
Developing a Quality Framework for Model-Driven
Engineering

Parastoo Mohagheghi, Vegard Dehlen

SINTEF, P.O.Box 124 Blindern,
N-0314 Oslo, Norway

{parastoo.mohagheghi, vegard.dehlen}@sintef.no

Abstract. This paper presents some related work on quality frameworks and
requirements for evaluating them. It also discusses characteristics of model-
driven engineering that are important when building a quality framework, such
as its use of models in several stages of development and maintenance,
generation of other artifacts from models and its multi-abstraction level
approach that requires consistency and traceability. We present a 7-step process
on how to define a quality framework that is adapted to model-driven
engineering, and which integrates quality engineering with quality evaluation.
As an example, the framework is applied on transformation quality. We
maintain that the transformation process and transformation mapping should be
discussed separately, as they require different approaches, and suggest quality
goals, quality-carrying properties to achieve the quality goals and methods for
evaluating these properties.

Keywords: Model-driven engineering, quality, transformation, metrics

1 Introduction

More attention is paid to the quality aspects in Model-Driven Engineering (MDE)
along with the growing importance of modeling in software development. Some
challenging issues (especially for complex or large systems and special domains) are
the increasing complexity that we need to understand and handle, the need for reliable
systems and approaches that can verify and preserve quality requirements, as well as
the dynamic adaptation and management of systems using transformations at runtime.
Our research on the “Quality in MDE” project in SINTEF (http://quality-mde.org/)
focuses on developing a quality framework applicable for MDE that includes quality
goals, means or quality-carrying properties to achieve them, and evaluation methods.
The research questions include:

1. What quality aspects are important in MDE? Are there any differences in quality
goals and activities when using MDE compared to other approaches?

2. How can quality goals be achieved and evaluated?
3. How can MDE improve the quality of developed software?

This paper gives some answers to the above questions and defines an initial
framework for defining and evaluating quality in MDE. It further discusses the quality
of transformations as an example of applying the framework. This paper is a revised
and shortened version of a paper presented at the 2nd workshop on Quality in
Modeling co-located with MODELS 2007 and we refer to the workshop version for
more discussions on the requirements of quality frameworks.

The paper is organized as follows. Section 2 presents some definitions of software
quality, the different purposes of modeling, work on quality frameworks and
characteristics of MDE that are important when defining a quality framework. Section
3 presents our quality framework and Section 4 applies it on the transformation
quality. The paper is concluded in Section 5.

2 Background

2.1 Definitions of Quality and Relation to Modeling Purposes

According to IEEE, software quality as an attribute is (1) the degree to which a
system, component, or process meets specified requirements, and (2) the degree to
which a system, component, or process meets customer or user needs or expectations
[10]. ISO 9126-1 defines quality as a set of features and characteristics of a product or
service that bear on its ability to satisfy stated or implied needs [11]. Evaluating
quality based on the goals or needs is also emphasized by Claxton and McDougal
who write that assessing the quality of anything – models included – has two parts.
One comes from measuring the right things, in the right way, with the right
yardsticks. But the heart of quality comes from the second aspect; judging something
based on its intended function and purpose [2]. So the search for quality (in modeling)
starts by asking, “What’s the purpose of a model?” as models are in fact developed
for various purposes.

Kühne classifies models as being either descriptive (capture some knowledge; e.g.
requirements or domain analysis) or prescriptive (aka specification models; used as
blueprints of a possible or imaginary system) [13]. In other words, a model can exist
later or earlier than its original. Hesse thinks that in the software engineering field, a
model often plays a double role: describing a part of an application domain and
prescribing a piece of software for that domain [8]. Daniels defines three kinds of
models based on their purposes [4]:

• Conceptual models describe a situation of interest in the world, such as a business
operation or factory process.

• Specification models define what a software system must do, the information it
must hold, and the behavior it must exhibit. They assume an ideal computing
platform.

• Implementation models describe how the software is implemented, considering all
the computing environment’s constraints and limitations.

Different types of models have of course different quality goals, where a “quality
goal” is defined as a clear definition of what quality means to a stakeholder and that
can be measured in a meaningful way. For example, conceptual models should be
understandable for external stakeholders but not necessarily detailed. However, it is
not often straightforward to define quality goals for each purpose of modeling or
aspect, because:

• Some quality goals are in conflict with one another. For example using the same
modeling language for different models reduces the need for learning new
languages. On the other hand, we want to use different modeling features in each
model (for example, the implementation model has to take the programming
environment into account [4]) and using the same modeling language might
therefore not be appropriate. Paige et al. believe that users may profit from using
different languages for different purposes and combining them [21].

