

Norwegian University of Science and Technology

Practical Control of Dividing-Wall Columns

Jens Strandberg, Ivar Halvorsen* and Sigurd Skogestad

Department of Chemical Engineering NTNU

Trondheim, Norway

TRONDHEIM

Norwegian University of Science and Technology

NTNU/SINTEF Trondheim

IIII

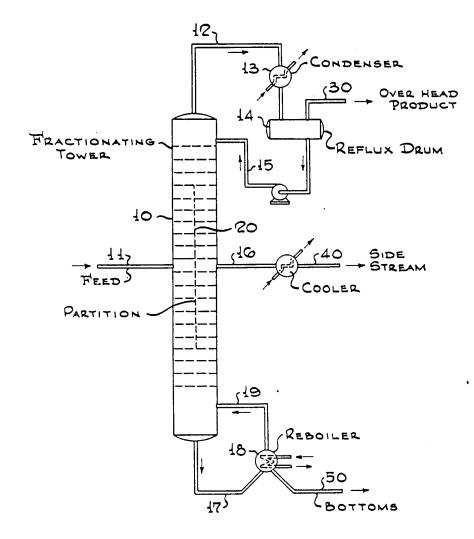
Outline

- 1. Introduction
 - Dividing-Wall Columns
 - Stabilizing and Supervisory Control
- 2. Optimal Operation
- 3. Stabilizing Control Policies
- 4. Stabilizing Control Kaibel Column
- 5. Stabilizing Control Petlyuk Column
- 6. Pilot Plant Kaibel Column
- 7. Conclusions

Introduction – Dividing Wall Columns

- 1949 First patent by Wright
- 1965 Paper by Petlyuk
- 1985 First DWC built by BASF
- 1987 G. Kaibel introduces 4-product DWC
- Present More than 100 DWCs in operation worldwide (BASF more than 70)

Majority built last 10 years


Increasing popularity due to focus on energy-saving operations and enhancments in technology

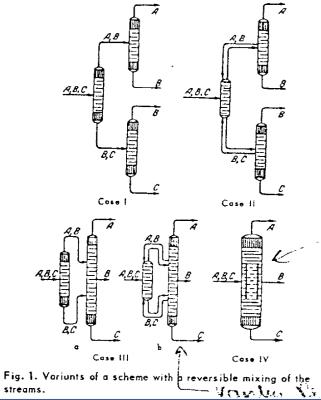
May 24, 1949.

R. O. WRIGHT FRACTIONATION APPARATUS 2,471,134

Filed July 17, 1946

NTNU
 Norwegian University of
 Science and Technology

F. B. Petlyuk V. M. Platonov D. M. Slavinskii

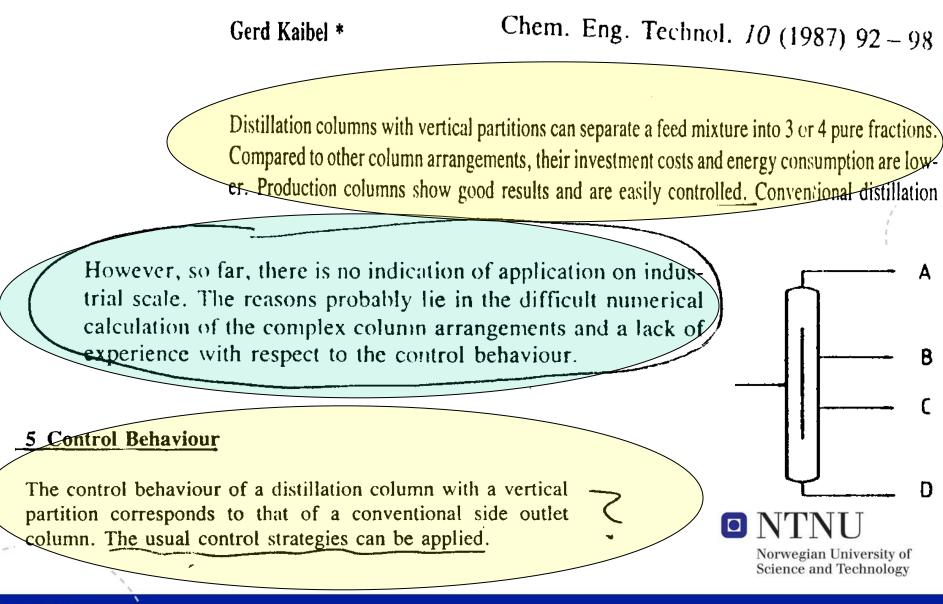

Thermodynamically optimal method for separating multicomponent mixtures

A study of thermodynamically reversible multicomponent distillation for the selection of an optimal scheme for separating a multicomponent mixture. Mathematical description for investigation of the features of distillation with reversible mixing of streams,

