the number of classes per use case and “NUC” is the
number of use cases per class.

Table 1. Examples of relations between
metrics and model characteristics from [18]

M
od

ul
ar

ity

C
om

pl
ex

ity

C
om

m
un

it
ve

ne
ss

D
et

ai
le

dn
es

s

B
al

an
ce

C
on

ci
se

ne
ss

DIT √ √ √ √ √ √
Coupling √ √
NCU √ √ √ √
NUC √ √ √ √

A metric or rule can be relevant for several
characteristics, a characteristic can be relevant for
several purposes, and so on. Metrics in this framework

are mainly size metrics (such as NUC) or on the
detailed design level and do not cover all the purposes
of modeling. Some characteristics such as self-
descriptiveness are not related to any metrics but to
naming conventions and modeling rules and are
therefore best assessed by inspections.

Model quality goals are included in several other
papers as well and various definitions of them are
given. We have done a literature review to find what
model quality means [25] and have identified six
classes of model quality goals collectively called as the
6C (model quality) goals, which are depicted in Figure
2 and defined as:

Analysis &
generation

tools

Real World
(domain and
organization)

Model

Modelling
language

Modelling
tool

Modeller
perceives elicits &

develops

completeness
correctness

confinement
changeability

Rules
&

guidelines

uses uses

Code

comprehensibility

co
m

pr
eh

en
si

bi
lit

y

correctness
corre

ctness

uses generates

Human users

uses

uses

develops

consistency

Figure 2. The 6C goals in model-based
software development with transformation of
real world to running software

• Correctness; as including correct elements and
correct relations between them and not violating
rules and conventions, for example adhering to
language syntax, style rules or naming guidelines.

• Completeness; as having all the necessary
information and being detailed enough; according
to the purpose of modeling.

• Consistency; as no contradictions in the model. It
covers consistency between views or diagrams
that belong to the same level of abstraction or
development phase (horizontal consistency), and
between models or diagrams that represent the
same aspect, but at different levels of abstraction
or in different development phases (vertical
consistency). It also covers semantic consistency
between models; i.e., the same element does not
have multiple meanings in different models.

• Comprehensibility; as being understandable by
the intended users; either human users or tools.
For human users, several aspects impact
comprehensibility such as aesthetics of diagrams,

organization of a model, model simplicity (or
complexity), conciseness (expressing much with
little), and using concepts familiar for users.

• Confinement; as being in agreement with the
purpose of modeling and the type of system; such
as including relevant views and being at the
correct abstraction level.

• Changeability; as supporting changes so that
models can be improved and evolved rapidly and
continuously.

Note that the above quality goals focus on the
quality of models describing the system and not the
quality of system design and implementation.

Some model quality goals may be measurable by
metrics while others may not. In the next section we
discuss differences between metrics at the model and
code level.

3. Differences between metrics at model
and source code level

What we measure and why we measure it differs
between models and source code.

Firstly, models and source code often differ in
abstraction level, precision, completeness, consistency
and correspondence to the ultimate system [18]. Thus
metrics from models cannot be directly transferred to
code or vice versa. Even in MDE approaches where
models are the primary artifacts of software
development and source code is generated from them,
some details are added during transformations.

Secondly, the goals of measurement are also often
different: If modeling is performed for capturing,
abstracting and communicating domain knowledge,
requirements and main characteristics of the system
under development, model metrics should focus on
characteristics important earlier in the development life
cycle. Examples of such characteristics are the quality
of requirements, the correspondence between a model
and the problem domain or the system it presents, and
the usefulness of models for communicating
requirements and design. On the other hand, design
metrics are often collected to measure the quality of
the design and implementation at the late stage of
development.

Thirdly, even same quality goals mean differently
for different models. For example completeness of a
domain model means including all the necessary
elements of the domain while at the design level it
means including all the details necessary for code
generation.

Fourthly, often a system is modeled in several
diagrams from multiple viewpoints and it is necessary

to define which diagram contains the right information
for evaluating a quality goal. Sometimes one should
also evaluate the relation between these diagrams as
well such as their relative size, detailedness and
consistency.

