
A Metamodel and Supporting Process and Tool for
Specifying Quality Models in Model-Based Software

Development

Parastoo Mohagheghi, Vegard Dehlen, Tor Neple

SINTEF, P.O.Box 124 Blindern
N-0314 Oslo, Norway

{Parastoo.Mohagheghi, Vegard.Dehlen, Tor Neple}@sintef.no

Abstract. Modelling is applied increasingly more in software development;
from developing sketches to blueprints of design and approaches that use
models in all phases of software development such as the model-driven
engineering approach. Consequently, developers need tools and techniques that
allow them to reflect upon the quality of the models, as well as the environment
used for developing these models such as modelling languages, modelling
processes and tools. This article describes work on developing quality models
in model-based software development by identifying stakeholders and their
purposes of modelling, specifying quality goals based on these purposes,
identifying means or practices required to achieve quality goals and selecting
proper evaluation methods. These are steps in developing quality models that
include rationale for selecting quality goals and is supported by a process, a
metamodel and a tool developed in Eclipse. The contributions of the approach
are firstly providing a framework for developing quality models that is tailored
to model-based software development and secondly providing example quality
models that may be reused by different projects, thus facilitating work on
quality issues in software development.

ACM CCS Categories and Subject Descriptions: D.2.8 [Software
Engineering]: Metrics- product metrics; D.2.6 [Software Engineering]:
Programming Environments- graphical environments; D.2.2 [Design Tools and
Techniques]: Computer-aided software engineering (CASE); D.2.9
[Management]: software quality assurance.

Keywords: Quality model, modelling, model-driven engineering, metrics,
metamodel.

1 Introduction

Model-Driven Engineering (MDE) is an approach to software development that
emphasizes using models when specifying, developing, analyzing, verifying,
maintaining and managing software systems1. The promises of MDE are many;
among them better communication between stakeholders by raising the abstraction
level and providing models from different views, increased portability of systems to
different platforms, traceability between artefacts to prevent and detect defects, and
reducing error-prone and costly manual work. MDE also provides the possibility to
define modelling languages and development environments tailored to the specific
needs of domains and organizations that will reduce the complexity of software
development and increase developers’ productivity. These promises cover several
quality goals identified in various quality models and researchers have also started
work on specific quality issues in MDE such as identifying characteristics of models
that are required to achieve high-quality software.

Modelling is applied in varying degrees in software companies and MDE is an
ambitious goal of using models. However, quality of models has also gained
extensive attention in software development approaches where models act as
blueprints of design or source code is only partly generated from models. In this
article, we use the term “Model-Based Software Development (MBSD)” to cover
MDE and other software development approaches where models play a central role in
software development.

The work described in this article aims at developing a framework in the context of
MBSD with the purpose of developing quality models for evaluating and improving
the quality of models as well as the modelling environment, including modelling
languages, modelling processes, tools and even transformations performed on models.
With a “quality model” we mean a set of quality goals (also called quality attributes
or quality characteristics in literature) and their relations defined by some
stakeholders based on the purposes of modelling, accompanied by a set of practices or
means to achieve the quality goals, evaluation methods and link to related literature.

There exist different quality models with their definitions of quality goals or
attributes; most generic and a few with focus on models and modelling languages. We
have discussed these in our previous publications [13] [14]. Some shortcomings of
generic quality models are the lack of rationale behind selecting quality goals and
often the lack of identifying means to improve software quality. Existing work on the
quality of models is not extensive either. We have analyzed existing quality models
and identified the main constructs required to define quality models with models and
modelling environment in mind. These constructs and the relations between them are
described in a metamodel that defines a common language for specifying quality
models. Applying the practice of MDE, the metamodel is supported by a tool
developed in Eclipse that allows specifying quality models visually. Developing
quality models also requires a process that is presented here. We provide some

1 We use the term MDE in the remainder of this article to cover approaches where models are

the primary artifacts in software development and transformations the primary operations on
models, covering for example the OMG’s Model Driven Architecture (MDA) and Model-
Driven software Development (MDD).

example quality models developed by using the framework based on a review of
literature on the quality of models.

This article is an extended and modified version of our paper [14] presented at the
2008 Nordic Workshop on Model-Driven Engineering (NW-MoDE’08) held in
Reykjavik- Iceland, 20-22 August 20082. The focus of this article is still on quality
models in MBSD but the motivation is discussed in more depth, a process for
developing quality models is presented and new examples of quality models are
added.

The remainder of this article is organized as follows. Section 2 presents related
work on quality models and discusses shortcomings and the motivation behind
developing a quality model for MBSD. Section 3 presents our framework for defining
quality models which includes the metamodel, a process that defines steps in
developing quality models and the supporting tool. Section 4 presents examples
developed by reviewing the literature and using the framework. The article is
concluded in Section 5 and future work is proposed.