THE problem of selecting the thermodynamically optimal scheme for separating a multicomponent mixture has as yet remained unsolved, although the problem has been stated by a number of authors (1-6). The approach to selecting the optimal scheme has been purely empirical and only conventional schemes for separating an n-component mixture in (n - 1)two-sectional columns have been considered. Only a study of thermodynamically reversible multicomponent distillation can ensure a scientific approach to the selection of the optimal scheme for separating a multi-component mixture.

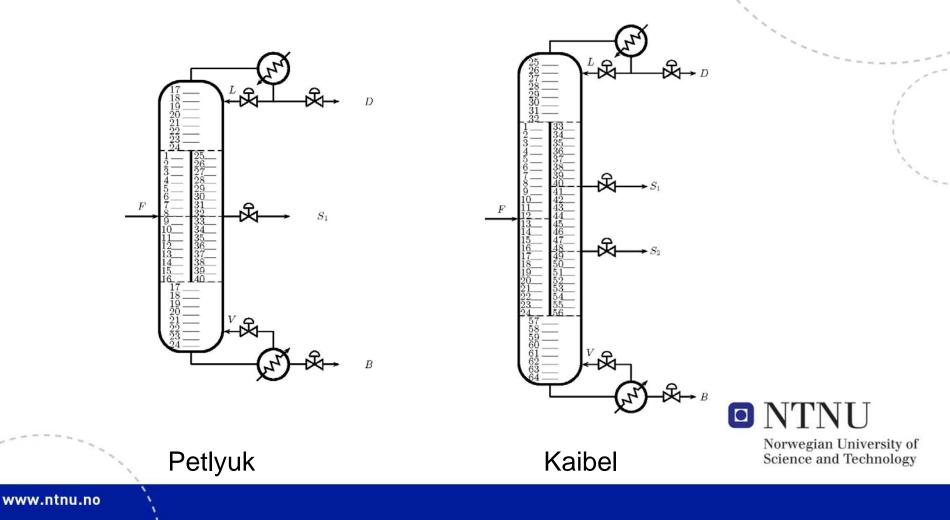
A completely reversible process for multicomponent distillation has been described earlier (7, 8). One would naturally expect that a scheme incorporating the features of this process would be thermodynamically optimal. Several cases of such schemes with reversible mixing of the streams are proposed by the authors (see Fig. 1).

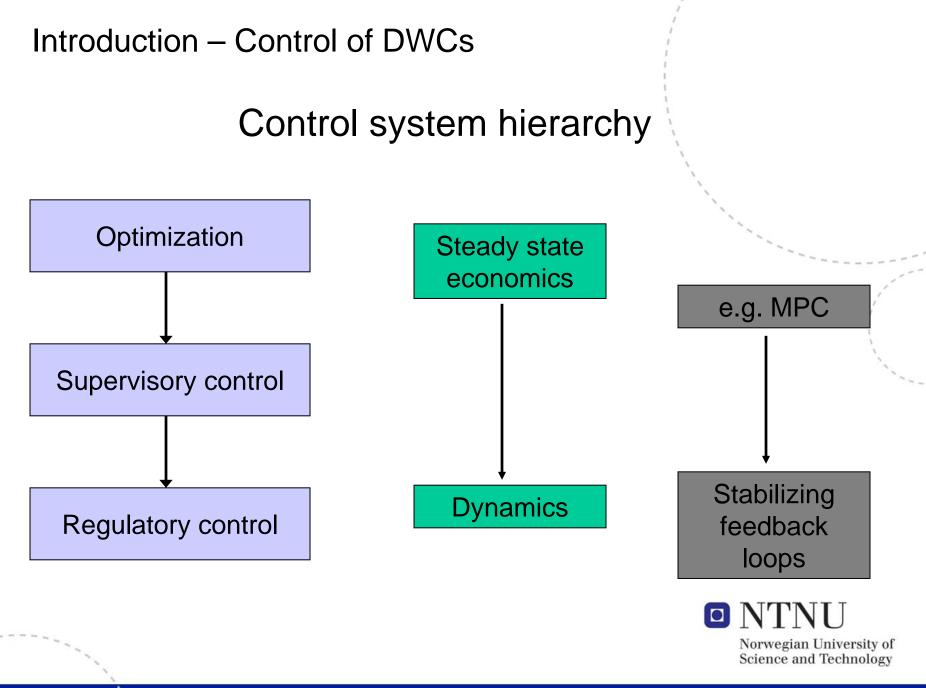
One of the fundamental properties of reversible distillation is characteristic for all of these cases: no more than one component is stripped out (exhausted) in each section (all columns are of the 1st class of fractionation). This guarantees reversibility during mixing of streams at the feed location. In cases II, IIIb, and IV, nonproductive columns do not have their



