A heuristic for rich maritime inventory routing problems

Oddvar Kloster, Truls Flatberg, Geir Hasle Seminar NICTA / UNSW, Sydney, Australia July 5 2011

Outline

SINTEF

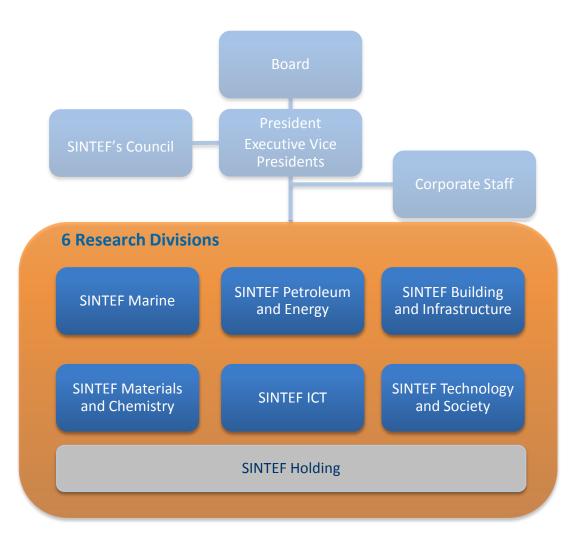
Introduction

Model

- Algorithms
- Test cases

ICT

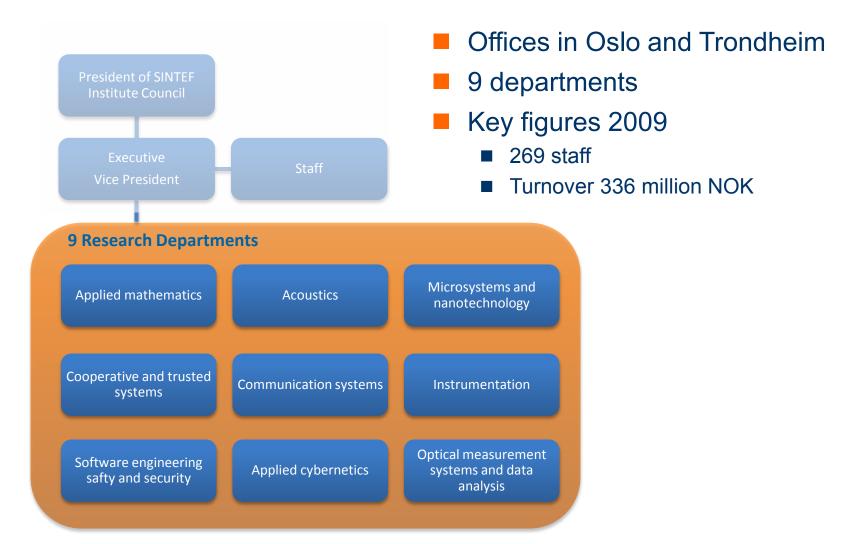
.



SINTEF

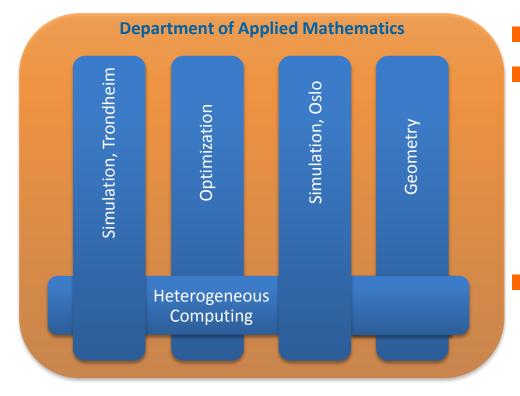
- Established 1950 by the Norwegian Institute of Technology.
- The largest independent research organization in Scandinavia.
- A non-profit organization.
- Vision "Technology for a better society".
- Key Figures
 - 2123 Employees from 67 different countries.
 - 2755 MNOK in turnover (about € 340M).
 - 7216 projects for 2200 customers.
 - Offices in Norway, USA, Brazil, Macedonia, United Arab Emirates, Denmark.