• Some quality goals crosscut models or activities. For example, if our conceptual
model contains the concept of customer, our software will contain direct
representations of customers, and our software customers will have similar
attributes to their real-world counterparts. We want this correspondence because it
improves traceability between requirements and code, and because it makes the
software easier to understand [4].

Thus any research on quality in MDE should take into account the various
modeling purposes, relations of purposes to quality goals and the dependencies or
conflicts between them. In MDE, models are refined progressively and transformed to
new models or code. In [19], we discussed that the quality of models depends on the
quality of modeling language(s) used, the quality of tools used for modeling, the
knowledge of developers of the problem in hand and their experience of modeling
languages and tools, the quality of the modeling processes and the quality assurance
techniques applied to discover faults or weaknesses. We also add the quality of
activities performed on the models such as transformations to the above list, and
discuss it in more details throughout this paper.

2.2 What Characterizes Model-Driven Engineering?

The characteristics of MDE that are important when defining a quality framework are:

• Use of models in several stages of software development: Models are used from
early development phases to testing, simulation and code generation. Models are
often incomplete, imprecise and inconsistent early in the software development
life-cycle and get gradually more precise and complete. Models can be non-
executable or executable (even early analysis models can be executable).

• Models on different levels of abstraction and from different viewpoints: An
example is the OMG MDA’s viewpoints of Computational Independent Models
(CIM), versus Platform Independent Models (PIM) and Platform Specific Models
(PSM) [20]. Relations between these models are important when evaluating them
for some quality characteristics. For example, refined models have additional
classes and methods that can increase complexity metrics. Another example is

structural models vs. behavioral models. This is a characteristic of e.g. UML and
not necessarily all modeling languages. The multi-view and multi-abstraction level
development approach means that each of the diagrams and abstraction levels
might require specific quality goals and metrics. Lange describes this for the model
size metrics that varies on various diagrams and abstraction levels [15]. Mellor and
Balcer refer to several challenging issues that inevitably arise from the multi-view
and multi-notational approach of UML in MDE [18]:
o Consistency: The models of various views need to be syntactically and

semantically compatible with each other (i.e., horizontal consistency).
o Transformation and evolution: a model must be semantically consistent with its

refinements (i.e., vertical consistency).
o Traceability: A change in the model of a particular view should lead to

corresponding consistent changes in the models of other views.
o Integration: Models of different views may need to be seamlessly integrated

before software production.
• Activities are performed on models by tools: Models undergo transformations and

refinements. Many activities have models as input, output, or both. The quality of
such activities can preserve, improve or reduce the quality of models. Model
transformation is applied by tools, and during a transformation output models are
supplied with information not present in the input model. Examples are domain-
specific information or the platform concept during the PIM to PSM
transformation. Models should therefore be complete and precise but not include
unnecessary or redundant information [23].

• Generation of code and other artifacts from models: This means that evaluating the
quality of models is more important in MDE than in traditional software
development, where the code is mostly evaluated for quality.

• Developing Domain Specific Languages (DSLs) and models: DSLs have existed
for a while and Domain Specific Modeling Languages are also getting more
popular as a means to increase productivity and tailor the development
environment to a domain. Selecting any approach for developing a DSL such as
defining a metamodel or a UML profile needs knowledge of language and tool
design and appropriate quality guidelines.

Thus a quality framework in MDE should take into account the role of models,
languages, tools, transformations and their appropriateness for the domain and
modeling purposes. Model-driven Quality Assurance (MDQA) is often defined as the
automatic quality assurance that is based on models such as using system models for
testing and verification (see e.g., http://www.mdqa.org/). In this paper, we suggest
the notion of Model-Driven Quality Engineering (MDQE) meaning taking advantage
of MDE to prevent and discover quality defects as early as possible in the software
development lifecycle. MDE lends itself to quality engineering because of two
reasons. First, models are primary software artifacts in MDE and several other
artifacts are generated from models. Thus developing high quality models improves
the quality of e.g., test cases and code that may be fully or partly generated from
models. Second, quality engineering is enhanced by the extensive use of tools in
transforming models to other models or code. Tools can analyze and monitor models
for various characteristics. An example is discussed by Haesen and Snoeck in relation

with consistency checking which can be done by analysis (an algorithm detects
inconsistencies between deliverables), by monitoring (meaning that a tool has a
monitoring facility that checks every new specification), and by construction or by
generation (meaning that a tool generates one deliverable from another and
guarantees semantic consistency) [7]. Another example is using tools for checking
rules or constraints during modeling or transformations as proposed in [1]. Rules and
constraints can also be defined on metamodels.