Petlyuk 1965

NTNU Norwegian University of


Science and Technology


Distillation Columns with Vertical Partitions

Introduction

Dividing-Wall Column (DWC) = Fully thermally coupled column

Optimal Operation

General: Economic objective

Typical for DWCs: Minimize energy consumption with given product specifications

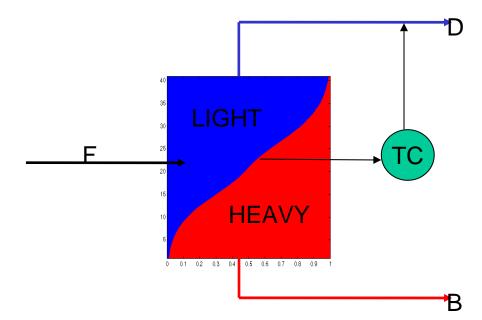
• Suitable for design and analysis

Our approach: Maximize purity of all products with a set boilup rate (normally maximum rate)

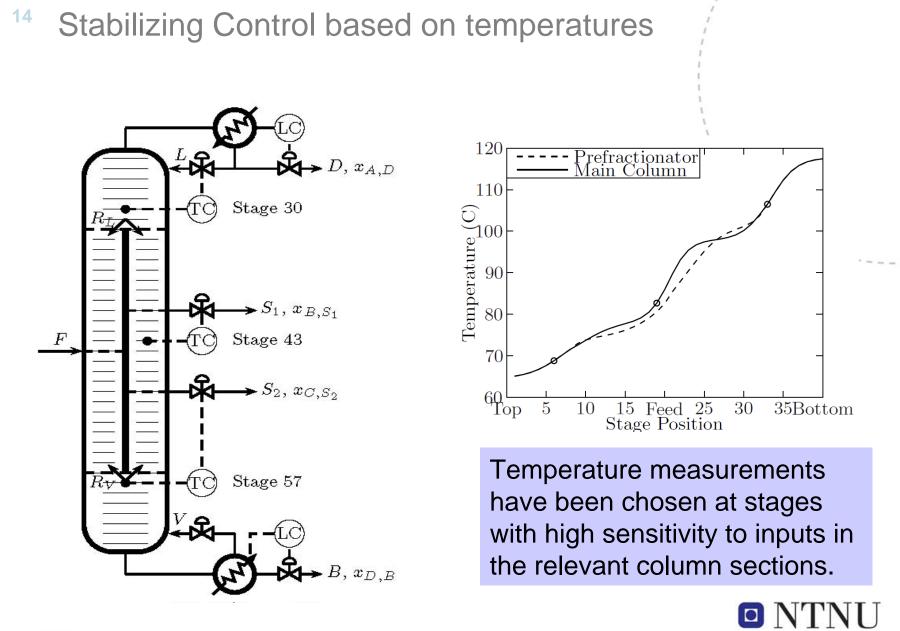
 Suitable for practical opetration – get the best out of an actual column
 Image: NTNI

> Norwegian University of Science and Technology

Stabilizing Control Policies

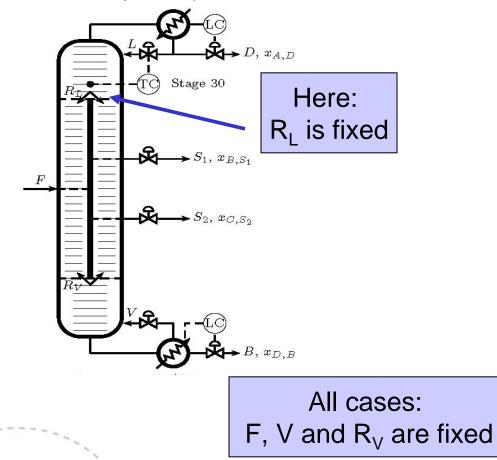

Goal: Acceptable performance using simple control policies.

Will use single temperature feedback loops to maintain "internal splits".