2 Background and motivation

In this section we present related work on quality models and the motivation behind
defining a quality model for MBSD.

2.1 Related work on quality models

Research on quality models in software engineering has been going on for decades
and different quality models for processes and products have emerged. Some of the
best known product quality models are:

 McCall’s hierarchical quality model which focuses on product quality, dividing it
into the external view as seen by users (quality factors to specify) and the internal
view as seen by the developers (quality criteria to build) [11]. By answering “yes”
and “no” to questions related to quality criteria, one may measure to what extent a
quality criteria is achieved.

 Boehm’s hierarchical quality model with three levels of quality characteristics:
high-level characteristics from the users’ perspective, intermediate characteristics
which are software characteristics needed to achieve the high-level characteristics,
and primitive characteristics which are foundation for evaluation and defining
metrics [2].

 ISO standards, especially the ISO-9126 series [6] (recently updated in the SQuaRE
series of standards [3]) with the hierarchical model of six quality factors and sub-
characteristics related to each of them. The standard divides metrics into internal,
external and quality-in-use.

2 http://nw-mode2008.hi.is/

 Dromey’s model, which has three main elements: quality attributes, product
properties that are important for achieving quality attributes, and links between
product properties to quality attributes [4].

Each product quality model includes a set of desired properties of the product (we
call them for “quality goals” in our framework); often defined in a hierarchy starting
either from external to internal quality goals or from high-level quality goals to more
tangible and measurable ones. The McCall, Boehm and ISO models share some
quality goals and differ in others, and it is often difficult to find the rationale behind
selecting some quality goals and leaving others out and how sub-goals are related to
high-level goals; see for example [1] on problems with ISO standards. And finally
being generic, they do not include proper means to achieve the desired quality goals
for a specific development approach or environment. Dromey’s approach
distinguishes itself since it requires identifying tangible quality-carrying properties of
components that are important for achieving quality goals. For example, reliability of
code can be achieved by expressions that are computable and free of side-effects. It
also emphasizes establishing links between quality goals and quality-carrying
properties required to achieve them, something which is missing in the other models.

The above were examples of product quality models developed before the era of
MBSD, while there are also examples of quality models with models in mind as the
one developed by Lindland et al. [8] and depicted in Fig. 1.

Syntactic
quality

Semantic
quality

Pragmatic
quality

Syntactic correctness Formal syntax Syntax checking

Goals Means

Model properties Modeling activities

Feasible validity

Feasible completeness

Formal semantics
modifiability

Consistency-
checking
Statement insertion
Statement deletion

Feasible comprehension
Executability

Expressive
economy

Structuredness

Inspection
Visualization
Animation
Explanation
Simulation
Filtering

Fig. 1. Proposed framework by Lindland et al. for distinguishing quality goals and means to
achieve them [8]

Lindland et al. identify three types of quality goals for conceptual models which
are syntactic quality (adhering to modelling language syntax), semantic quality
(correct elements and relations of the domain) and pragmatic quality (the

interpretation of the audience of the model). Others have extended this quality model
by adding other quality goals, such as in [7]. Unhelkar has also used Lindland et al.’s
framework to identify quality goals for UML models but replaces pragmatic quality
with aesthetics [19]. Besides, his definition of syntax also covers documentation,
packaging and other issues related to understandability of models that Lindland et al.
have defined as pragmatic quality.

Lange and Chaudron have discussed different purposes of modelling and identified
quality characteristics for each purpose, as depicted in Fig. 2, together with some
metrics. The identified metrics are mostly size metrics (such as the number of
elements in a diagram or relations between the numbers of elements in different
diagrams) and object-oriented metrics with focus on design (such ad the depth of
inheritance tree), in addition to a few more model-specific metrics such as the number
of crossing lines in a diagram. Although the approach is relevant for MBSD with
models developed in different stages of development and with different purposes, the
quality model is for evaluation and does not have a constructive view to quality by
including “means”. Also the relations between purpose and characteristics and
characteristics to metrics are not well justified.

