

Evaluating Quality in Model-Driven Engineering

Parastoo Mohagheghi, Jan Aagedal
SINTEF ICT- P .O. Box 124 Blindern, N-0314 Oslo, Norway

{parastoo.mohagheghi, jan.aagedal}@sintef.no

Abstract

In Model-Driven Engineering (MDE), models are

the prime artifacts, and developing high-quality
systems depends on developing high-quality models
and performing transformations that preserve quality
or even improve it. This paper presents quality goals in
MDE and states that the quality of models is affected
by the quality of modeling languages, tools, modeling
processes, the knowledge and experience of modelers,
and the quality assurance techniques applied. The
paper further presents related work on these factors
and identifies pertinent research challenges. Some
quality goals such as well-formedness and precision
are especially important in MDE. Research on quality
in MDE can promote adoption of MDE for complex
system engineering.

1. Introduction

A model is a representation of a system that hides
some details to assist focusing on some aspects; for
example structure of a system or its processes. Most
Object-Oriented (OO) methods advocate the use of
several models to describe the various aspects of the
system under consideration, while there are also
methods that combine several aspects in one model
[10]. Generally a model need not be diagrammatic; it
can combine graphical and textual information or be
only textual.

Models are widely used in software development,
but in current practice they are mainly used for
communication between stakeholders, analyzing the
problem, and documenting the system, while detailed
design is code-centric. Model-Driven Engineering
(MDE) is the term used for development processes that
are model-centric as opposed to code-centric. In MDE,
models are the prime artifacts and they may exist on
multiple levels of abstractions and undergo
transformations to other models and/or code.

A newly started project in SINTEF ICT has the goal
to develop a framework for evaluating quality in MDE.
MDE methods and tools are getting mature with time,
and technology and tool providers have gained
experience that is necessary to extend MDE from
forward engineering in small-scale projects to round-
trip engineering in complex systems, which also need
model reuse, traceability, reverse engineering and
composition of models. Thus quality issues also
change scale and become more important. Research
has already been done on various aspects of quality in
modeling. This paper has weaved the threads of earlier
research into an initial model showing their relations to
each other and to the quality of models. It also
describes research challenges and our plans for future
work.

The remainder of the paper is organized as follows.
Section 2 presents motivation of the work and the
model that relates quality factors to each other. Section
3 presents some related work from our literature
search, and Section 4 discusses specific quality
challenges in MDE. Section 5 discusses future work
and concludes the paper.

2. A model of quality in modeling

Models may be developed for the purpose of
communication, documentation, analysis and design,
test case generation and/or code generation. In MDE,
models are refined progressively and transformed to
new models or code. Our initial hypothesis is that there
is a relation between the quality of the final software
product and the quality of the models used to generate
it, such as their consistency and completeness. But the
quality of models in turn depends on:

• The quality of modeling language(s) used, such
as their appropriateness for the domain and
complexity;

• The quality of tools used for modeling and
transformations, such as compliance with the

modeling languages and capability of
combining information;

• The knowledge of developers of the problem in
hand and their experience of modeling
languages and tools in use;

• The quality of the modeling processes used;
• The quality assurance techniques applied to

discover faults or weaknesses.
Figure 1 shows the above factors and their relations.

Developers use the available modeling languages, tools
and processes and develop models based on their
knowledge of the problem and their experience. Some
quality characteristics required from each of the factors
are shown as well.

Processes Tools

Software

easy to learn,
problem appropriateness

technical
appropriateness

capabilities

ef
fo

rt-
sa

vi
ng

,
un

am
bi

gu
ou

s

powerful, self-descriptive

Modeling
languages

experience,
familiarity with domain,
processes, languages
and tools.

Model

Modelers

Quality assurance
cost-efficient

co
nf

or
m

an
ce

 to
th

e
la

ng
ua

ge

Figure 1. Factors affecting model quality

What quality characteristics that are important
depend also on the purpose of modeling. For example,
if the purpose of modeling is communication between
stakeholders and high-level system documentation,
comprehensibility is more important than
completeness.