SINTEF: Organization



ICT

. . . .


SINTEF ICT: Organization

ICT

Department of Applied Mathematics

Offices in Oslo and TrondheimConsists of 5 research groups

- Geometry
- Optimization
- Simulation
- Visualization
- Heterogeneous computing
- Key figures 2009
 - 38 employees
 - 45 MNOK turnover

Optimization group

Focus

20 years of basic and applied research in discrete optimization

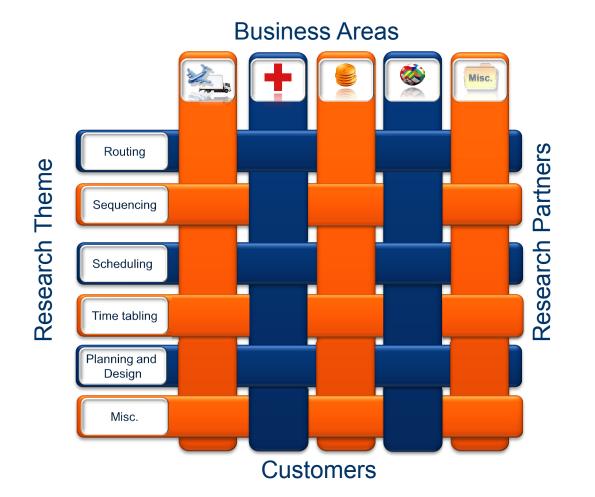
Employees

8 researchers, 1 software engineer

Activities

- Basic research
- Applied research
- Consultancy

Products and Services


- Models and algorithms
- Software (stand alone, plugin, components, libraries)
- Reports, scientific papers

ICT

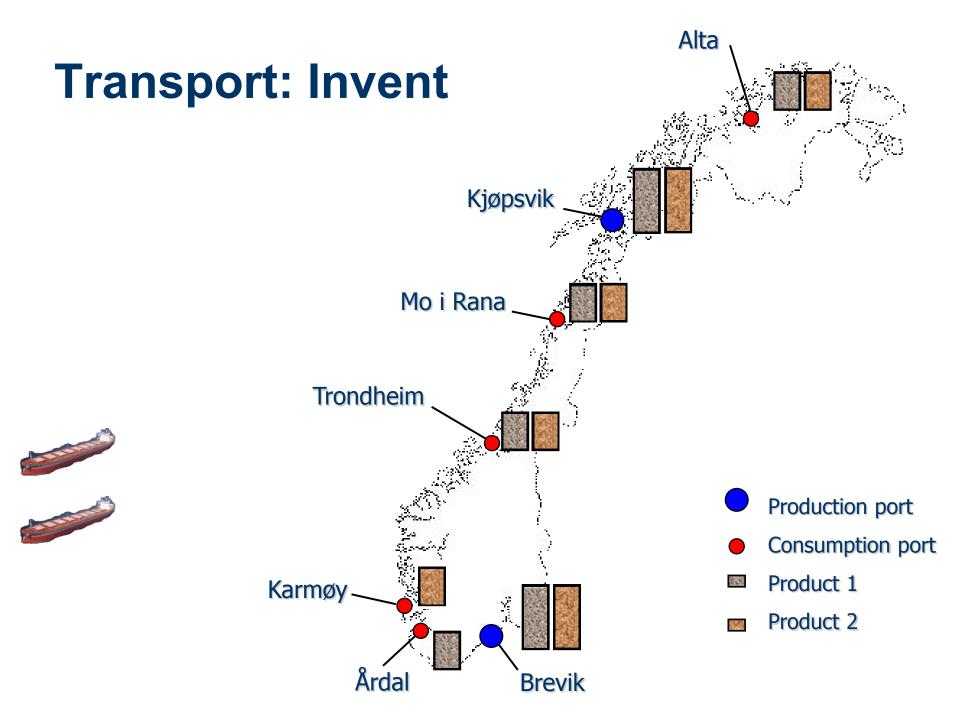
Business Areas & Research Themes

ICT

. . . .