¹³ Stabilizing Control

To avoid strong sensitivity to disturbances: Temperature profile must be "stabilized"

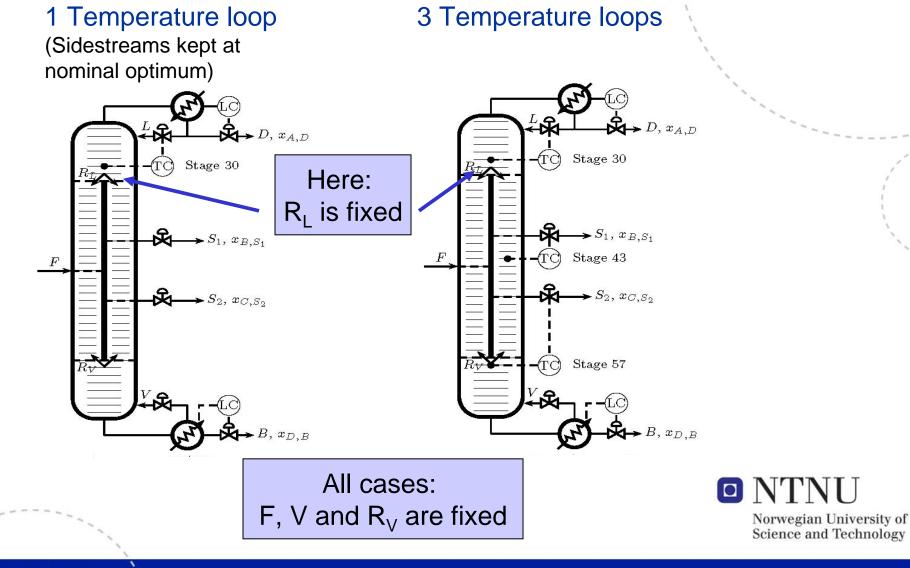
• <u>Must</u> use feedback (feedforward will give drift)


Norwegian University of Science and Technology

¹⁵ Stabilizing Control

Control Configurations

1 Temperature loop


(Sidestreams kept at nominal optimum)