 Finally, metrics collected from source code are
often language dependent while models offer the
possibility of evaluating some characteristics
independent of the implementation language. We also
have the possibility to evaluate some characteristics
both before and after adding implementation details,
such as dependencies between the elements of a model.

Despite these differences, little work has been done
to define specific model metrics while the existing
work has so far mainly focused on transferring source
code metrics to models. In the next section we present
an overview of existing work on model metrics.

4. Existing model metrics

Because of the differences between models and
source code as discussed in the previous section, not
all the metrics defined for source code can easily be
transferred to models. Even so, recent literature on
model metrics shows that a significant amount can be
reused. In addition, since UML is almost the de facto
modeling language in industry, researchers have
defined several metrics suites targeting UML models
directly. Some of these metrics are applicable to other
modeling languages as well while approaches such as
Domain-specific Modeling (DSM) may require
additional metrics. In the following we provide an
initial classification of model metrics detected in
literature so far.

4.1. Model size metrics

Metrics targeting models are characterized by
mostly being size metrics, that is, they count the
number of classes, use case, associations and so on.
These size measures are proposed to be used to
measure several characteristics of models. Note that
model size metrics here does not include
characteristics inside elements (such as the number of
methods of a class) which are related to structural
complexity and are covered in the next section.

Lange defines the goals of measuring model size as
[19]:

• Comparing models. Comparing the size of
models, e.g. different versions of the same model,
different models for the same system or models
for different systems.

• Measuring progress. Answering questions like
‘How fast is our model growing?’.

• Prediction. Predicting for example the effort
needed for a project or the size of the
implementation of the system. Note that size is the
main driver in most effort estimation models such
as in COCOMO [8].

• Description. Describing the characteristics of a
model. For example, in empirical studies it is
necessary to describe carefully characteristics of
the model under study.

Based on the four dimensions of source code size
defined by Fenton and Pfleeger [11] – length,
complexity, functionality and reuse – Lange proposes
five dimensions for UML2 model size [19]:

1. Absolute size. Metrics that measure a model’s
absolute size is the number of elements, like use
cases, sequence diagrams or classes in a diagram.

2. Relative size. This dimension represents ratios
between absolute size metrics, such as the number
of sequence diagrams divided by the number of use
cases, and can be used to compare proportions of
different models with each other and to give an
indication about the completeness of the models.

3. Complexity. Complexity of the describing model
(as opposed to the described system) is suggested to
be measured as a subset of the absolute and relative
size metrics, although no specific metrics is
proposed. The system complexity on the other hand
should be measured by commonly accepted
complexity metrics such as the metrics suite of
Chidamber and Kemerer [10].

4. Functionality. Lange suspects that there exist
relations between functionality and model size
metrics that say something about a model’s
completeness or the model’s level of abstraction.
Established metrics for functionality are Function
Points [2] and Object Points [8]. Specific Use Case
Points are also proposed by Karner, who employs
use cases as a representation of system functionality
and uses them for estimating effort in a project [16].

5. Reuse. According to Lange, “A reuse metric can
only be applied to a UML model that makes use of a
profile to denote reuse (such as OMG’s Reusable
Asset Specification [26]).” A simple metric could be
the percentage of reuse.

Lange et al. have developed a tool called
MetricViewEvolution that collects some size metrics
from UML models and visualizes them in order to help
analysis [20].

Kim and Boldyreff also propose size metrics on
classes, messages, use cases and on models as a whole

[17], such as the number of objects in a model. These
metrics are used to measure various characteristics at
an early phase of development, without being tied to
any specific characteristics or design principles.

4.2. Metrics on design and implementation
models

This class covers metrics proposed to measure the

quality of detailed design and implementation which is
often discussed to be important for later maintenance.
For example Genero et al. relate size and structural
complexity metrics (which are measured based on the
number of relations) to two main sub-characteristics of
the maintainability of class diagrams: understandability
and modifiability [14].