Finance: NetranS

- Customer: VPS, owned by Oslo Stock Exchange
- Challenge: Maximizing the total value of transactions at Oslo Stock Exchange. Typical size: 150 000 transactions, value NOK 150 billion
- Solution: MIP solved by CPLEX. Decomposition due to problem size.
- **Result:** Runs twice daily. High clearing percentage.

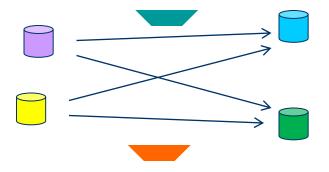

Sports: NFF Scheduling

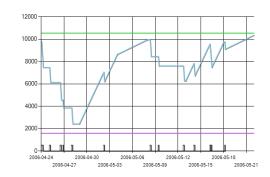
- SINTEF makes the schedule for the Norwegian top divisions
 - Two-stage process where the pattern is constructed first
 - No "break" between round 1 and 2, nor between 25 and 26 (last round)
 - Minimum number of breaks
 - Minimum distance between "same" match type (home and away)
 - Anti-teams
- Allocation of the teams to placeholder
 - Specific matches on specific days
 - Specific home or away start and finish

	Round	1	2	3	4	5	6	7	8	9	10	11	12	13
	Team 1	2	3	4	5	6	7	8	9	10	11	12	13	14
	Team 2	1	14	3	4	5	6	7	8	9	10	11	12	13
	Team 3	13	1	2	14	4	5	6	7	8	9	10	11	12
	Team 4	12	13	1	2	3	14	5	6	7	8	9	10	11
	Team 5	11	12	13	1	2	3	4	14	6	7	8	9	10

Literature

Andersson H., A. Hoff, M. Christiansen, G. Hasle, A. Løkketangen (2010).


Industrial Aspects and Literature Survey: Combined Inventory Management and Routing. Computers & Operations Research 37, 9, 1515-1536.


M. Christiansen, K. Fagerholt, G. Hasle, A. Minsaas, B. Nygreen (2009). *Maritime Transport Optimization: An Ocean of Opportunities.* ORMS Today 36 (2), 28-31.

Maritime inventory routing

- One or more products
- Production ports
- Consumption ports
- Finite storage capacity
- Production/consumption rate
- Fleet of vessels

ICT

Route vessels to avoid stockout/overflow

Maritime inventory routing

Characteristics

- Often no central depot
- Often no fixed quantities and time windows
- Continuous operation
- Tightly coupled
- Many variants with specific constraints
- Three applications used as pilot studies
 - Cement multiple products, short horizon
 - Chemical tankers tramp and inventory, multiple products, tank allocation, cleaning

ICT

LNG - single product, long term, contracts, full loads

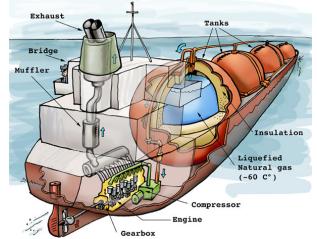
Invent model features (1)

Products

- Measured by quantity, weight and volume
- Fixed density, or dependent on production site
- Cleaning may be required between products, incurring cleaning time and cost

Vessels

- Sailing time/distance/cost table per vessel
- Laden volume/weight capacity
- Stowage:
 - Simple stowage (max products)
 - Or stowage in one or more tanks with volume capacities
- Availability, maintenance periods

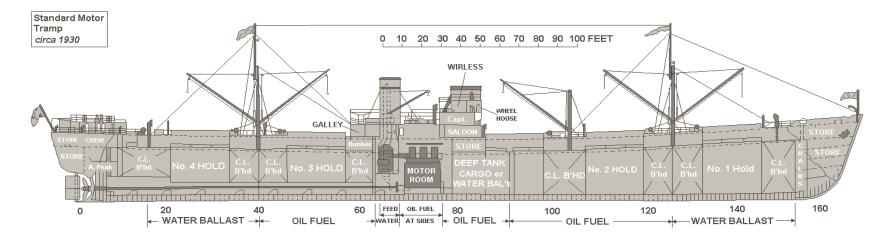

Invent model features (2)