¹⁶ Stabilizing Control

Control Configurations

Effect of disturbances

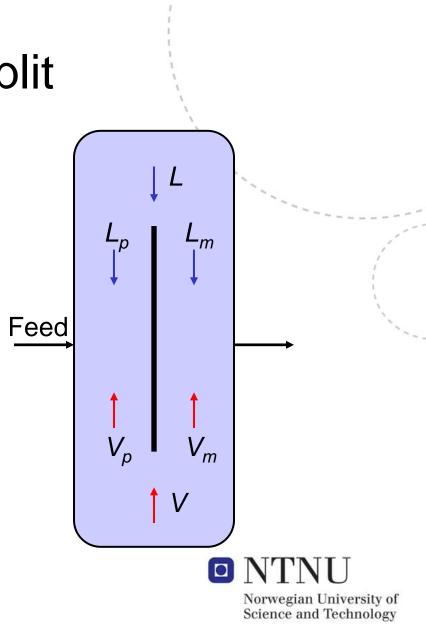
1 Temperature loop

3 Temperature loops

	Nominal	ΔF_{+10}	$\Delta z_{B,F,+20}$	$\Delta R_{V,+10}$	$\Delta R_{V,+50}$		Nominal	ΔF_{+10}	$\Delta z_{B,F,+20}$	$\Delta R_{V,+10}$	$\Delta R_{V,+50}$
F	1.0000	1.1000	1.0000	1.0000	1.0000	F	1.0000	1.1000	1.0000	1.0000	1.0000
$z_{B,F}$	0.2500	0.2500	0.3000	0.2500	0.2500	$z_{B,F}$	0.2500	0.2500	0.3000	0.2500	0.2500
\dot{V}	3.0000	3.0000	3.0000	3.0000	3.0000	V	3.0000	3.0000	3.0000	3.0000	3.0000
$\rightarrow R_L$	0.2572	0.2572	0.2572	0.2572	0.2572	$\rightarrow R_L$	0.2572	0.2572	0.2572	0.2572	0.2572
R_V	0.3770	0.3770	0.3770	0.4147	0.5655	R_V	0.3770	0.3770	0.3770	0.4147	0.5655
L	2.8492	2.8330	2.8493	2.8520	2.8764		2.8492	2.8492	2.8502	2.8502	2.8636
S1	0.2494	0.2494	0.2494	0.2494	0.2494	S1	0.2494	0.2494	0.2968	0.2968	0.0705
S2	0.2497	0.2497	0.2497	0.2497	0.2497	S2	0.2497	0.2497	0.2541	0.2541	0.4483
D	0.2508	0.2770	0.2507	0.2480	0.2236	D	0.2508	0.2508	0.2498	0.2498	0.2364
В	0.2501	0.3239	0.2502	0.2529	0.2773	B	0.2501	0.2501	0.1994	0.1994	0.2447
$x_{A,D}$	0.9703	0.9692	0.9703	0.9723	0.9813	$x_{A,D}$	0.9703	0.9692	0.9704	0.9723	0.9812
x_{B,S_1}	0.9361	0.9586	0.9658	0.8642	0.4993	x_{B,S_1}	0.9361	0.9364	0.9363	0.8510	0.4594
x_{C,S_2}	0.9589	0.8896	0.7925	0.8883	0.4963	x_{C,S_2}	0.9589	0.9426	0.9362	0.9444	0.4963
$x_{D,B}$	0.9949	0.8485	0.7989	0.9875	0.8820	$x_{D,R}$	0.9949	0.9952	0.9962	0.9947	0.9951
J	0.0349	0.0955	0.1181	0.0718	0.2876	J	0.0349	0.0430	0.0433	0.0614	0.2696
L_{nom} (%)	-	174	238	106	724	$L_{nom}(\%)$	-	23.2	24.1	75.9	672
L_{opt} (%)		137	199	105	675	$L_{opt}(\%)$		6.7	9.6	75.4	627

Liquid split have been kept fixed

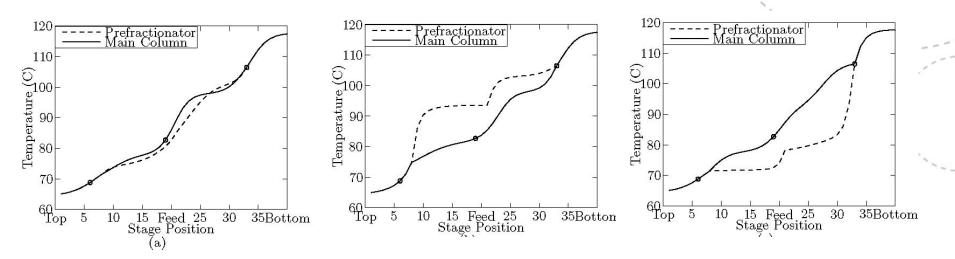
Norwegian University of Science and Technology


Sensitivity to Liquid Split

Key elements to DWCs:

- Liquid split
- Vapor split

$$R_{L} = L_{p} / L$$
$$R_{V} = V_{p} / V$$


What happens when liquid split not properly adjusted?