Here it is most reuse of source code metrics, for
example metrics for Object-Oriented (OO) systems.
Most existing metrics for OO systems were defined
during the 90’s and were targeted towards source code.
These metrics are often linked to established design
patterns and best practices and provide measures for
analyzing whether or not a software system satisfies
these patterns and practices. An example of one such
best practice is to avoid heavy coupling between
classes, as it makes the source code difficult to
understand and maintain. Therefore coupling is
included in most OO metrics suites [4, 9, 10, 15 and
21]. Also receiving notable focus is inheritance [1, 4,
10, and 22], cohesion [4 and 10], polymorphism [1],
information hiding [1 and 4] and complexity [10 and
21]. OO metrics suites have been suggested as
applicable for UML models in [5, 13, 23 and 30].

Finally, Reijers describes a cohesion metric that can
be used to evaluate operations in a workflow and take
decisions on whether to split or combine them, which
is related to the quality of design [27].

4.3. Other metrics

In this section we include metrics proposed for
models other than size and design metrics.

Some work cover detecting defects in UML models
related to consistency between models or the degree of
completeness. For example Berenbach has developed a
tool called DesignAdviser that reports defects such as
“missing associations” and “class not instantiated” [7].

Since one of the main purposes of modeling is
improved communication between stakeholders,
metrics related to comprehensibility and aesthetics of
models should receive attention while few of them are
defined so far. As examples we can mention counting
the number of elements or crossing lines in a diagram

as proposed in [18]. In [12] the authors propose
measuring state diagram complexity by counting the
number of entry and exit actions, number of activities,
states and transitions. They discuss that these metrics
correlate to the understandability aspect of state
diagrams.

For the purpose of generating artifacts from models,
Solheim and Neple have proposed “transformability”
(including attributes such as completeness and
precision) and “maintainability” (including traceability
and well-designedness) as model quality goals [28],
but their work do not include metrics.

4.4. Summary regarding existing metrics

We discovered three categories of metrics defined

for models so far: size metrics, design metrics, and a
few model-specific metrics related to
comprehensibility of models. From model size metrics,
“relative size metrics” are specific to UML or
modeling languages that include several diagrams.

Interpretation of metrics is a subject that is less
discussed. It should be covered by linking metrics to
applicable theories or best practices (as done for source
code metrics), empirical studies and finding some
company baseline. Counts of elements and relations do
not often reveal substantial information by themselves
unless analyzed, and often linked to other attributes.
As an example, counting the number of interactions in
a class, as in [15], can say something about coupling,
or some metrics may be related to complexity of
design as discussed in [14]. Berenbach writes that
metrics such as inheritance depth, arguments in a class
method or methods in a class model, have been
understood for quite some time. What is still not well
understood is what constitutes a “bad” lower or upper
limit to a metric [7].

Some quality goals are most important for models
developed and used early in the development life cycle
(conceptual models, requirement models and so on);
such as comprehensibility (being self-descriptive, nice
to see, conciseness etc.) and covering the domain or
requirements. For these models we detected a few
metrics related to comprehensibility and some size
metrics which are applicable for evaluating
completeness and high-level architecture quality. Other
evaluation methods such as inspections and involving
users or domain experts are proposed in literature for
evaluating the quality of such models as well, although
not covered here.

Models developed and used later for detailed design
and implementation should be correct, complete,
consistent and changeable, especially if they are used
for generating source code. Again size metrics can be

used for evaluating completeness and tools can detect
or prevent inconsistencies and some violation of rules
(related to correctness). Design metrics such as the OO
ones are proposed to be applied on models to evaluate
the quality of design. Inspecting models is also an
effective method for detecting defects.

From analysis of literature, we have also identified
the need for maintenance of models covered in
“changeability” [25] or “maintainability” [28] quality
goals. Related metrics may be those regarding
organization of a model such as the number of use
cases or packages.

Visualizing metrics can help in analysis [20], and
tools detecting and reporting defects can improve the
quality of models [7]. However, we do not see wide
industrial usage of such tools yet.