Primary use Purpose Characteristic

Complexity

Balance

Modularity

Communicativeness

Correspondence

Self-descriptiveness

Conciseness

Precision

Esthetics

Detailedness

Consistency

Completeness

Modification

Testing

Comprehension

Communication

Analysis

Prediction

Implementation

Code generation

Maintenance

Development

Fig. 2. Proposed quality model in [9] with different purposes of modelling and required quality
characteristics

Some argue that focusing on product quality alone may not guarantee that an
organization will deliver products of good quality. Products are created by processes
and therefore the quality of processes should also be improved [16]. Some best known
examples of standards or models for process quality are ISO:90013 series (which is a
general international "quality management system" standard), ISO/IEC 122073 with

3 http://www.iso.org/iso/home.htm

focus on software lifecycle processes, and the SEI CMMI model4 with focus on
process improvement. However, the relationship between process quality and product
quality is far from clear [16]. MDE may also be viewed as a process for developing
models and generating artefacts from them that includes a modelling language,
modelling tools, transformations performed on models and a set of activities that
should be performed to develop the necessary artefacts. Therefore several authors
discuss the advantages of developing a model-driven development process or
adapting the existing ones to MDE in order to improve the quality of models and the
generated assets, for example [5] [17].

While the above literature covers quality models, others have proposed approaches
for defining quality models for a development approach. For example Dromey defines
a five step process for building product-specific quality models [4]:

1. Identify a set of high-level quality attributes for the product.
2. Identify the product components.
3. Identify and classify the most significant, tangible, quality-carrying properties

for each component.
4. Propose a set of axioms for linking product properties to quality attributes.
5. Evaluate the model, identify its weaknesses and refine it.

And Trendowicz and Punter have identified activities during development of a
quality model for software product lines as depicted in Fig. 3.

Fig. 3. Activities during development of quality models as defined in [18]

2.2 The need for a quality model in MBSD

Our work has focus on the quality goals of software models and the development
environment around modelling in MBSD. This covers actually a spectrum of
development approaches where modelling is applied for more than visualizing the
code; from when models communicate the design, to when they are used to generate
code while code and models co-exist, to when development is done solely using

4 http://www.sei.cmu.edu/cmmi/general/index.html

models. Brown has discussed the spectrum of approaches to modelling as presented in
[17] and depicted in Fig. 4. The “Model centric” approach is still based on code while
the models are the main artefacts. Most (or all, if possible) of the code is generated
from models; the developers, however, are given a possibility to add the code and
synchronize it with models. “Models only” covers executable modelling techniques.
We refer to these two approaches as MDE in this article, while MBSD covers
approaches on the right side when models are used for more than code visualization.
Fowler has also identified three modes for UML use which he calls for
UMLAsSketch, UMLAsBlueprint and UMLAsProgrammingLangauge5. Thus models
may be viewed either as intermediate or final products.

Code
only

Code Code Code Code Code

Model

Code
visualization

Model

Basic
modelling

Model

Round-trip
engineering

Model

Model
centric

Model

Model
only

Fig. 4. Modelling spectrum defined by Brown and presented in from [17]

In MDE, models are subject of transformation to other models or text such as
source code and by improving the quality of the models we will consequently
improve the quality of the final product. The quality of the final product depends on
other factors as well such as the appropriateness of modelling tools and processes,
transformations performed, the target platform, quality assurance activities and the
expertise of developers. Also in the other approaches where code is partly generated
from models or models act as blueprint to communicate design, the quality of models
should be considered.

The framework we are developing for MBSD has several purposes:

 It can be viewed as a kind of research programme to facilitate the understanding of
the meaning of quality in this development approach;

5 See his blog http://martinfowler.com/bliki/

 It includes necessary concepts for defining quality models that are needed in a
MBSD approach; thus providing a tailored approach to the generic quality models;

 It provides a platform for collecting and analyzing state of the art and including
results of empirical studies which may be reused by different industrial or research
projects, thus saving effort by reuse of exiting models.

Furthermore, our quality framework has a constructive view to quality; i.e., the
purpose is to achieve the desired quality goals by implementing proper means or
practices; especially MDE practices. It is also essential to evaluate the models to be
sure that the desired quality has been achieved. Therefore our approach includes
identifying proper methods of evaluation. Finally, the quality model provides
concepts for defining quality goals from multiple views and thus relating intentions of
users to quality goals. We present the concepts of our quality framework in the next
section.

3 A framework for defining quality models

The quality model is built around a metamodel that is introduced in Section 3.1. In
Section 3.2 we present the process that supports developing quality models that
adhere to this metamodel while the tool support is discussed in Section 3.3.

3.1 The metamodel

A metamodel is an explicit model of the constructs and rules needed to build specific
models within a domain of interest; in our case quality models. Earlier approaches
have focused on quality models with a set of quality goals as discussed in Section 2.1
while Wagner and Deissenboeck have identified the need for a metamodel that
enables defining quality goals in a so-called base model, which may be extended later
to application-specific purpose models [20]. They have identified some elements of
this metamodel to be:

 Purpose of the quality model; as being constructive, predictive or assessing;
 View; as being either product, user, manufacturing or value-based;
 Quality attribute or goal such as those defined in the ISO standards;
 Technique; if a quality model focuses on a specific technique, for example

inspections;
 Abstractness, which is the detail of a model, for example being general or product-

specific.