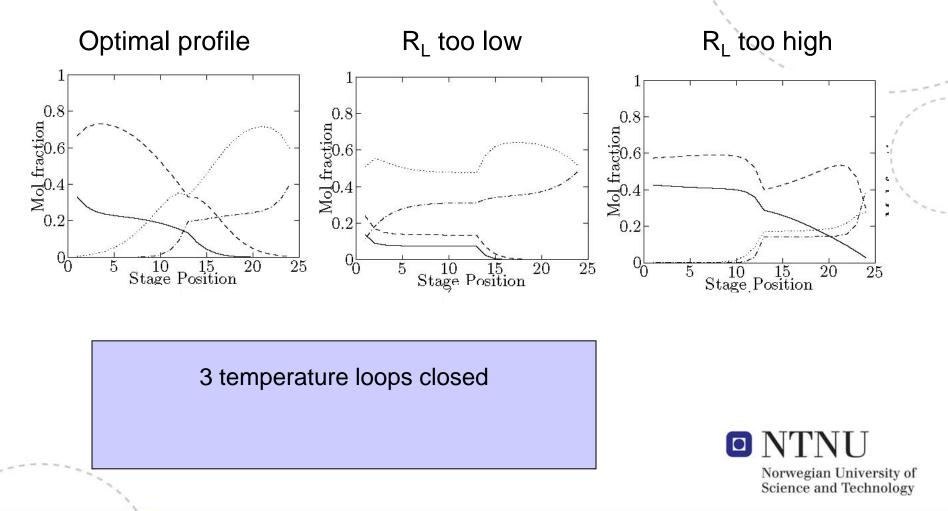
Sensitivity to Liquid Split

Optimal profile

 R_L too low

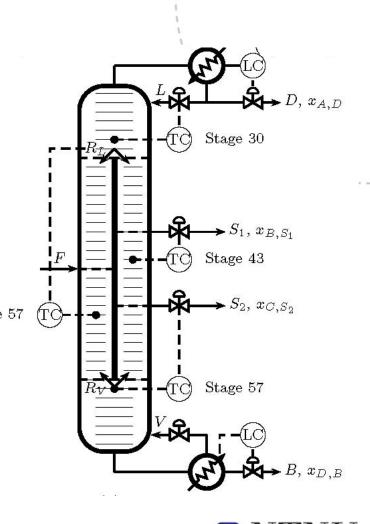
3 temperature loops closed

• Controlled temperatures



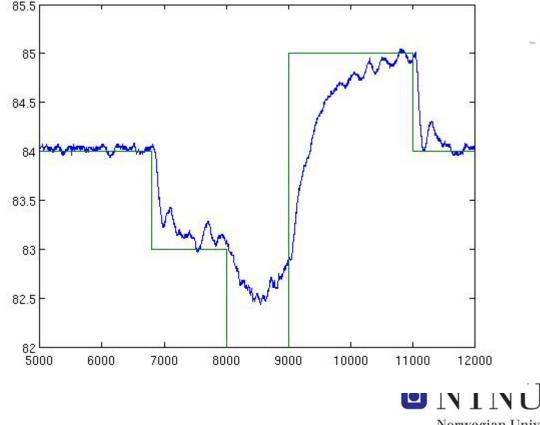
R₁ too high

²⁰ Stabilizing Control


Sensitivity to Liquid Split

Prefractionator composition profiles

Need to adjust liquid split online in order to stabilize prefractionator


Adding new temperature loop Stage 57

Norwegian University of Science and Technology

Step response test on pilot column

Prefractionator temperature below feed controlled by adjusting the liquid split

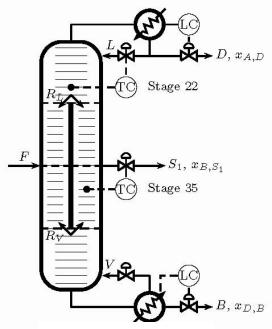
Norwegian University of Science and Technology

²³ Stabilizing Control

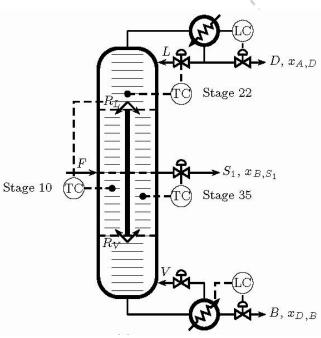
4 Temperature loops

	Nominal	ΔF_{+10}	$\Delta z_{B,F,+20}$	$\Delta R_{V,+10}$	$\Delta R_{V,+50}$
F	1.0000	1.1000	1.0000	1.0000	1.0000
$z_{B,F}$	0.2500	0.2500	0.3000	0.2500	0.2500
V	3.0000	3.0000	3.0000	3.0000	3.0000
R_L	0.2572	0.2434	0.2371	0.2969	0.4549
R_V	0.3770	0.3770	0.3770	0.4147	0.5655
L	2.8492	2.8349	2.8528	2.8496	2.8532
S1	0.2494	0.2746	0.3032	0.2498	0.2532
S2	0.2497	0.2753	0.2500	0.2499	0.2510
D	0.2508	0.2751	0.2472	0.2504	0.2468
B	0.2501	0.2750	0.1996	0.2499	0.2491
$x_{A,D}$	0.9703	0.9694	0.9706	0.9703	0.9705
x_{B,S_1}	0.9361	0.9324	0.9315	0.9354	0.9254
x_{C,S_2}	0.9589	0.9562	0.9535	0.9590	0.9580
$x_{D,B}$	0.9949	0.9945	0.9958	0.9949	0.9950
J	0.0349	0.0406	0.0405	0.0351	0.0380
L_{nom} (%)	-	16	16	0.6	8.9
L_{opt} (%)	-	0.7	2.5	0.3	2.4