5. Conclusions and future work

The purpose of this work has been to present on-
going work on model quality and discuss the use of
metrics for assessing quality. We presented an
overview of proposed metrics in literature and some
examples of usage. Some identified research gaps are
defining metrics for early models, linking model
metrics to quality goals by using theories or best
practices (why and to what degree a metrics can
measure if a given model fulfills a quality goal),
collecting empirical data that helps in interpreting
metrics, and providing some baseline data. There are
also guidelines for developing high-quality UML
models such as in [3, 7 and 31] which may provide a
base for specifying new metrics.

Some quality goals and metrics presented in this
paper are integrated in our work on the MODELPLEX
project (MODELing solution for comPLEX software
systems)6 where a set of research questions and
evaluation criteria are defined for evaluating the
impact of MDE tools and technologies on project and
product characteristics in four industrial case studies,
including the quality of models. We will also take
advantage of other evaluation methods and integrate
them all in a quality model for models as part of the
QiM project.

Acknowledgments. This work has been co-funded
by the Quality in Model-driven engineering (QiM)
project and the European Commission within the 6th
Framework Programme project MODELPLEX
contract number 034081.

6 https://www.modelplex.org/

6. References

[1] B.F. Abreu, and W. Melo, “Evaluating the Impact of
Object-Oriented Design on Software Quality”, Proc. 3rd
International Metric Symposium, 1996, pp. 90-99.

[2] A.J. Albrecht, “Measuring Application Development
Productivity”, In Tutorial Programming Productivity: Issues
for the Eighties, IEEE Computer Society, 1986, pp. 35-44.

[3] S.W. Ambler, The Elements of UML 2.0 Style. Cambridge
University Press, 2005.

[4] J. Bansiya, and Davis C., “A Hierarchical Model for
Object-Oriented Design Quality Assessment”, IEEE
Transactions on Software Engineering 28(1), 2002, pp. 4-17.

[5] A.L. Baroni, S. Braz, and B.F. Abreu, “Using OCL to
Formalize Object-Oriented Design Metrics Definitions”,
Proc. 6th ECOOP Workshop on Quantitative Approaches in
Object-Oriented Software Engineering (QAOOSE’02), 2002,
11 p.

[6] V.R. Basili, G. Caldiera, and H.D. Rombach, “The Goal
Question Metric Paradigm”, In Encyclopedia of Software
Engineering, volume 2, John Wiley and Sons, 1994, pp. 528-
532.

[7] B. Berenbach, “Evaluation of Large, Complex UML
Analysis and Design Models”, Proc. 26th Int’l Conference
on Software Engineering, 2004, pp. 232-241.

[8] B.W. Boehm, E. Horowitz, R. Madachy, D. Reifer, B.K.
Clark, B. Steece, A.W. Brown, S. Chulani, and C. Abts,
Software Cost Estimation with Cocomo II. Prentice Hall,
2000.

[9] L. Briand, W. Devanbu, and W. Melo, “An Investigation
into Coupling Measures for C++”, Proc. 19th International
Conference on Software Engineering, 1997, pp. 412-421.

[10] S.R. Chidamber, and C.F. Kemerer, “A Metrics Suite
for Object-Oriented Design”, IEEE Trans. on Software
Engineering 20(6), 1994, pp. 476–493.

[11] N.E. Fenton, and S.L. Pfleeger, Software Metrics; a
Rigorous and Practical Approach, Thomson Computer
Press, 2nd Edition, 1996.

[12] M. Genero, D. Miranda, and M. Piattini, “Defining and
Validating Metrics for UML Statechart Diagrams”, Proc.
QAOOSE'02. 2002, 18 p.

[13] M. Genero, M. Piattini, and C. Calero, “A Survey of
Metrics for UML Class Diagrams”, Journal of Object
Technology 4 (9), 2005, pp. 59-92.

