
A Framework for OpenGL Client-Server Rendering
Christopher Dyken, Kjetil Olsen Lye, Johan Seland,

Erik W. Bjønnes, Jon Hjelmervik, Jens Olav Nygaard, and Trond Runar Hagen
SINTEF ICT
Oslo, Norway

Abstract—We present a software framework that facilitates
the development of OpenGL applications utilizing the limited
GPU capacities of a portable client in combination with the
high-end rendering hardware on a server. The resulting web-
application uses standard technologies and can be run on a wide
variety of devices, such as smart phones, tablets and laptops.
The framework is designed so that it is simple to make an
existing OpenGL application into a web-application, gradually
adding client-side rendering. Furthermore, it provides automatic
network scaling to provide interactivity even on poor connections.

I. INTRODUCTION

The computing landscape has seen massive shifts in the last
decade. As predicted by Moore’s Law [1], transistor density
is still doubled every 18 months, allowing us to balance
power consumption and performance when designing chips.
Therefore we can build low-power, portable devices as well
as parallel, high-performance servers. A powerful combination
of these is the use of a portable client to access remote data,
processed on servers, often called cloud computing.

The combination of client-server rendering is particularly
powerful for scientific visualization, as it remedies sev-
eral challenges often encountered by such applications. The
datasets are often very large, making them unsuitable both
to transmit and store on the client. Furthermore they can have
copyright and intellectual property issues, making it infeasible
to transmit the raw dataset. Finally, state-of-the art rendering
algorithms often rely on recent GPU hardware with specific
driver requirements, which can be hard to satisfy on portable
devices.

While there exist several approaches that can display images
from servers on a client, they often have latency issues and
can be difficult to adapt to in-house applications. With most
of todays portable clients being equipped with GPUs, and
WebGL standardizing web-based rendering, new approaches
become viable.

We propose a hybrid solution, utilizing both the limited
GPU of the client device, and the powerful server-side GPUs.
The main rendering is done on the server, allowing the
application access to traditional GPUs, where it can make use
of large data sets and advanced rendering techniques. The
client device is responsible for GUI and user interactions,
rendering a simplified geometry called proxy geometry see
Figure 1 for example. This can be navigated in, and possibly
manipulated, by the users who instantly sees the results of their
actions on the device. The latency of receiving the resultant
high-quality rendered image from the server, based on the

users input, is thus hidden, negating the problem of slow or
congested networks.

This divison of work also lends itself to porting existing
applications, as mostly the GUI needs to be adapted to the
framework, with only minor changes required to the main
application and OpenGL renderer.

In this paper we first give a quick overview of various re-
lated approaches to networked graphics and rendering, before
presenting Tinia, our main contribution, giving both a technical
overview and some more details about the rendering. We then
briefly discuss how existing applications can be integrated,
before our concluding remarks.

A. Related Work

Over the recent decades it has been many different ap-
proaches to serving graphics over networks. X-terminals [2]
were popular in the 1990s and used client side graphics
hardware to accelerate mouse and window movements. Later
various iterations of cheap, thin-clients provided local GUI
rendering, but relied on servers for heavy computations. This
trend is continued to the present day, sometimes dubbed the
post-PC era where much computing happens on smartphones
and tablets.

Several applications has been extended to allow remote
rendering. Noguera et al. [3] describe navigating large terrain
on mobile devices where the terrain closest to the viewer is
rendered on the client. ParaViewWeb [4] is a web interface for
ParaView enabling remote visualizations of simulation data.
Similarily, Niebling [5] describes how a specific application,
COVISE, has been extended with a WebGL renderer and long
polling based GUI integration, techniques also used by our
framework.

Anttonen [6] lists several popular WebGL frameworks used
for games and scientific visualization. However, none of them
allows for the use of a server back-end to increase rendering
fidelity.

Recently high-bandwith networks has proliferated to the ex-
tent that several companies, such as Onlive [7] and Gaikai [8],
now offer gaming-as-service through a video streaming so-
lution. Common to these platforms is that high-end games
are rendered on servers and the resulting video images are
streamed in real-time over the Internet.

For a more thorough investigation of further approaches to
rendering and visualization as a service see [9].



(a) A proxy geometry. (b) A highly tessellated geometry

Fig. 1: An example of a lightweight client geometry versus a dense server geometry. In both cases the geometry represents a
gall bladder for use in surgical simulations.

II. THE TINIA FRAMEWORK

Tinia is a software framework written in C++ and
JavaScript, released under the GNU Affero GPL version 3. The
framework supports creating ordinary desktop applications as
well as client-server applications with OpenGL-rendering. The
framework is designed so it is possible to have the same API
for both of theses modes of operation. We will only describe
the creation and anatomy of a client-server application in
Tinia.