2.3 Related Work on Quality Frameworks

In this section, we present some work on quality frameworks that either address the
quality of models or quality in MDE, or may be used in building such a framework
for MDE.

ISO/IEC 14598 International Standard (Standard for Information technology -
Software product evaluation - Part 1: General overview) defines the term quality
model as “the set of characteristics and relationships between them, which provides
the basis for specifying quality requirements and evaluating quality”. ISO 9126 is an
example of a widely used software quality model [11]. We use the term quality
framework in our work to avoid any confusion between quality model and model
quality.

Dromey proposes a five step approach in constructing a quality model [5]:

1. Identify a set of high-level quality attributes for the product like reliability or
maintainability.

2. Identify the product components. Examples are modules, requirements or relations.
3. Identify and classify the most significant, tangible, quality-carrying properties for

each component. These are properties that result in manifestation of the high-level
quality attributes.

4. Propose a set of axioms for linking product properties to quality attributes. This is
not an easy task and the links cannot always be empirically verified.

5. Evaluate the model, identify its weaknesses and refine it.

To identify high-level quality attributes, one may ask:

• What are the most important usages of this product?
• What kind of defects we want to avoid for these usages?

Trendowicz and Punter discuss quality models for software product lines [25]. The
activities during development of a quality model or framework are shown in Figure 1.
The definition of goals, characteristics and sub-characteristics should be done
iteratively and involve the stakeholders. This procedure goes on for as long as there
is a set of measurable sub-characteristics defined. A sub-characteristic is measurable
when it is possible to attach it to a particular component of a product line and define
one or more corresponding metrics (which can be quantitative, qualitative evaluation
or a combination of both); thus similar to the tangible quality-carrying properties in
the Dromey’s process. Reviewing should guarantee that the quality model is feasible
and not too complex. The final step is actually execution. They further write that
quality models should be flexible (to be tailored to a specific organization and

project), reusable and transparent (clear insight into their rationale as well as the
meaning of the characteristics and relations among them).

Fig. 1. Activities during development of quality models as defined in [25].

A framework that is applied on conceptual models is first presented by Lindland et
al. [16] and later extended by Krogstie et al. and applied for evaluating the quality of
modeling languages (see for example [12]). Lindland et al. divided quality goals into
syntactic (adherence to the language rules or syntax), semantic (relevance to the
problem domain and containing statements that are correct and relevant) and
pragmatic (understandability of a model by stakeholders).The framework separates
quality goals from means to achieve them. For example having formal syntax in a
language is a means to achieve syntactic quality. Means are similar to quality-carrying
properties in the Dromey’s process. Solheim and Neple have simplified and adapted
this framework to MDE [23]. They further identify transformability and
maintainability as two quality goals that are important in MDE, which are in turn
decomposed into several characteristics.

Lange and Chaudron identify two primary use of models; either development or
maintenance [14]. They further define some purposes of modeling for each phase
(e.g., analysis and prediction are done in the development phase) and relate some
quality characteristics to each purpose. These characteristics are further related to
metrics that are mainly on the detailed design level. Of other work on the quality of
models we can mention [2] on the quality of data models (a data model is a model
describing parts of business) and [26] on the quality of UML 2.0 models.

In addition to models, modeling languages has been subject of research, as in [6,
12 and 21]. The three works have some language quality requirements in common
such as having minimal set of concepts that are precisely defined, uniqueness of
concepts and understandability, while they complement each other in other aspects.
Another difference is when they are applied. Paige et al. [21] recommend their
principles for designing modeling languages, while Krogstie et al. [12] and Grossman
[6] have defined criteria for evaluating modeling languages.