Summary three configurations


	1 loop		3 loops		4 loops		-
	J	L_{nom}	J	L_{nom}	J	L_{nom}	
	$\left[\frac{mol}{min}\right]$	[%]	$\left[\frac{mol}{min}\right]$	[%]	$\left[\frac{mol}{min} ight]$	[%]	
Nominal	0.0349	-	0.0349	-	0.0349	-	_
$\Delta R_L = -50\%$	0.1626	366	0.1332	282	0.0349	0*	
$\Delta R_L = -25\%$	0.0932	167	0.0769	120	0.0349	0*	
$\Delta R_L = +25\%$	0.0657	88	0.0576	65	0.0349	0*	
$\Delta R_L = +50\%$	0.1027	194	0.1113	219	0.0349	0*	20
$\Delta F = +10\%$	0.0955	174	0.0430	23	0.0406	16	
$\Delta z_{B,F} = +20\%$	0.1181	238	0.0433	24	0.0405	16	
$\Delta R_V = +10\%$	0.0718	106	0.0614	76	0.0351	0.6	
$\Delta R_V = +50\%$	0.2876	724	0.2696	672	0.0380	8.9	

Temperature controller adjusts for a very faulty vapor split



²⁴ Stabilizing Control

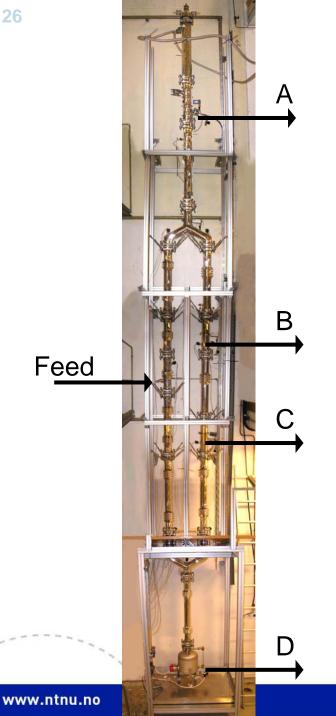
Petlyuk column control configurations:

2 Temperature loops

3 Temperature loops - including liquid split

> Norwegian University of Science and Technology

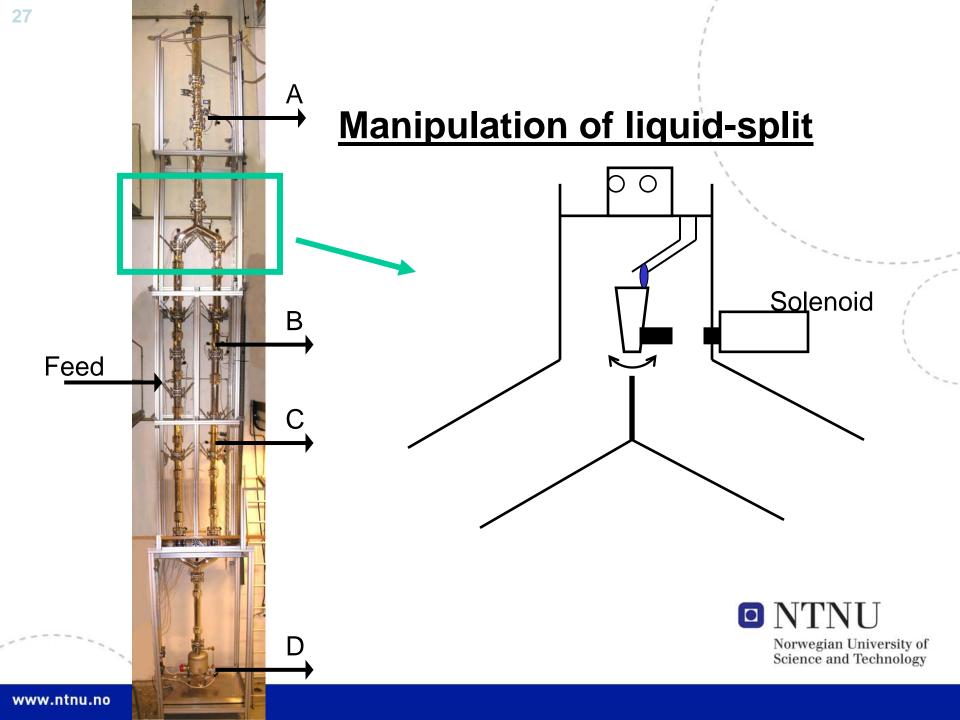
²⁵ Stabilizing Control


Summary three configurations Petlyuk column

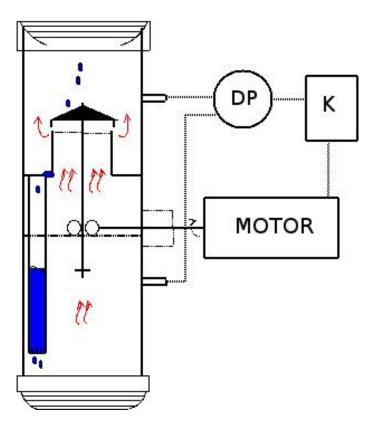
Summary three configurations High-purity Petlyuk column (twice no. of stages)