Today’s cloud-platforms, such as Amazon EC2, supports
GPGPU computing as-a-service, but not yet OpenGL ren-
dering. However, better virtualization support on GPUs is is
becoming available [10], so we expect is should be possible to
deploy Tinia applications on such services in the near future.

Conceptually the Tinia framework provides a set of content
streams between the client and the server, and a suite of
messaging components that transports the streams over the
network.

A. Content Streams

The content streams have different bandwidth and latency
requirements, and they are therefore encoded using different
technologies.

• Server Rendering is the result of the server-side OpenGL
commands, which is passed into Tinia as an OpenGL
FrameBuffer Object (FBO). Since the framework only
needs the final image, it is agnostic to complex, multi-
pass rendering algorithms.

• Client Rendering is a set of WebGL commands that are
built on the server, before they are streamed and executed
on the client.

• Model is a description of the user interface to be dis-
played in the web browser and commonly used variables
such as, the OpenGL matrices, viewpoint etc., and other
application defined parameters. The client always holds a
full version of the model, and changes are communicated
between the server and client. The name is due to the

Model-View-Controller design pattern [11], and must not
be confused with a geometric model. It is through the
model that the server and client communicates user input.

B. Messaging Components

Conceptually, the framework consists of four different
messaging components with dedicated responsibilities, that
encodes, decodes and transports the rendering stream over
the network. The message paths and encoding technologies
is illustrated in Figure 2.

• Job is the application logic, possibly consisting of an
existing OpenGL engine

• IPC-Controller handles communication between the job
and the web server module, as well as grabbing the
resultant OpenGL FBO.

• Web server module is an Apache 2 module which gener-
ates a web page sent to the browser.

• web-application provides the user interface and com-
municates with the server through XML. It both de-
codes/encodes and interprets various content streams.

The web-application communicates with the web server
over HTTP. In turn, the web server uses POSIX shared
memory to message the IPC-Controller, which again resides
in the same memory address space as the job and shares the
same C++ objects.

C. The Event Loop

The Tinia event loops allow for changes to the model to
happen on both the client and the server. Client side changes
are typically GUI events, such as changing the viewpoint,
while server initiated changes might be data updated from a
running simulation. These changes must be propagated to the
other endpoint.

However, since both ends hold a full version of the model
at any time, only the updated variables are communicated. To
facilitate this, the model class implements the observer design
pattern: If something triggers a change in the model, a set of
listeners are notified. See Figure 3 for an illustration.



web-application

Web server

IPC-Controller

Job

Server
Rendering Model

Client
Rendering

Enc. img. XML Doc XML Doc

XML DocXML DocRaw data

C++ obj.C++ obj.GL buffer

WebGLJavaScriptHTML Img

Fig. 2: Component communication diagram, illustrating how
each component encodes and decodes the various content
streams.

On the client these can be other user interface widgets or
programmer defined scripts, and on server they can be any
C++ class which relates to the model. One important listener
on both endpoints is the model sender, which communicates
changes back to the other end.

To ensure that the other end receives all changes in order,
the model sender only allows one transfer at a time. If it
receives a notification during transmission, it will enqueue
the need for another transmission, which will be sent once
the current transmission is completed. One transmission may
contain the values of several variables, but only one value per
variable in the model. Thus the other endpoint is not notified
of every change in the model, just the final value at the time
of transmission.

To avoid loops in the update handling, the model receiver
signals the model sender that a change is imminent, thereby
disabling the transmission to the other endpoint.

The transmission policy described above automatically im-
plements a form of latency scaling, ensuring that the applica-
tion does not saturate the network. For instance, changes in
the viewpoint may happen several times per transmission, but
only when there is an open slot is the viewpoint communicated
to the server. This also greatly reduces the workload on the
server, as it requires far fewer redraws of the scene.

The realization of the event loop, using widely different
technologies on the two endpoints, are described in the coming
sections.

Endpoint A change Endpoint B change

Model Model Reciever

Model SenderListeners

Observers

Queue

Endpoint B

disable transmit

Fig. 3: The Event Loop of a Tinia Application. Conceptually
the same event loop is executed both on the client and the
server.

D. The Web-Application

The web-application is a generic application implemented
in JavaScript using HTML5 and WebGL. Because of this, it
is possible to load the application directly without relying on
additional software on most modern browsers. During startup
the application receives an XML schema describing the current
job’s model and the initial state of the model. From this the
application automatically generates a user interface and starts
the event loop described above. In addition to this behaviour,
the programmer may optionally add other scripts to the web-
application. This enables much of the application logic to take
place on the client side, thereby reducing both network traffic
and latency. See Figure 4 for a screenshot of a generated GUI.