Putting all the related work together provides requirements for quality frameworks
and a list of quality goals for some aspects such as models and languages, while other

aspects such as processes, activities and tools are less studied. There is also a need for
more empirical studies and evaluation of the frameworks.

3 Defining a Quality Framework for MDE

In the previous section we presented some work on quality frameworks, MDE
characteristics, and on the quality of models and modeling languages. In this section,
we present a process for defining a quality framework in MDE which is illustrated in
Figure 2.

Identify
target objects

Identify
quality gaols/

sub-goals

Specify
evaluation method / metrics

Identify quality-carrying properties
&

product /project characteristics

quality
evaluation

quality
engineering

Execute

Review links

links

Fig. 2. Steps in developing a quality framework for MDE; specifying both quality engineering
and quality evaluation.

We define the steps as:

1. Identify quality goals. Examples of quality goals are maintainability, reuse or
increased productivity. Identifying quality goals should involve all stakeholders
and reflect the purposes of modeling and the priorities of the project.

2. Identify target objects that can impact the quality goals. Proper target objects can
be the software development approach or process, models, metamodels, languages,
tools, transformations or the quality assurance techniques.

3. Identify the quality-carrying properties of the target objects and the product or
project characteristics that they help to achieve. For example the possibility to
generate code from models is a quality-carrying property of the modeling tool that
reduces the amount of manual coding and provides more consistent code.
Identifying the quality-carrying properties is based on several aspects such as:
o Purpose of the target object.
o Lifecycle phase (stages of development, maintenance or run-time).

o Isolated or in relation with other objects: it may be a need to integrate models /
languages/ tools/ activities with other models / languages/ tools / activities, or
they may need to exchange data. Integration may require consistency,
portability, traceability, compatibility etc.

o Scale of the project.
o Domain-specific or general.
o Lifetime (long-living or not): lifetime has impact on the need for training,

documentation, or maintainability.
 As discussed by Trendowicz and Punter [25], relations should also be identified.
4. Specify how to evaluate the quality-carrying properties and characteristics; e.g.,

measuring quantitatively by metrics or subjective evaluation, inspections using
checklists or interviewing the users. Specify links that validates that the right thing
is measured.

5. Specify association links between the quality-carrying properties and the quality
goals. For example, including domain knowledge in a domain specific code
generator may reduce the number of certain defect types and thus improve software
quality. This should be validated by analyzing the number and the type of defects.

6. Review and evaluate the framework in practice for characteristics such as
completeness, orthogonality, parsimony, reusability, flexibility, transparency,
relevance and possibility to be adopted.

7. Execute: Execution covers the implementation of quality-carrying properties and
evaluation.

The process can support a hierarchical model of goals and quality-carrying
properties as well. For example, transformations as a target object may be
decomposed to the transformation process and the transformation rules as discussed in
the next section.

The differences of the process in Figure 2 and the Dromey’s process described in
Section 2.3 are introducing target objects in the MDE context, adding the evaluation
step and the requirements for evaluating the quality framework. We also work on
identifying the quality-carrying properties and the product / project characteristics that
MDE can support; i.e., MDQE.

4 Quality of Transformations

4.1 Motivation

A key point in MDE is the transformation of models. This approach has been proven
useful both during the development and the maintenance of software systems,
allowing refinements, new views or system code to be generated from models.
Transformations automate tasks that are either too tedious or complex for most
developers to consistently and reliably implement [9]. One can – and should –
therefore engineer and evaluate the quality of the transformation itself. For instance, it
is important that the output model maintains the properties of the input model, e.g. the
transformation produces consistent models [17 and 24].

Other reasons for considering the quality of transformations are due to reuse and
runtime concerns. Just like software components and services should be reused when
building new systems, so should transformations be reused when developing new
transformations. A relevant example of a transformation repository is the ATL
Transformation zoo, which is a part of the Eclipse project1. Having access to quality
criteria for transformations would allow meaningful comparison of transformation
quality according to a set of chosen quality metrics. When using transformation at
runtime, additional quality attributes come into play. In some systems, e.g. safety-
critical ones, response times are usually important and, thus, the transformations have
to adhere to constraints on timeliness. Also, during runtime adaptation it is even more
important that the transformations maintain consistency and reliability among system
configurations.