The working session in the 2nd workshop on Quality in Modeling (QiM’07 held in
conjunction with MoDELS 2007) put three questions for participants to answer6:

 What qualities of models and modelling matter?

6 Proceedings at http://www.ipd.bth.se/lku/Quality%2Din%2DModeling%2D2007/

 How do they relate (similarity or dependence)?
 How can they be measured?

The contributions led to identifying several quality goals that can be included in a
quality model for models. However, the issues of relations and measurement were not
answered to the same extent, and as we discussed in relation with ISO and similar
models, defining quality goals and classifying them per se is not enough without
discussing how to achieve these goals and who are the intended users. The model
proposed to organize the contributions includes high-level model quality
characteristics, low-level quality attributes and metrics.

Comparing quality models show that they share the concepts of quality goals
(either flat or hierarchical) and metrics for evaluation. The constructive view to
quality also requires including “means”. Finally since models are developed for
different purposes, the concept of purpose is necessary. Fig. 5 depicts the main
constructs of our metamodel and the relationships, while they are described in the
remainder of this section.

Fig. 5. Main constructs of the QiM metamodel for developing quality models

Not visible in the figure are attributes; all the metamodel elements have a “type”,
“definition” and “reference”. The use of the “type” property varies for different
elements and is proposed to used for classification purposes, “definition” is a textual
description of the element, while “reference” is used to link references from literature
to the element.

QualityModel
A quality model is a collection of quality entities and their relations. It has a scope
type which may be used to indicate whether it is generic or related to a specific
domain. The concept of “domain” may be used to refer to application domains such as
telecom or business systems, or a domain of improvement such as modelling or
communication with stakeholders. Quality model contains the constructs Stakeholder,
Target, Purpose, QualityGoal, Practice and EvaluationMethod.

Stakeholder
Stakeholder is used to indicate stakeholders of a quality model such as model users,
model developers or managers. By modelling stakeholders, we show who is defining
quality goals and should also participate in evaluating them.

Target
A target is the artefact or activity that is the subject of quality improvement or
assessment. Examples are models, metamodels, tools, modelling languages,
transformations, and modelling process. Targets have type and for models, we can
identify types such as:

 Computational Independent Model (CIM) / Platform Independent Model
(PIM) / Platform Specific Model (PSM);

 Specification / analysis / implementation / documentation model;
 Structural versus behaviour model.

Target has an additional attribute called “phase” for indicating the development
phase where the target is used.

Purpose
Purpose describes what expectations or interest stakeholders have in a given target of
the quality model. For example, the purpose of developers for modelling may be
generation of code and the purpose of system analyst may be communication with
customers. Based on the purposes of stakeholders, quality goals are identified.

QualityGoal
We define a quality goal as a clear and understandable definition of what quality
means to a stakeholder and for a defined purpose. The rationale behind having a
quality goal is given by the purpose. For example, for generation of correct code from
models, models should be correct. A good definition must let us measure quality in a
meaningful way. Therefore high-level and less tangible quality goals should be
refined into more tangible ones that may be evaluated; either quantitatively and based
on metrics or based on some kind of user or expert judgment.

We have used the term “quality goal” and not “quality attribute” to avoid
confusion with attributes of the constructs of the quality metamodel. One of the
attributes of quality goals is “type”, which is used for classifying goals; for example
by:

 Using the classification of Lindland et al. as described in Section 2.1;
 Classifying quality goals into “hard goals” that can be achieved by an activity or

“soft goals” that can be positively or negatively affected by an activity or activities;

 Classifying into product, project or process quality goals;

 and DEPENDS. One may also assign priority to quality goals and identify

e called “cost” used to estimate or document the cost of
ce.

 and correction
ac

els and
me

y metamodel shares concepts with earlier work and extends them as

 together with

 methods, but a hierarchy of means where some are equal

Classifying into external, internal and quality-in-use.

Quality goals may also have relations between them that are defined as HELPS,
BREAKS
benefits.