Inventories in ports

- Min and max volume and weight capacity
- Per vessel/product load and discharge rates
- Variable production/consumption rates
- Partly interruptible production/consumption
- Port closure periods

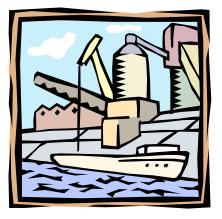
Contracts

- Limit the amounts lifted in certain periods
- Define prices
- Restrict origins/destinations
- Restrict cargo size
- Impose time slots



Invent model features (3)

Bookings


- Transportation demands not related to inventories
- Laycan, quantity limits
- Pickup or delivery only, or both

Invent model features (4)

- Priority on inventories and contracts
- Vessel-port compatibility
- Arrival and departure load limits (draft restrictions)
- Restrict # visits to inventory in period
- Inter-arrival gaps
- Boil-off
 - Product evaporates during sailing
- Full vessel loads
 - Leave from production ports with full loads
 - Discharge completely in consumption port except for boil-off needs

Invent model – Objectives

Objective components

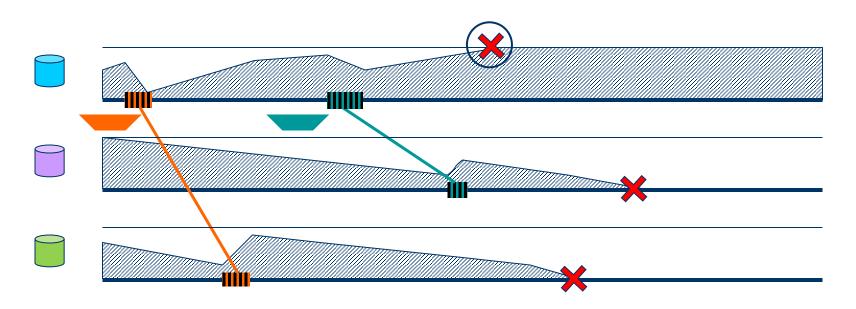
- Income (contract, stream, booking)
- Cost (sailing, port stay, cleaning)
- Performance (quantity transported)
- Penalized constraints (stockout/overflow)

Combined objectives

- Scalarization
- Hierarchical

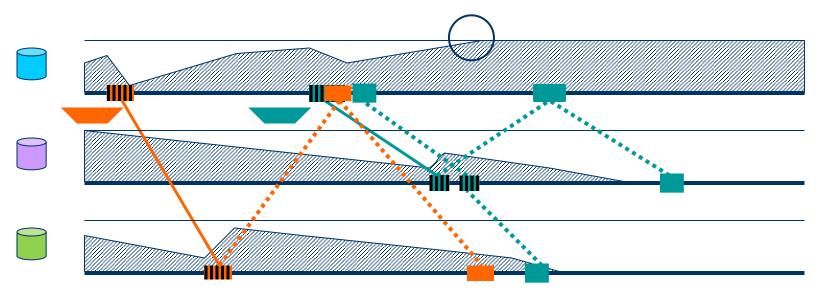
Invent - Solution strategy

- Rolling horizon context
- Heuristic construction and optimization
- Violate constraints by doing too little \rightarrow penalize
 - Stockout/overflow
 - Unserviced booking
 - Contract limit not met
 - Too few visits in time period
- Reduce penalty by adding shipments
- in a greedy fashion
- Try to resolve conflicts using delays


Construction: overview

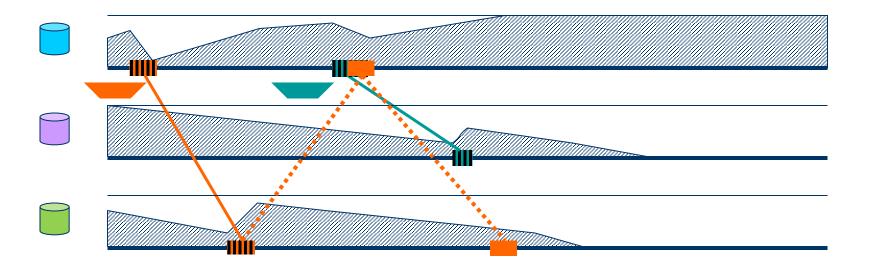
- Start with "empty" plan
- Identify earliest (highest priority) violated constraint
- Generate shipments
- Rank shipments
- Add best shipment and repeat
- If no fix found, forget violation
- ... until there are no more violations