All communication between the server and client is handled
through asynchronous HTTP requests. Responses from the
server can be acquired in two ways: through events initi-
ated in the user interface or events initiated by the server
communicated to the client through long polling, described
in [12]. Using this polling method, the server holds the request
open even if it has no data to send at the moment. Once
information is available it is immediately sent. The client will
then immediately open a new request, so that the server always
has an available request open.

E. Viewer controls handling

To facilitate different view controls the application program-
mer may write JavaScript classes, called viewlets, that respond
to mouse and keyboard events, and executed fully on the client.
Some common predefined controls come bundled with the
framework.

On initialization the framework instructs each viewlet with
which variables in the model it should update, typically the
viewpoint and OpenGL-matrices, but the application is free to
define other ways to transfer the view-state. As the viewlets
lives entirely on the client, there is no need for the web-
application to query the server for new state. The server-side



Fig. 4: A reservoir visualization web-application, allowing for
loading and navigating massive datasets on demand. The GUI
is automatically generated by the framework.

application queries the model for the results of the viewlets
and renders the scene accordingly.

It is possible to have several viewlets on one OpenGL scene,
ie. one for handling picking, and multiple viewlets responsible
for generating the OpenGL-matrices, allowing for multiple
camera models.

F. The Server-Side Processes

The web-server process runs as an Apache module, thereby
making the large library of existing Apache modules available
for security and scalability. However, as the Apache web
server, by design, frequently kills and spawns new module
processes, the lifetime of a given process of the module is
therefore much shorter than the typical lifetime of the server
side process. This mandates the need for the IPC-Controller
being a separate process.

The job is directly linked with the IPC-Controller creating a
C++-program which is executed through the framework. Since
each program is a separate process, all resource sharing is
handled by the operating system, thus the framework is able
to support several program instances on the same server. The
GPU can also be shared by several instances, all managed
by the operating system. At present the framework does not
handle several GPUs for several process, and each process is
assigned the same GPU. Techniques amending this could be
added to a future version of Tinia.

When Apache receives a request from the web-application,
it forwards the request to the Apache module, which in
turn interprets the request and notifies the IPC-Controller via
POSIX IPC. The controller handles the request, possibly by
interacting with the job, and it transfers the result back to the
controller via IPC.

III. OPENGL RENDERING

The OpenGL umbrella now covers several implementations,
WebGL for browsers, OpenGL ES (Embedded Systems) for
smart phones etc., as well as traditional OpenGL. Below we
describe how Tinia combines WebGL and regular OpenGL.

A. Client rendering

Conceptually the client rendering is a simple version of the
server rendering, typically well suited for rendering on a thin
client. The client rendering is subject to the same OpenGL
matrices as the server rendering, and will typically mimic the
server rendering as well as the client device allows.

Currently the client renders the proxy geometry whenever
the user is interacting with the viewport or an image is loading
from the server. This is done to hide latency and promote
interactivity. This behaviour can be replaced with a smarter
heuristic for determining when latency requires the use of
proxy geometry instead of images from the server.

The client rendering is specified from the server application
through a renderlist API. This API allows for specifying and
storing the proxy geometry, as well as rendering algorithm
and shader programs. WebGL-code is thereafter automatically
generated from this by the framework. The renderlist may be
altered by the application during its entire lifespan.

B. Server rendering

The server-side application typically holds all relevant ren-
dering data and it is responsible for drawing a high-detailed
version of the geometry. Any OpenGL-rendering techniques
are allowed, as long as the final result is written to the FBO
specified by the framework.

Since the framework is agnostic to what OpenGL calls
are made, there are no hindrances to employing advanced
rendering techniques in the server application. It is also fully
possible to embed an existing rendering engine in a Tinia
application.

When the IPC-Controller receives a request for a server-
rendered image, it in turn invokes the render procedure in the
job. Once the job completes its rendering, the IPC-Controller
dumps the raw FBO data to a shared-memory area. The web-
server then encodes the data to the image format requested by
the web-application and forwards it to the web-application.

The image grabbing is quite light-weight and does not affect
the performance of the render algorithm.

IV. PORTING AN EXISTING APPLICATION

Tinia is designed to facilitate integration of existing
OpenGL applications. We assume that such applications typi-
cally have a relatively simple main loop, consisting of a render
pass and event handling. To make such an application available
through Tinia, three simple steps are mandatory and the last
step is recommended.

1) Expose the variables you want the user to modify, by
adding them to the model. The user-interface will be
generated automatically, but can be manually specified.



2) Utilize the OpenGL information, such as matrices, that
the framework provides.

3) Map events made by the framework into application’s
event handling.

4) (Optional) Define a proxy geometry and possibly client-
side shaders. Without this step the framework will mimic
the behaviour of video streaming solutions.