Practice
We define a practice as the means required to achieve a quality goal. For example,
using modelling style and naming conventions are practices that can help developing
correct and consistent models. Practices may be supported by other practices which
allows refining practices and specify them in more details. For example we can define
“modelling style” as a practice to improve the layout of models and relate different
types of styles as supporting practices. Practices may also rely on other practices
using the relationship DEPENDS or having relations HELPS and BREAKS. Practice
has an additional attribut
implementing a practi

EvaluationMethod
Every quality goal should be evaluated as defined by the evaluation method.
Evaluation method includes metrics and other appropriate ways of evaluation such as
expert judgment, interviews or surveys. For example, using a domain specific code
generator (a practice in our model) will result in less error-prone code (a quality goal)
that can be evaluated by the reduction in the number of defects (a metric). From a
value-based viewpoint with emphasize on costs and savings, it is also important to
estimate how much effort is saved (less defects require less detection

tivities) compared to effort spent on developing the code generator.

The above constructs are the main constructs of the QiM quality metamodel and
other elements inherit from them or extend them. For example, mod

tamodels inherit from target, and metrics inherit from evaluation method.
The QiM qualit

described below:

 Defining quality goals depends on the phase of software development and the
purpose of using models, as also emphasized in the quality model of Lange and
Chaudron depicted in Fig. 2. Using the concept of “Purpose”
“Stakeholder” allows defining the rationale behind quality goals.

 Lindland et al. have emphasized identifying means that help achieving quality
goals [8]. We have used the concept of “Practice” with the same purpose
although named differently. However, their quality model does not include
purposes and evaluation
to evaluation methods.
We have not included the concept “quality-carrying property” as in Dromey’s
model [4] but these are identified by defining sub-goals for specific targets7.

7 The first release of the metamodel included quality-carrying property but in practice it was

difficult to separate these from quality goals.

 Our quality model has a wider scope that earlier work on the quality of models.
We allow defining quality goals for other targets such as modelling languages

on to necessary concepts, developing a quality model requires a process that
ows the steps and the required inputs and outputs as discussed in Section 2.1. Fig. 6

sho h
qu lity
by
qu

and tools.

3.2 The supporting process

In additi
sh

ws the process we have defined related to our metamodel. The process allows bot
ality engineering and quality assessment, the first with focus on improving qua
 identifying relevant practices, and the second with focus on evaluating or assessing
ality.

Identify
quality gaols/ sub-goals

& relations

Identify
stakeholders &
their purposes

Identify
targets

Identify
evaluation
methods

Identify
practices

Review &

stakeholders including
developers, managers,
system experts, users etc.

developers, IDE experts

developers, managers,
system experts, users,
quality manager quality

engineeringquality
assessment

empirical studies,
measurement
experts, company

experience,
empirical
studies

database

stakeholders of the
executequality model

Fig. 6. Steps in developing quality models; specifying both quality engineering and quality
evaluation

The steps in defining a quality model are:
1. Identify stakeholders and their purposes: stakeholders are usually defined

as everyone who is affected by a project. For example it may be everyone

s for documentation, using a language and

who is interested to apply the MDE approach such as project managers, test
team, development team, maintenance team, or non-technical experts. After
identifying the stakeholders, their expectation or purposes should be
identified such as using model
developed models for generating source code etc.

2. Identify targets: in this step we focus on identifying the targets of quality
work that are related to the identified purposes. The question to answer is
what should be in place to achieve the purposes. This may be models,
modelling environment etc.

3. Identify quality goals / sub-goals and their relations: Identifying quality
goals should involve all stakeholders and reflect the purposes of modelling
and the priorities of the project. While quality goals show the required
characteristics at a level that is easy to communicate, they may still be at a
level too high to measure. It may necessary to decompose each quality goal

d in a Return-On-

nt process will reduce

y how to evaluate quality goals or sub-

opted. Execution is implementing practices or performing
evaluation, and reporting the results.

nd the related process for defining quality models based on it are
generic enough to be used for any domain or related to any development approach.

ment platform within academia and consequently
provides several benefits; (1) people are experienced in using the environment, (2)

into more specific quality goals which are called sub-goals. Some questions
to answer are the role of the target in the software development life cycle (for
example models can be for communication or generation), its future,
compatibility with the environment, ease of use, or satisfying some
constraints. Relationships, priorities and benefits (to be use
Investment analysis) should also be identified at this stage.

4. Identify practices: Practices show how we plan to achieve a quality goal.
For example mandating the use of a certain developme
the use of “non-normative” techniques, and should make it easier to develop
consistent set of artefacts. Practices may be combined or support one another
to achieve a desired quality goal, and they have some cost.

5. Identify evaluation methods: Specif
goals; e.g., measuring quantitatively by metrics or subjective evaluation,
inspections using checklists or interviewing the users.

6. Review and execute: The quality model should be reviewed for
characteristics such as completeness, flexibility, transparency, relevance and
possibility to be ad

Our metamodel a

However, we have adapted the approach by adding targets and developing example
quality models in MBSD.