3. Related work on quality in modeling

3.1. Quality of models

The EmpAnADa project (Empirical Analysis of

Architecture and Design Quality) aims to develop
techniques to improve the quality of UML models [3].
In a paper by project members (Chaudron and Lange),
they describe their quality model relating primary use
of models (either development or maintenance) to
purposes and the required quality characteristics for
each purpose [7]. For example, complexity is defined
as the effort required for understanding a model and is
important for communication, comprehension and
modification. Figure 2 shows their quality model.

Primary use Purpose Characteristic

Complexity

Balance

Modularity

Communicativeness

Correspondence

Self-descriptiveness

Conciseness

Precision

Esthetics

Detailedness

Consistency

Completeness

Modification

Testing

Comprehension

Communication

Analysis

Prediction

Implementation

Code generation

Maintenance

Development

Figure 2. Quality model in [7]

After selecting quality characteristics, a set of
metrics are identified to measure the quality
characteristics. For complexity, the proposed metrics
are dynamicity (the complexity of a class internal
behavior based on message calls and state transitions),
DIT (the depth of inheritance tree), cohesion (which
part of a class are needed to perform a single task),
NCU (the number of classes per use case), and NUC
(the number of use cases per class). Some of the
metrics are traditional OO metrics such as coupling
and cohesion, while a few are model-specific, such as
the number of crossing lines in a diagram. One
advantage of the approach is that it is metrics-based,
but the metrics are mainly on the detailed design level
and do not cover all the purposes of modeling.

One problem with the model is that relations
between metrics and quality characteristics are often
many-to-many. For example, all the identified metrics
are important for “balance”, which is defined as the
extent that all parts of a system are described at an
equal degree of all other model characteristics.
Alternatively, should “balance” be defined as a
characteristic composed of completeness, conciseness,
modularity and self-descriptiveness? Another problem
is that relations are often based on judgment. For
example, ISO and IEEE have different hierarchies of
quality attributes.

The above quality model also includes rules that can
be checked by appropriate tools. An example of such a
rule is that “an abstract class should have a subclass”.
Rules are also proposed by Berenbach, together with
some metrics that can be automatically collected by a
tool called DesignAdvisor [1]. Examples of metrics are
“Unused class” or “Incorrectly defined interface”.
Berenbach means that metrics have been proposed for

quite some time but what is “good” or “bad” is not
well researched.

The quality of UML 2.0 models is the subject of a
book published in 2005 [16]. Building on earlier work,
Unhelkar defines quality in three dimensions:
syntactical correctness (adhering to the rules of UML
2.0), semantic correctness (representing intended
meanings) and consistency, and aesthetics (symmetric,
complete and pleasant models). The author provides
checklists for quality in the above dimensions for each
UML diagram.

Finally, Krogstie et al. have developed a framework
for quality of models and modeling languages [4, 5,
and 6]. Figure 3 shows a view of their framework.

Model
M

Language
L

Technical actor
interpretation

T

Goals of
modeling

G

Stakeholders’
explicit knowledge

KS

Modeller
explicit knowledge

KM

Stakeholders’
Interpretation

I

Domain
D

perceived
semantic
quality

social
qualityorganizational

quality

social
pragmatic

quality

syntactic
quality

semantic
quality

technical
pragmatic

quality

empirical
quality

physical
quality

Figure 3. Krogstie et al.’s quality framework

In Figure 3, quality goals are defined as relations

between blocks. For example, syntactic quality has the
goal that all statements in the model are according to
the syntax of the modeling language, empirical quality
comprises comprehensibility matters such as layout
and readability, organizational quality covers that the
model fulfills the goal of modeling, and social quality
is the agreement among stakeholders’ interpretations.
From the above quality goals, some can be objectively
measured such as syntactic quality and social quality
(if a modeling language has a formal semantics), while
others such as domain or modelers’ knowledge are not
measurable. We have not found an empirical
evaluation of this framework on models.

3.2. Quality of modeling languages

Like programming languages, modeling languages
have a concrete syntax, abstract syntax and semantics.
Therefore, quality requirements for language design in
general also apply for modeling languages. Previously,
modeling languages tended to focus on specification

whilst programming languages emphasized
implementation [2]. This distinction is blurred now
since models can also be executable.

Krogstie et al. have extended their quality
framework presented in Figure 3 to identify
characteristics of modeling languages, as depicted in
Figure 4. These are:

• Domain appropriateness: Ideally, the
conceptual basis must be powerful enough to
express anything in the domain, and not more.