In our experience, the execution of these steps is relatively
straightforward, and the framework has seen use in a variety
of fields, such as reservoir visualization, surgical simulation
and airport monitoring software.

V. FUTURE WORK

There are many extensions possible for the framework. One
planned feature is the automatic generation of proxy-geometry
from higher order surfaces such as spline patches, possibly
using the hardware assisted tessellators available on discrete
GPUs, functionality that is not yet exposed on devices running
WebGL.

A possibility is to only send the alterations to the previous
sent image in the form of change sets, utilizing the techniques
found in [13]. Since the web browser supports various lossless
image formats, the framework could encode the change set as
a compressed image and use the browser for decompression.
This could greatly reduce bandwidth requirements, and hence
would provide a noticeable decrease in latency for configura-
tions with low bandwidth. Meanwhile the web browser is able
to possibly use special hardware for decoding the image. The
actual merging of the change set and the previous image could
be implemented as a WebGL program.

For dynamic scenes, the server application could provide
a video stream for the web-application. While the framework
can be used for this without video streams, it would require
that the web-application continuously update the HTML im-
age. As most mobile devices are equipped with video decoding
hardware, using video streams could reduce battery drain for
application with animation requirements, and at the same time
benefit from the extra compression video encoding provides.

Another natural extension is to provide other client-side
targets beside the web-application, natural targets are iOS and
Android applications, possibly yielding higher performance.

VI. CONCLUSION

We have described our software framework for hybrid
client-server rendering of OpenGL applications. The frame-
work is already in use in several research applications devel-
oped by our partners and us. It has also been made available
under an open-source license and can be downloaded from
www.tinia.org.

ACKNOWLEDGMENT

The authors would like to thank our industrial partners
Ceetron, SimSurgery and Statoil for invaluable discussions and
feedback. This work was funded in part by NFR Grant 201447.
The Norne reservoir data are courtesy of Statoil, and its license
partners ENI and Petoro, coordinated by Center for Integrated

Operations at NTNU. The gallbladder surface is courtesy of
SimSurgery.

REFERENCES

[1] G. Moore, “Progress in digital integrated electronics,” in Electron
Devices Meeting, 1975 International, vol. 21, 1975, pp. 11 – 13.

[2] L. Mui, E. Pearce, and O. . Associates, X Window system administrator’s
guide: for X version 11, ser. Definitive guides to the X Window System.
O’Reilly & Associates, 1992.

[3] J. M. Noguera, R. J. Segura, C. J. Ogáyar, and R. Joan-Arinyo,
“Navigating large terrains using commodity mobile devices,” Computers
and Geosciences, vol. 37, no. 9, pp. 1218 – 1233, 2011.

[4] “Paraviewweb website,” http://paraviewweb.kitware.com/PW/, accessed
August 2012.

[5] F. Niebling, A. Kopecki, and M. Becker, “Collaborative steering and
post-processing of simulations on hpc resources: everyone, anytime,
anywhere,” in Proceedings of the 15th International Conference on Web
3D Technology, ser. Web3D ’10. New York, NY, USA: ACM, 2010,
pp. 101–108.

[6] M. Anttonen, A. Salminen, T. Mikkonen, and A. Taivalsaari, “Trans-
forming the web into a real application platform: new technologies,
emerging trends and missing pieces,” in Proceedings of the 2011 ACM
Symposium on Applied Computing, ser. SAC ’11. New York, NY, USA:
ACM, 2011, pp. 800–807.

[7] “Onlive website,” www.onlive.com, accessed August 2012.
[8] “Gaikai website,” www.gaikai.com, accessed August 2012.
[9] C. Mouton, K. Sons, and I. Grimstead, “Collaborative visualization: cur-

rent systems and future trends,” in Proceedings of the 16th International
Conference on 3D Web Technology, ser. Web3D ’11. New York, NY,
USA: ACM, 2011, pp. 101–110.

[10] “Nvidia cloud computing,” http://www.nvidia.com/object/
cloud-computing.html, acessed August 2012.

[11] E. Gamma, Design Patterns: Elements of Reusable Object-Oriented Soft-
ware, ser. Addison-Wesley Professional Computing Series. Addison-
Wesley, 1995.

[12] S. Loreto, P. Saint-Andre, S. Salsano, and G. Wilkins, “Known Issues
and Best Practices for the Use of Long Polling and Streaming in
Bidirectional HTTP,” RFC 6202 (Informational), Internet Engineering
Task Force, Apr. 2011.

[13] P.-P. Vázquez and M. Sbert, “Bandwidth reduction for remote navigation
systems through view prediction and progressive transmission,” Future
Generation Computer Systems, vol. 20, no. 8, pp. 1251 – 1262, 2004,
computer Graphics and Geometric Modeling.