3.3 Tool support

We started modelling our quality models with StarUML8. The problem with using a
general modelling tool is that models get complicated and difficult to comprehend
with the increasing number of elements and links, and the possibility for extension of
elements and generation of other artefacts from models is limited. To support
developers in specifying quality models for different domains or purposes and gaining
experience with our metamodel, we provide tool support for the metamodel described
in Section 3. An early version of this tool called QualityMode has been implemented
on the Eclipse platform using the Graphical Model Framework (GMF). Eclipse is
widely used as a tool and develop

8 http://staruml.sourceforge.net/en/

us

hics and icons is also a key reason for choosing GMF over UML-
profiling for our tool solution. However, having an early implementation of the tool,
our plan is to test it in a use case in order to gain experience with its usability and

e
e

ve it9. Different publications have identified

 1) including right elements and correct relations between them,

ed semantic validity in the framework of

odels that belong to the same level of abstraction or development

ing it promotes interoperability and allows our models to be used by other EMF-
based tools, and (3) many plug-ins exist for possible reuse. The GMF plug-in, for
example, allows one to rather quickly create a concrete syntax in a graphical editor.
To support our concrete syntax, the metamodel from Fig. 5 has been extended and
detailed with additional concepts.

The concrete syntax is currently simple, mostly using rectangles with different
colours and annotations to distinguish different model elements, but it is easy to add
suitable icons to help understandability of models. One example is the icon selected in
the current version for “Stakeholder”. Some basic constructs are provided as nodes
(such as “QualityGoal”) while others are shown as relations (such as “Purpose”),
attributes (such as “Reference”), or an item list to choose from (for example for
building quality models in MDE, the target such as “Model” or “Language” is
selected from a list). This syntax is considered temporary, and our intention is to
increase the use of graphics to differentiate concepts. The flexibility of GMF in
defining grap

ability to model quality models. These experiences will also be the basis of th
following tool iterations. We show an example model developed with the tool in th
next section.

4 Example: A quality model for improving the quality of models

We have performed a review of literature concerning definitions of model quality and
the proposed approaches to impro
different quality goals for models while we have integrated these into a model that
shows six quality goals of models- called the 6C goals- that are required by various
stakeholders. Fig. 7 shows these quality goals and when in the development process
they are important. A detailed definition of quality goals is out of the scope of this
article. We defined them shortly as:

 Correctness; as
and including correct statements about the domain. This is related to our
understanding of the domain and is call
Lindland et al. [8]; b) not violating rules and conventions; for example adhering
to language syntax (well-formedness), style rules, naming rules or other rules or
conventions.

 Completeness; as having all the necessary information and being detailed enough
according to the purpose of modelling.

 Consistency; as no contradictions in the model. It covers consistency between
views or m
phase (horizontal consistency), and between views or models that represent the
same aspect, but at different levels of abstraction or in different development

9 The results are submitted for publication while a short overview of model quality goals is

given in [15].

phases (vertical consistency). It also covers semantic consistency between
models; i.e., the same element does not have multiple meanings in different
models.

 Comprehensibility; as being understandable by the intended users; either human

emantic helps analysis and generation.

cessary information and is not more complex or detailed than
necessary.

 Ch can be
imp since
bot olve
with

users or tools. For human users, several aspects impact comprehensibility such as
aesthetics of diagrams, organization of a model, model simplicity or complexity,
conciseness (expressing much with little), and using concepts familiar for the
users or selected from the domain ontology. For tools, having a precise or formal
syntax and s

 Confinement; as being in agreement with the purpose of modelling and the type
of system and being restricted to the modelling purpose. A model is a description
from which detail has been removed intentionally. A confined model does not
have unne

angeability; as supporting changes or improvements so that models
roved or evolved rapidly and continuously. Changeability is required

h the domain and our understanding of it or requirements of the system ev
 time.

Analysis &
generation

tools

Real World
(domain and
organization)

Model

Modelling
language

Modelling
tool

Modeller
perceives

elicits &
develops

completeness
correctness

confinement
changeability

Rules
&

guidelines

uses uses

Code

comprehensibility

co
m

pr
eh

en
si

bi
lit

y

correctness
corre

ctness

uses generates

Human users

uses

uses

develops

consistency

Fig e

 implementation
and modification. For implementation, models should be defect-free (correct,

. 7. Model quality goals in MBSD with transformation of real world to running softwar

We have further identified practices proposed in literature for improving the
quality of models and related evaluation methods. By using our framework, we have
developed a quality model that is partly presented here.

There are three types of stakeholders when discussing the quality of models:

 Developers who need to understand models for the purpose of

complete and consistent) in the first place while for modification models should
also be understandable and changeable.

 Tools that should interpret and analyze models or generate other artefacts from
them. For them, models should be technically comprehensible.