• Participant language knowledge
appropriateness: It is best to base a language
on experience with languages previously used.

• Knowledge externalizability appropriateness:
There should be no statements in the explicit
knowledge of the participant that cannot be
expressed in the language. This quality is
highly dependent on the knowledge of
participants.

• Comprehensibility appropriateness: There is a
list of characteristics for this aspect such as that
the number of phenomena should be
reasonable, and they should be distinguishable
from each other.

• Technical actor interpretation appropriateness:
For the technical actors (modeling tools), it is
especially important that the language lends
itself to automatic reasoning. This requires
formality; i.e., both formal syntax and
semantics.

Model
M

Language
L

Domain
D

Technical actor
interpretation

T

Modeller explicit
Knowledge

KM

Stakeholders’
interpretation

I

Comprehensibility
appropriateness

Knowledge externalizabilitiy
appropriateness/
Participant language knowledge
appropriateness

Domain appropriateness

Technical actor
Interpretation
appropriateness

Figure 4. The language quality framework
defined by Krogstie et al.

Krogstie et al. have evaluated UML 1.4 using the

above framework with the conclusion that the language
is difficult to comprehend, the concepts involved in
different phases are fundamentally different and it has
low formality, while its strength is in creation of design
models for OO systems [5].

A model conforms to a meta-model that defines
constructs and rules to build models. An essential
requirement of a meta-modeling language is therefore
its ability to concisely capture all aspects of a modeling
language, including its syntax and semantics [2]. Rossi
et al. write that that there exists an intrinsic
dependency between the metamodel and the
learnability of a language since a language’s meta-
model serves as an indication of its functional
complexity [12]. A metamodel’s conceptual
complexity should lead to greater expressive power,
and thus smaller models in size. For example,
modeling languages developed for a specific domain
have more expressive power and are closer to the
experts’ knowledge of the domain than general-
purpose modeling languages, but may be more
complex to learn for a novice.

Rossi et al. therefore propose measuring the
complexity of a modeling language by looking at its
meta-model. A modeling language is viewed as a set of
techniques such as class diagrams and state machine
diagrams. For each technique, metrics of the count of
object types, relationships and property types in the
metamodel are calculated. The conceptual complexity
of a technique is a sum vector of the above metrics,
and the complexity of a modeling language is a sum
vector of complexity of all its techniques. The
techniques are assumed not to be interrelated. Rossi et
al. have compared several OO methods using the above
metrics and concluded that OO methods get more
complex with time. Another evaluation done by Siau
and Cao (presented in [5]) based on the above metrics
concluded that UML is 2 to 11 times more complex
than other OO methods.

As an example, we can mention that the OMG
Systems Modeling Language (OMG SysMLTM) defines
correctness, precision, conciseness, consistency and
understandability as its quality goals [9], without
further discussion on what these terms mean and how
they are achieved.

3.3. Quality of tools

Few have evaluated modeling tools and their
relation to modeling languages and the quality of
models. We present here the few studies found so far.

Østbø has compared Select Enterprise Edition
version 6.0.53 with Rational Rose 2000 Enterprise
Edition for a set of requirements in an industrial case
such as documentation appropriateness and multi-user
support [17]. Purchase et al. discuss the problem of
differences in UML graphical notations and have
performed an experiment to compare a few notations
for understanding diagrams and finding errors in them

[11]. Two examples of notations and the related results
are presented in Figure 5.

Inheritance arcs

1

1..*

1

*
Cardinalities

Variation (a) Variation (b)

better for identifying
errors for novices

preferred by experts

better clarity
less ambiguity

Figure 5. Some of the notational variations in

the experiment of [11]

The importance of the experiment is that it confirms
the role of notations for comprehension and error
avoidance, and thus tool developers should make
choices between equivalent notations that improve the
quality of models.

Unhelkar provides a checklist for evaluating UML-
based case tools, such as “Compliance with UML” and
“Ability to suit a process” [16], but the checklist is not
used to evaluate the tools presented in the book. Such a
list may be developed for MDE tools related to the
quality goals presented in Section 4.