[14] M. Genero, E. Manso, A. Visaggio, G. Canfora, and M.
Piattini, “Building Measure-Based Prediction Models for
UML Class Diagram Maintainability”, Empirical Software
Engineering Journal 12(5), 2007, pp. 517-549.

[15] R. Harrison, S. Counsell, and R. Nithi, “Coupling
Metrics for Object-Oriented Design”, Proc. 5th International
Software Metrics Symposium Metrics, 1998, pp. 150-156.

http://www.infor.uva.es/%7Emanso/

[16] G. Karner, Metrics for Objectory, Diploma thesis,
University of Linköping, Sweden. No. LiTH-IDA-Ex-
9344:21, 1993.

[17] H. Kim, and C. Boldyreff, “Developing Software
Metrics Applicable to UML Models”, Proc. QAOOSE'02,
2002.

[18] C.F.J. Lange, and M.R.V. Chaudron, “Managing Model
Quality in UML-based Software Development”, Proc. 13th
Int’l Workshop on Software Technology and Engineering
Practice (STEP’05), 2005, pp. 7-16.

[19] C.F.J. Lange, ”Model Size Matters”, Proc. Model Size
Metrics Workshop, 2006.
http://www.win.tue.nl/~clange/papers/Lange_ModelSizeMatt
ers.pdf

[20] C.F.J. Lange, A.M.W. Martijn, and M.R.V. Chaudron,
“MetricViewEvolution: UML-based Views for Monitoring
Model Evolution and Quality”, Proc. 11th European
Conference on Software Maintenance and Reengineering
(CSMR'07), 2007, pp. 327-328.

[21] W. Li, and S. Henry, “Object-Oriented Metrics that
Predict Maintainability”, Journal of Systems and Software
23(2), 1993, pp. 111-122.

[22] M. Lorenz, and J. Kidd, Object-Oriented Software
Metrics: A Practical Guide, Prentice Hall, Englewood Cliffs,
New Jersey, 1994.

[23] M. Marchesi, “OOA Metrics for the Unified Modeling
Language”, Proc. 2nd Euromicro Conference on Software
Maintenance and Reengineering, 1998, pp. 67-73.

[24] P. Mohagheghi, and V. Dehlen, “A Metamodel for
Specifying Quality Models in Model-Driven Engineering”,
Proc. Nordic Workshop on Model Driven Engineering (NW-
MoDE '08), 2008, 15 p. http://quality-
mde.org/publications.html

[25] P. Mohagheghi, V. Dehlen, and T. Neple, “Towards a
Tool-Supported Quality Model for Model-Driven
Engineering”, Proc. 3rd Workshop on Quality in Modeling
(QiM’08), 2008, 15 p. http://quality-
mde.org/publications.html

[26] Object Management Group. Reusable Asset
Specification, version 2.2, formal 05-11-02 edition,
November 2005.

[27] H.A. Reijers, “A Cohesion Metric for the Definition of
Activities in a Workflow Process”, Proc. EMMSAD’03,
2003, http://www.emmsad.org/2003/Final%20Copy/02.pdf

[28] I. Solheim, and T. Neple, “Model Quality in the Context
of Model-Driven Development”, Proc. 2nd International
Workshop on Model-Driven Enterprise Information Systems
(MDEIS’06), 2006, pp. 27-35.

[29] M. Staron, “Adopting Model Driven Software
Development in Industry – A Case Study at Two
Companies”, Proc. MoDELS 2006, LNCS 4199, 2006, pp.
57-72.

[30] M.H. Tang, and M. Chen, “Measuring OO Design
Metrics from UML”, Proc. UML’02, 2002, pp. 368-382.

[31] B. Unhelkar, Verification and Validation for Quality of
UML 2.0 Models, Wiley-Interscience, 2005.

	1. Introduction
	2. Goals of measurement at the model level
	3. Differences between metrics at model and source code level
	4. Existing model metrics
	4.1. Model size metrics
	4.2. Metrics on design and implementation models
	4.3. Other metrics
	4.4. Summary regarding existing metrics

	5. Conclusions and future work
	6. References