 Others who use models for the sake of communication such as discussing design
and communication with customers. They need models that are understandable
and do not include unnecessary implementation details. Of course models should

ows model quality goals from the viewpoint of these stakeholders based
on th ure,
purposes is case) and
quality g to
a purpose.

also be correct, complete and consistent, however to a varying degree. For
example in a multi-diagram approach such as UML, consistency between
diagrams may be more important than completeness for correct interpretation of
models; as confirmed by an experiment presented in [10].

Fig. 8 sh
eir purposes of modelling. Stakeholders are shown on the top of the fig

 are shown as relations between target (“Application model” in th
oals, while stakeholders interested in a quality goal are shown in {} related

Fig. 8. Stakeholders, purposes of modelling and related quality goals for models

Fig. 9 shows that correctness can be further refined in sub-goals:

 “Language Syntax correctness” refers to adhering to language syntax. It can be
achieved by integrating syntax rules in modelling tools and preventing syntax
errors.

 “Correct names” refers to naming of elements in a model and may be achieved by
using naming conventions during modelling.

 “Correct meanings and relations” is a type of semantic quality and may be
achieved by having a formal (or precise) semantics and using semantic
conventions. There are various ways to develop models with formal semantics:
transforming informal models to formal ones, using formal languages, using
constraints such as adding OCL (the Object Constraint Language) constraints to

y” refers to being valid for the relevant domain where a domain
ontology may be used to achieve this validity or domain experts may be involved

models, and including semantic in Domain-Specific Modelling Languages
(DSML). These may be modelled as supporting practices of “Formal semantics”.

 “Domain validit

during developing domain models.

Proper evaluation methods are identified as well. Some evaluation methods such as
“Inspection” may be selected from a list while it is also possible to add others such as
“Analysis by tool”.

In [14] we presented another quality model for the quality of DSMLs which shows
that our approach is flexible to be used for different targets. The quality model for
DSMLs is developed using the previous version of the tool and the graphics is
therefore slightly different while the constructs are the same.

Fig. 9. Identified sub-goals related to model correctness together with practices and evaluation
methods

5 Conclusions and future work

This article started by giving an overview over selected quality models in software
engineering, which uncovered both weaknesses and strengths of existing approaches.
Quality models should give a sound rationale for the selected set of quality goals and
explain the relationships between concepts. One way of avoiding a static set of quality
goals, which should rather be selected dynamically depending on the stakeholders’
needs, is to have a dynamic and flexible framework that allows developers to define a
quality model for the context; whether it is a general purpose quality model or one
tailored for a specific domain. In model-based software development, selecting
quality goals also depends on the purposes of modelling and the practices
organizations choose to implement such as developing domain-specific modelling
languages and using transformations for generating artefacts from models. A way of
achieving this is to provide a framework that is flexible while adapted to model-based
development needs. The QiM metamodel includes a set of important concepts that
needs to be considered when defining quality models, and takes into consideration the
previous work done in the field of quality in software engineering and quality of
models. Metamodeling is one of the main practices of model-driven engineering and
we take advantage of it to provide a language for developing quality models.
Although we focus on the quality of models and the modelling environment, the
metamodel is generic and may be used for defining quality models in any area. We
also have a first implementation of a tool that offers graphical modelling of quality
models, allowing quick development by reuse of existing concepts and quality
models.

The framework includes a process for defining quality models which is applicable
to our research as well: Stakeholders are in this case those who want to develop
quality models in model-based software development with the purpose of improving
software quality. Quality goals of the framework were defined in Section 2.2 such as
being generic to be applicable in multiple contexts while integrating research on
model-based software development, and allowing us to develop reusable models. The
approach we selected for developing the framework (i.e., practices) has been
performing state of the art analysis in a systematic review, identifying generic
constructs in a metamodel and developing a process and tool around it that allows
visual modelling of quality models. Evaluation of the framework is done by
developing example models such as the one described in Section 4 and empirical
work that we plan to perform in different research projects in order to evaluate the
usefulness and ease of use of the framework.

The contributions of our work are developing a) the framework for developing
quality models including the metamodel, process and tool; and b) applying the
framework on the quality of models and domain-specific modelling languages so far.
These models may be used in a library of customizable quality models in model-based
software development.

For future work, we plan to complete the quality models for models and domain-
specific modelling languages and detail them with more metrics and evidence from
empirical studies. The intention is to develop base models that can be extended by
users. The empirical evaluation of the usefulness of our framework is done currently

in the MODELPLEX project10 where we develop quality models for domain-specific
modelling languages. The results of this work will be published in future. In parallel
and based on experiences from these cases, we also plan to iterate on the metamodel
and the tool support, in order to provide an expressive and easy-to-use environment
for modelling quality models.