3.4. Quality of modeling processes

General quality guidelines should be adapted to the
domain, the task in hand, the organization practices
and modeling goals, and the tools they plan to use.
Berenbach writes that in his study, lack of process
contributed to a large number of errors and the
diagrams designed by the modelers were not uniform
[1].

Siau and Tian propose using a method that
evaluates goals and operations involved in performing
a task (such as drawing a use case diagram) and
measuring the time it takes to perform these [13]. The
measures will give some idea of the complexity and
usability of modeling techniques and processes. The
MODELWARE project (MODELling solution for
softWARE systems, IST-511731, ended in 2006) has
done work on defining modeling maturity level of
organizations based on the role of modeling in their
software development process; for example from
manual ad-hoc to full model-based. This work builds
on some earlier work by IBM and others as described

in [8]. The highest maturity level needs establishing a
complete model-centric development process. The
project has also identified some engineering and
business metrics to be used in the process framework,
such as “Code generation ratio” and “Model
completeness”. The proposed process framework may
be basis for future work.

3.5. Quality assurance techniques

Without quality assurance, models can become
complex, incomplete and inconsistent with each other,
and difficult to maintain. Special inspection techniques
are earlier proposed to detect faults in UML models,
such as the Object-Oriented Reading Techniques
(OORT) [15]. Further literature search may reveal
other quality assurance techniques specifically
applicable on models.

4. Quality aspects in MDE

In the previous section, we discussed work on the
quality of models and factors that affect this. In this
section, we discuss some special quality requirements
for MDE.

Solheim and Neple write that MDE motivates
system development with the following characteristics
[14]:

• Many activities have models as input, output,
or both.

• Several of these activities are model
transformations (while others are model
analysis, model verification, etc.), applied by
tools.

• During a transformation, output models are
supplied with domain-related information not
present in the input model. An example is the
platform concept. Models should therefore be
complete but not include unnecessary or
redundant information.

Solheim and Neple emphasize two quality criteria
important in MDE:

• Transformability: Models must have the
ability to be transformed to other models of
greater detail, and to executable pieces of
code. Transformability is decomposed into
completeness (correct according to the
domain), relevance (containing no extra
elements), precision for transformation, and
well-formedness or compliance to the model’s
metamodel.

• Modifiability: Changes made to the
requirements are rendered correctly in the
models and reflected in the code.

Modifiability is decomposed into traceability
of model elements, and well-designedness or
not being too complex.

We add that models will be incrementally
developed and composed with other models, which
means that models should be consistent with each other
and maintainable. Challenges of complex system
engineering should also be solved in MDE. Such
challenges include reuse of models (which needs
decomposition and composition), reverse engineering
from code to models, combining several modeling
languages (either general purpose like UML or
domain-specific), and version control of models. To
solve these challenges, models should be modular,
easily extensible and exchangeable between tools.
Means should therefore be identified for these quality
goals in tools, languages and modeling processes. For
example, modeling languages should be extensible
with profiles and packages, and tools should support
export and import of sub-models.

MDE relies heavily on tools for all the activities.
Tool reliance and automatic transformation can be an
advantage since many quality considerations can be
integrated into tools, like keeping track of changes and
following the syntax or metamodel.

5. Conclusion and future work

Based on Figure 1 and discussions in Sections 3 and
4, we conclude that quality in modeling and specially
in MDE is composed of several aspects that cover
technical factors (such as complexity of languages and
their metamodels, transformability of models and
capabilities of tools), psychological factors (such as
learnability, familiarity with the language and ease of
interpretation), Human-Computer Interaction factors
(such as usability and aesthetic aspects) and
organizational factors (the domain and goals of
modeling). For MDE, we should also focus on
metamodeling and modeling languages,
transformations, model-centric processes, tools used in
different stages of software development, and quality
assurance techniques adapted to MDE.

We have started a project on quality in MDE to
answer questions like whether a model is complete or
suitable for automation, or whether a modeling
technique is appropriate for a certain purpose of
modeling. To answer these questions, we plan to
identify goals and quality requirements in different
stages of the MDE, identify questions to evaluate each
goal, and identify metrics to answer the questions.
Earlier checklists and proposed metrics will be
examined in this process. Quality goals, metrics and
guidelines will give input to quality assurance

techniques. Such goals and metrics must be assessed in
real projects or experiments. It is impossible to cover
all the identified factors, or identify metrics that are
applicable to all modeling languages or techniques.
Therefore, we should focus on some quality factors and
possibly for specific domains or purposes of modeling,
depending on the results of our literature review and
the projects we are involved in.