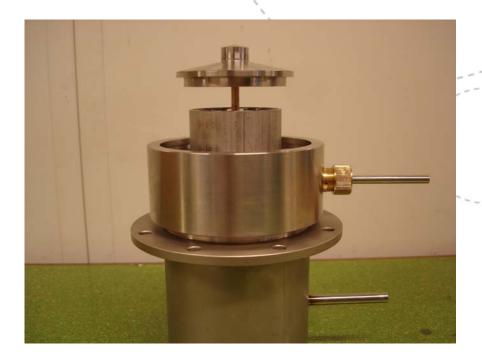
	1 loop		$2 \ loops$		$3 \ loops$	
	J	L _{nom}	J	L _{nom}	J	L_{nom}
	$\left[rac{mol}{min} ight]$	[%]	$\left[\frac{mol}{min} ight]$	[%]	$\left[\frac{mol}{min} ight]$	[%]
Nominal	0.0215	-	0.0215	-	0.0215	-
$\Delta R_L = -50\%$	0.1322	515	0.0833	287	0.0215	0
$\Delta R_L = -25\%$	0.0552	157	0.0388	81	0.0215	0
$\Delta R_L = +25\%$	0.0352	64	0.0367	71	0.0215	0
$\Delta R_L = +50\%$	0.0765	256	0.0834	288	0.0215	0
$\Delta F = +10\%$	0.0550	156	0.0331	54	0.0355	65
$\Delta z_{B,F} = +20\%$	0.0824	283	0.0263	22	0.0382	78
$\Delta R_V = +10\%$	0.0411	91	0.0314	46	0.0240	12
$\Delta R_V = +50\%$	0.3127	1350	0.2735	1170	0.1494	595

	1 loop		$2 \ loops$		$3 \log$	$^{ m ops}$
	J	Lnom	J	L_{nom}	J	Lnom
	$\left[\frac{mol}{min} ight]$	[%]	$\left[\frac{mol}{min} ight]$	[%]	$\left[\frac{mol}{min} ight]$	[%]
$\operatorname{Nominal}$	0.0006	-	0.0006	-	0.0006	-
$\Delta R_L = -50\%$	0.1513	24000	0.0843	13500	0.0006	0
$\Delta R_L = -25\%$	0.0524	8300	0.0279	4400	0.0006	0
$\Delta R_L = +25\%$	0.0071	1000	0.0263	4100	0.0006	0
$\Delta R_L = +50\%$	0.0684	11000	0.0947	15000	0.0006	0
$\Delta F = +10\%$	0.0341	5600	0.0021	250	0.0016	170
$\Delta z_{B,F} = +20\%$	0.0671	11000	0.0017	180	0.0012	120
$\Delta R_V = +10\%$	0.0463	7600	0.0237	3900	0.0008	30
$\Delta R_V = +50\%$	0.2901	48000	0.2038	34000	0.1081	18000



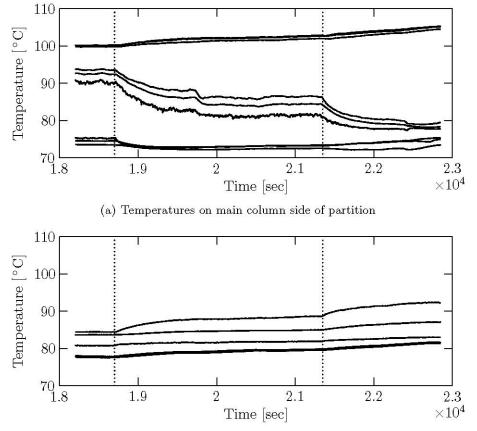
Pilot Plant Kaibel Column


- Vacuum-jacketed glass.
- 5 cm internal diameter.
- 8 meters tall.
- 3 kW reboiler.
- Packing: glass Raschig rings



²⁸ Pilot Plant

Manipulation of vapor-split



²⁹ Pilot Plant

Manipulation of vapor-split

(b) Temperatures on prefractionator side of partition

Responses to stepchanges in R_V

R_v increased at 18700s and again at 21300s

Conclusions

- Introduced an approach to practical Optimal Operation of DWC's
- Focused on achieving acceptable perfomance using only temperature controllers
- Using liquid split actively in control is key rejecting disturbances. – Can counteract incorrectly set vapor distribution

Thank you for your attention!