Construction: select penalty to fix

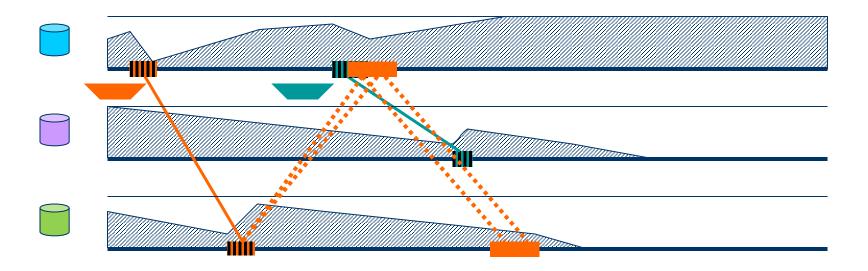

- Stockout/overflow
- Unserviced booking
- Contract limit
- Too few visits in time period

Choose

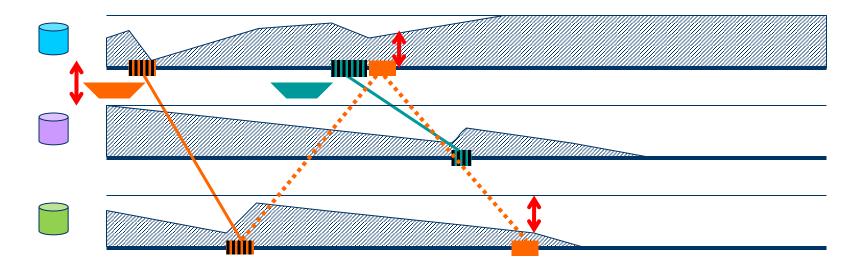
- (Contract)
- Counterpart inventory
- (Counterpart contract)
- Vessel
- Insertion points



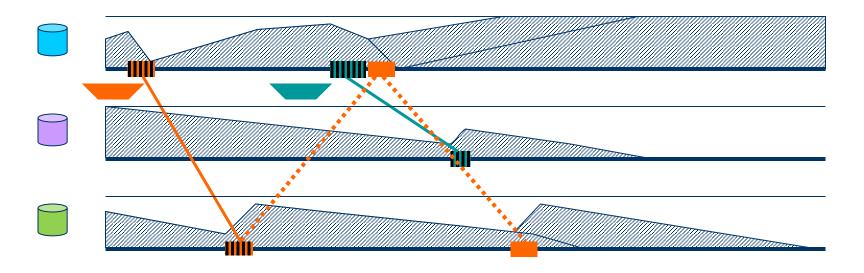
Large parts of the plan may be affected


- Schedule for selected vessel changes after new load action
- Schedules for other vessel are unchanged
- Schedules may change for inventories visited by selected vessel