4.2 Applying the Quality Framework

The quality framework for MDE presented in Figure 2 suggests starting with
identifying quality goals and target objects. Improving software quality and
increasing the productivity of software developers are the high-level quality goals
which may be achieved by the transformation activity in MDE as the high-level target
object. Further, one may discuss the quality of transformations itself. This section
suggests target objects for transformation quality.

Meta-metamodel

Transformation
languageMetamodel Metamodel

Transformation
mapping

Output modelInput model Transformation
process

Conforms to
Conforms to

Conforms to Conforms to

Conforms to

Conforms to

Uses

Fig. 3. A transformation is described by its transformation mapping. It takes a model as input
and produces a different model as output (we can also view code as a model). Each model – the
transformation mapping included – conforms to a metamodel.

1 http://www.eclipse.org/m2m/atl/atlTransformations/

Kühne writes that a transformation is information on a mapping from one model to
another, created by a transformation engineer, for the transformation engine, in order
to automate a transformation process [13]. So a transformation can be regarded as a
model that describes a transformation function. Hesse, on the other hand, writes that
although a transformation can be modeled if one wants to do so, the static model of a
transformation should not be confused with its dynamic original [8]. In his view,
transformations are processes and not models. These views show how transformations
have both a dynamic and a static part. To us, a transformation denotes the process,
while a transformation specification, model or mapping refers to the description of
this process. In our opinion, these parts are equally relevant when considering quality,
and they require different approaches.

Figure 3 depicts the transformation process which can be regarded as an operator;
i.e., output model=Trans(input model), with numerous properties. As can be seen,
there are also additional elements involved in a transformation, which are all
candidates for target objects. Our main focus, however, is on the transformation
process and mapping. In Table 1 we view these two dimensions of a transformation as
the target objects and suggest lower level quality goals with quality-carrying
properties and evaluation techniques. These suggestions are not considered as
exhaustive.

Table 1. Applying the quality framework on the quality of transformations.

Target Object Quality Goal Quality-carrying Property Evaluation

Effective transformation
engine [3]

Measure
performance Transformation

process
High
performance Select appropriate

transformation approach [3]
Measure
performance

Preservation
of consistency

Enforce consistency by tools
[7]

Consistency
analysis tool,
measuring
consistency before
and after
transformation

Reusability
Modularization, i.e. specialize
and chain transformations,
and rule inheritance

Inspection

Few number of rules, i.e.
modularization

Measure complexity
in the number or
size of rules

Appropriate algorithm
Measure the
complexity of
algorithms

Transformation
model / rules

Simplicity

Simple output models
Measure complexity
and size of the
output model [22]

Target Object Quality Goal Quality-carrying Property Evaluation

Compactness

Generic transformations [27].
They contain rules where
types of some object types are
variables, allowing a single
generic rule to handle several
situations.

Inspection

5 Conclusion and Future Work

The MDE approach allows us to automate many activities in software development.
Since models in MDE are expected to get progressively more complete, precise and
executable during development, they can be used to evaluate and verify the quality of
design, fix errors and eliminate unwanted complexity, preferably at the early stages of
software development. We defined a process for defining a quality framework and
based on existing literature, we provided some initial observations on transformation
quality related to MDQE.

However, much work is still needed in all the stages defined in Figure 2. We will
build further on the quality framework presented here to identify quality goals,
quality-carrying properties and evaluation methods for aspects that affect the quality
of models and are relevant for our partners in the MODELPLEX project
(www.modelplex.org). One of such aspects is identifying quality criteria for Domain-
Specific Languages (DSLs) appropriate for modeling large and complex systems.
Suggestions for future work on transformations are further analysis of what affects the
quality of transformations and to gather empirical evidence on associations between
the proposed quality-carrying properties and the quality of generated software.
Especially important is the development of tool support for quality engineering, as
tools are such an important part of MDE. This would support the execution part of the
MDE quality framework.