Acknowledgments. This work has been co-funded by the Quality in Model-Driven
Engineering project (cf. http://quality-mde.org/) at SINTEF ICT in Oslo, Norway and
the European Commission within the 6th Framework Programme project
MODELPLEX contract number 034081. We thank the anonymous reviewers for their
valuable comments and suggestions.

References

1. Al-Kilidar, H., Cox, K., Kitchenham, B.: The Use and Usefulness of the ISO/IEC 9126
Quality Standard. International Symposium on Empirical Software Engineering, 7 p. (2005)

2. Boehm, B. W., Brown, J. R., Kaspar, H., Lipow, M., McLeod, G., Merritt, M.:
Characteristics of Software Quality. North Holland (1978)

3. Bøegh, J.: A New Standard for Quality Requirements. IEEE Software 25(2), pp. 57--63
(2008)

4. Dromey, R.G.: Concerning the Chimera. IEEE Software 13 (1), pp. 33--43 (1996)
5. Gavras, A., Belaunde, M., Pires, L.F., Almeida, J.P.A.: Towards an MDA-based

Development Methodology for Distributed Applications. Proc. EWSA'04, 1st European
Workshop on Software Architecture, LNCS volume 3047, Springer Berlin / Heidelberg, pp.
230--240 (2004)

6. ISO, International Organization for Standardization: ISO 9126-1:2001, Software Engineering
– Product Quality, Part 1: Quality model (2001)

7. Krogstie, J.: Evaluating UML Using a Generic Quality Framework. Chapter in UML and the
Unified Process, Idea Group Publishing, pp. 1--22 (2003)

8. Lindland, O.I., Sindre, G., Solvberg, A.: Understanding Quality in Conceptual Modeling.
IEEE Software 11(2), pp. 42--49 (1994)

9. Lange, C.F.J., Chaudron, M.R.V.: Managing Model Quality in UML-based Software
Development. Proc. 13th Int’l Workshop on Software Technology and Engineering Practice
(STEP’05), pp. 7--16 (2005)

10. Lange, C.F.J.: Assessing and Improving the Quality of Modeling - A Series of Empirical
Studies about the UML. PhD thesis, URL http://www.langomat.de/research/thesis/thesis.pdf
(2007)

11. McCall, J. A., Richards, P. K., Walters, G. F.: Factors in Software Quality. Nat'l Tech.
Information Service, Vol. 1, 2 and 3 (1977)

12. Mohagheghi, P., Aagedal, J. Ø.: Evaluating Quality in Model-Driven Engineering. In:
Workshop on Modeling in Software Engineering (MISE’07), In: Proc. of ICSE’07, 6. p
(2007)

13. Mohagheghi, P., Dehlen, V.: Developing a Quality Framework for Model-Driven
Engineering. 2nd Workshop on Quality in Modeling at MoDELS 2007, 15 p., URL:
http://www.ipd.bth.se/lku/Quality%2Din%2DModeling%2D2007/ (2007)

10 http://www.modelplex.org

14. Mohagheghi, P., Dehlen, V.: A Metamodel for Specifying Quality Models in Model-Driven
Engineering. Proceedings of the Nordic Workshop on Model Driven Engineering, pp. 51--
65, URL http://www.quality-mde.org/publications.html (2008)

15. Mohagheghi, P., Dehlen, V., Neple, T.: Towards a Tool-Supported Quality Model for
Model-Driven Engineering. Proceedings of Workshop on Quality in Modeling (QiM’08), 15
p., URL http://www.quality-mde.org/publications.html (2008)

16. Satpathy, M., Harrison, R. Snook, C., Butler. M.: A Generic Model for Assessing Process
Quality. Proceedings of the 10th International Workshop on New Approaches in Software
Measurement, pp. 94—110 (2000)

17. Staron, M.: Adopting Model Driven Software Development in Industry – A Case Study at
Two Companies. Proc. MoDELS 2006, LNCS 4199, 2006, pp. 57-72.

18. Trendowicz, A., Punter, T.: Quality Modeling for Software Product Lines. In: 7th ECOOP
Workshop on Quantitative Approaches in Object-Oriented Software Engineering
(QAOOSE’03), 7 p. (2003)

19. Unhelkar. Unhelkar, B.: Verification and Validation for Quality of UML 2.0 Models.
Wiley-Interscience (2005)

20. Wagner, S., Deissenboeck, F.: An Integrated Approach to Quality Modeling. Fifth
International Workshop on Software Quality, In: Proc. of ICSE’07, 6 p. (2007)