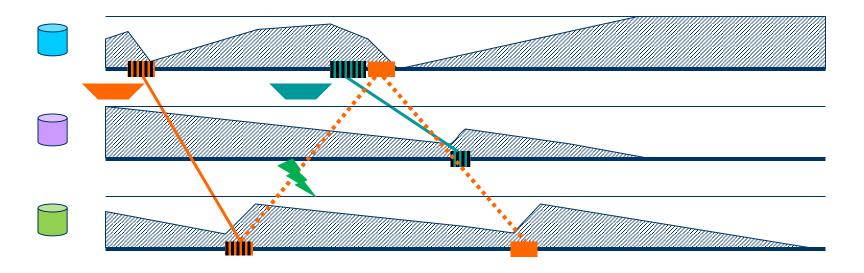
Many constraints to satisfy



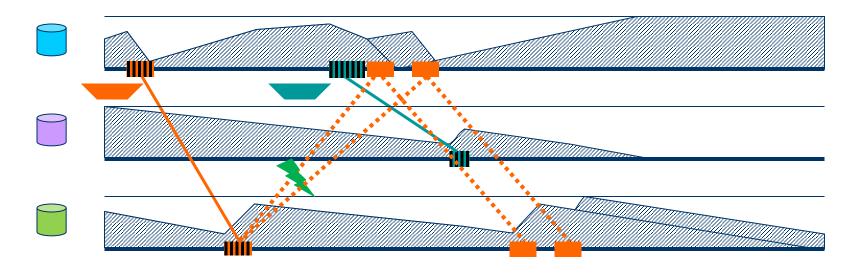
- Assume small quantity and propagate time
- Find maximum possible quantity (including tank allocation)
- Set quantity, propagate time and quantities
- Insert tank cleaning actions
- Explore delays
- > When necessary, delay and repeat



- Assume small quantity and propagate time
- > Find maximum possible quantity (including tank allocation)
- Set quantity, propagate time and quantities
- Insert tank cleaning actions
- Explore delays
- When necessary, delay and repeat



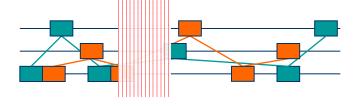
- Assume small quantity and propagate time
- Find maximum possible quantity (including tank allocation)
- Set quantity, propagate time and quantities
- Insert tank cleaning actions
- Explore delays
- When necessary, delay and repeat

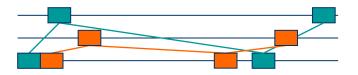


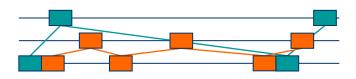
- Assume small quantity and propagate time
- Find maximum possible quantity (including tank allocation)
- Set quantity, propagate time and quantities
- Insert tank cleaning actions
- Explore delays
- When necessary, delay and repeat

- Assume small quantity and propagate time
- Find maximum possible quantity (including tank allocation)
- Set quantity, propagate time and quantities
- Insert tank cleaning actions
- Explore delays
- When necessary, delay and repeat

- Evaluate shipments according to objective function
- Randomly perturb the scores
- Select the best