References

1. Berenbach, B.: Evaluation of Large, Complex UML Analysis and Design Models. In: 26th
Int’l Conference on Software Engineering (ICSE’04), pp. 232--241 (2004)

2. Claxton, J.C., McDougall, P.A.: Measuring the Quality of Models. In: The Data
Administration Newsletter (TDAN.com), http://www.tdan.com/i014ht03.htm, visited on
June 22 (2007)

3. Cuadrado, J.S., Molina, J.G.: Building Domain-Specific Languages for Model-Driven
Development. IEEE Softw. 24 (5), pp. 48--55 (2007)

4. Daniels, J.: Modeling with a Sense of Purpose. IEEE Softw. 19 (1), pp. 8--10 (2002)
5. Dromey, R.G.: Concerning the Chimera. IEEE Software 13 (1), pp. 33--43 (1996)
6. Grossman, M., Aronson, J.E., McCarthy, R.V.: Does UML Make the Grade? Insights from

the Software Development Community. Info and Softw Tech. 47, pp. 383--397 (2005)
7. Haesen, R., Snoeck, M.: Implementing Consistency Management Techniques for

Conceptual Modeling. In: Third International Workshop, Consistency Problems in UML-

based Software Development III – Understanding and Usage of Dependency
Relationships, pp. 99--113 (2004)

8. Hesse, W.: More Matters on (Meta-) Modeling: Remarks on Thomas Kühne’s “Matters”.
J. Softw Syst Model, 5, pp. 387--394 (2006)

9. IBM, http://www.ibm.com/developerworks/rational/library/apr05/brown/index.html
10. IEEE 610.12 IEEE Standard Glossary of Software Engineering Terminology
11. ISO- International Organization for Standardization, ISO/IEC 9126-1, URL:

http://www.iso.org/iso/iso_catalogue/catalogue_tc/catalogue_detail.htm?csnumber=2274
12. Krogstie, J.: Evaluating UML Using a Generic Quality Framework. Chapter in UML and

the Unified Process, Idea Group Publishing, pp. 1--22 (2003)
13. Kühne, T.: Matters of (Meta-) Modeling. J. Softw Syst Model 5, pp. 369--385 (2006)
14. Lange, C.F.J., Chaudron, M.R.V.: Managing Model Quality in UML-based Software

Development. In: 13th Int’l Workshop on Software Technology and Engineering Practice
(STEP’05), pp. 7--16 (2005)

15. Lange, C.F.J.: Model Size Matters. In: Workshop on Model Size Metrics at MoDELS’06,
5 p. (2006)

16. Lindland. O,I., Sindre, G., Sølvberg, A.: Understanding Quality in Conceptual Modeling.
IEEE Software 11(2), pp. 42--49 (1994)

17. Liu, Z., Jifeng, H., Li, X., Chen, Y.: Consistency and Refinement of UML Models. In:
Third International Workshop, Consistency Problems in UML-based Software
Development III – Understanding and Usage of Dependency Relationships, pp. 23--40
(2004)

18. Mellor S.J., Balcer, M.J.: Executable UML: a Foundation for Model-Driven Architecture.
Addison-Wesley (2002)

19. Mohagheghi, P., Aagedal, J.Ø.: Evaluating Quality in Model-Driven Engineering. In:
Workshop on Modeling in Software Engineering (MISE’07), In: Proc. of ICSE’07, 6. p
(2007)

20. Object Management Group’s Model Driven Architecture: http://www.omg.org/mda/
21. Paige, R.F., Ostroff, J.S., Brooke, P.J.: Principles for Modeling Language Design. Info and

Softw Tech. 42, pp. 665–675 (2000)
22. Saeki, M., Kaiya, H.: Model Metrics and Metrics of Model Transformations. In: The First

Workshop on Quality in Modeling, pp. 31--45 (2006)
23. Solheim, I., Neple, T.: Model Quality in the Context of Model-Driven Development. In:

2nd International Workshop on Model-Driven Enterprise Information Systems
(MDEIS’06), pp. 27--35 (2006)

24. Straeten, R.: Formalizing Behaviour Preserving Dependencies in UML. In: Third
International Workshop, Consistency Problems in UML-based Software Development III
– Understanding and Usage of Dependency Relationships, pp. 71--82 (2004)

25. Trendowicz, A., Punter, T.: Quality Modeling for Software Product Lines. In: 7th ECOOP
Workshop on Quantitative Approaches in Object-Oriented Software Engineering
(QAOOSE’03), 7 p. (2003)

26. Unhelkar, B.: Verification and Validation for Quality of UML 2.0 Models, Wiley (2005)
27. Verró, D., Pataricza, A.: Generic and Meta-Transformations for Model Transformation

Engineering, In UML 2004, pp. 290-304 (2004)

	4.1 Motivation
	4.2 Applying the Quality Framework