SINTEF ICT has broad engagement in MDE and
experience from several international projects with
focus on modeling such as the MODELWARE and
MODELPLEX projects (MODELing solution for
comPLEX software systems, IST-34081, started in
September 2006 for three years,
http://www.modelplex.org/). We plan to use examples
of models, languages and tools that are developed in
these projects in our empirical work.

6. References

[1] B. Berenbach, “Evaluation of Large, Complex UML
Analysis and Design Models”, Proc. 26th Int’l Conference on
Software Engineering (ICSE’04), pp. 232- 241, 2004.

[2] Clark, T., A. Evans, P. Sammut, and J. Willans, Applied
Metamodelling- A Foundation for Language Driven
Development, Version 0.1, Accessible at http://www.
xactium.com, 2004.

[3] EmpAnADa project, http://www.win.tue.nl/empanada/,
last visited on 14 January 2007.

[4] J. Krogstie, O.I. Lindland, and G. Sindre, ”Defining
Quality Aspects for Conceptual Models”, In E. D.
Falkenberg, W. Hesse, & A. Olive (Eds.). Proc. the IFIP8.1
working conference on Information Systems Concepts
(ISCO3); Towards a Consolidation of Views, pp. 216-231,
1995.

[5] J. Krogstie, “Evaluating UML Using a Generic Quality
Framework”, chapter in UML and the Unified Process, Idea
Group Publishing, pp. 1-22, 2003.

[6] Krogstie, J., and A. Sølvberg, Information System
Engineering: Conceptual Modelling in a Quality Perspective,
Kompendiumforlaget, Trondheim, Norway, 2003.

[7] C.F.J. Lange, and M.R.V. Chaudron, “Managing Model
Quality in UML-based Software Development”, Proc. 13th
Int’l Workshop on Software Technology and Engineering
Practice (STEP’05), pp. 7-16, 2005.

[8] MODELWARE reports “D2.3 MDD Maturity Levels
Definition” and “D2.8 MDD Process Framework”, accessible
at http://www.modelware-ist.org/, 2006.

[9] OMG SysMLTM, , http://www.sysml.org/, last visited on 17
January 2007.

[10] M. Peleg, and D. Dori, “The Model Multiplicity
Problem: Experimenting with Real-Time Specification
Methods”; IEEE Trans. Software Engineering, 26(8), pp.
742-759, 2000.

[11] H.C. Purchase, L. Colpoys, M. McGill, D. Carrington,
and C. Britton, “UML Class Diagram Syntax: An Empirical
Study of Comprehension”, Proc. Australian Symposium on
Information Visualization, Volume 9, pp. 113-120, 2001.

[12] M. Rossi, and S. Brinkkemper, “Complexity Metrics for
System Development Methods and Techniques”, Information
Systems, 21(2), pp. 209-227, 1996.

[13] K. Siau, and Y. Tian, “The Complexity of Unified
Modeling Language: A GOMS Analysis”, Proc. Twenty-
Second International Conference on Information Systems,
pp. 443-447, 2001.

[14] I. Solheim, and T. Neple, ”Model Quality in the Context
of Model-Driven Development”, Proc. 2nd International
Workshop on Model-Driven Enterprise Information Systems
(MDEIS’06), pp. 27-35, 2006.

[15] G.H. Travassos, F. Shull, M. Fredericks, and V.R.
Basili, “Detecting Defects in Object-Oriented Designs: Using
Reading Techniques to Increase Software Quality”, Proc.
OOPSLA’99, pp. 47-56, in ACM SIGPLAN Notices, 34(10),
Oct. 1999.

[16] Unhelkar, B., Verification and Validation for Quality of
UML 2.0 Models, Wiley, 2005.

[17] Østbø, M., Anvendelse av UML til Dokumentering av
Generiske Systemer, Master thesis in Norwegian with the
title: Applying UML to the Documentation of Generic
Systems. University of Stavanger, 2001.