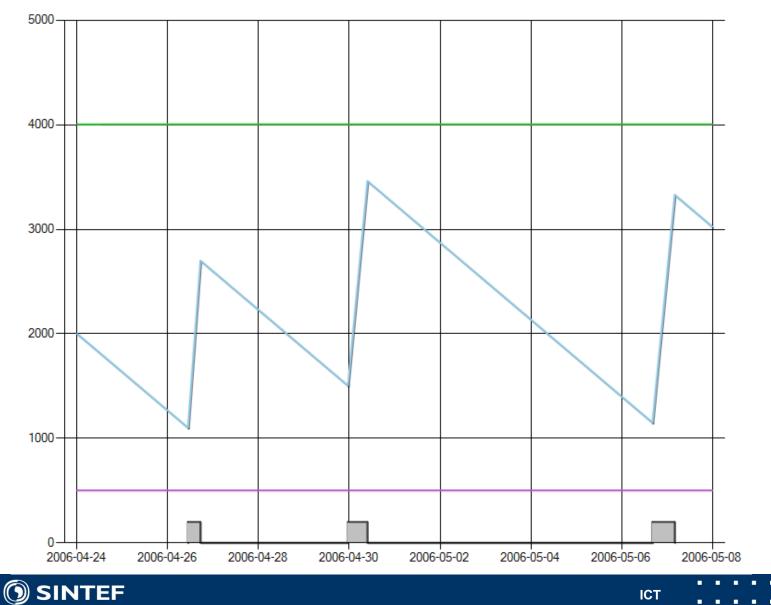

ICT


Optimization

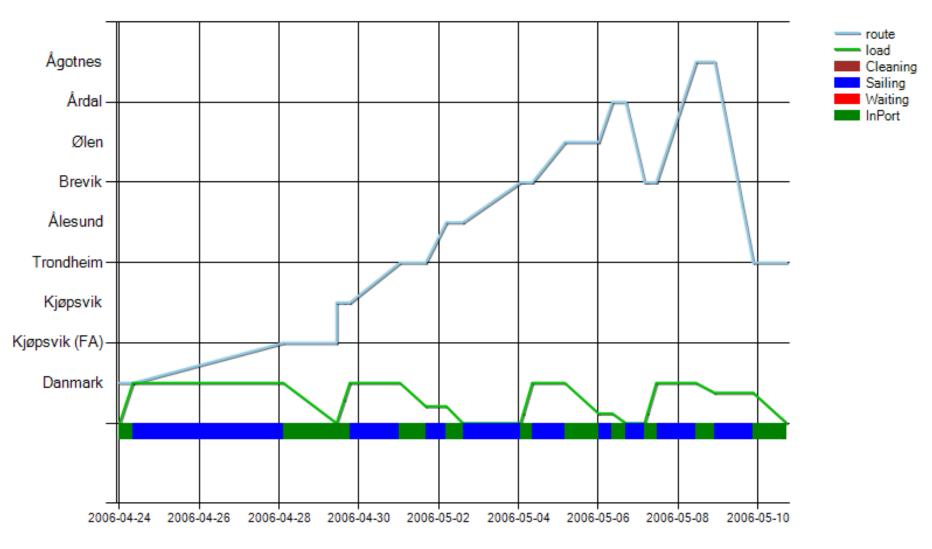

Remove a bit of the solution

- Any shipment starting or ending in random (~10%) interval
- Compact solution
- Regenerate the missing part
- Accept if better
 - or best of the recently seen
- Repeat

Classical LS


Test case – Cement

- Cement along the Norwegian coast
- 11 products
- 63 inventories in 35 ports
- 5 vessels
- 14 days
- Objective:
 - Avoid stockouts (high weight)
 - Operations cost
- 100 initial solutions
- 1000 iterations



ICT

Inventory levels

Vessel movements

ICT

. .

Test case – Chemical products

- Chemical tankers across the Atlantic
- 14 products
- 7 vessels
- 6 months horizon
- 4 inventories
- 62 bookings
- Tank allocation, cleaning
- Objective:
 - Avoid stockouts (high weight)
 - \rightarrow No stockout/overflow
 - Income operations cost
 - → 1.57e7
 - \rightarrow 12 bookings not taken

Algorithm parameters

- Initial generation: Single or best of 100
- Accept: Improving or best of last 5
- Average over 10 runs

Test case 1					
	Accept criterion				
	Improve	Best of last 5			
せ Single	-4.06E+05	-3.73E+05			
Best of 100	-4.02E+05	-3.79E+05			

Test case 2				
	Accept criterion			
	Improve	Best of last 5		
는 Single	1.52E+07	1.50E+07		
Best of 100	1.57E+07	1.54E+07		

Test cases – LNG1

- 7 synthetic test cases
- One product
- 1-3 producers, 2-3 consumers, 1-3 vessels
 - Largest has 3/3/5
- 30, 60 and 90 days horizon
- Objective: Sailing + port + waiting costs
- Run time: 2 min
- Solutions: 1-15 shipments

Test cases - LNG1

- Comparison with exact method based on column generation, simpler model:
- 9 cases: difference 2-5%
- 9 cases: difference 15-20%
- 3 cases (largest): No exact solution found
 2 heuristic solutions have stockouts
 1 is fully feasible

Test cases - LNG2

- Real life problem from LNG transportation
- One product, LNG, full loads, w/boil-off
- 14 vessels
- 5 producers, 8 consumers
- 6 months time horizon
- Solution
 - ~75 shipments
 - One minor stockout
 - Customer is happy

Further work

Model extensions

- Berths
- Alternative stowage/cleaning models
- Mixed production/consumption

Optimization

- Alternative removal
- LS operators
- Guidance heuristics

ICT

.

Conclusions

Maritime inventory routing problems are important and challenging

- There is a diversity of applications
- We have developed a rich model and a heuristic
- Good quality solutions in reasonable time
- Clients are happy
- More work needed

A heuristic for rich maritime inventory routing problems

Oddvar Kloster, Truls Flatberg, Geir Hasle Seminar NICTA / UNSW, Sydney, Australia July 5 2011

