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Figure 1: Exact (left) and approximate (right) implicitizations of a quadratic Bézier triangle with singularities p2(s) (see Figure 2(b)).

Abstract

We discuss how Dokken’s methods of approximate implicitization
can be applied to triangular Bézier surfaces in both the original and
weak forms. The matrices D and M that are fundamental to the
respective forms of approximate implicitization are shown to be
constructed essentially by repeated multiplication of polynomials
and by matrix multiplication. A numerical approach to weak ap-
proximate implicitization is also considered and we show that sym-
metries within this algorithm can be exploited to reduce the com-
putation time of M. Explicit examples are presented to compare
the methods and to demonstrate some properties of the approxima-
tions.

CR Categories: G.1.2 [Mathematics of Computing]: Numeri-
cal Analysis—Approximation; I.3.5 [Computing Methodologies]:
Computer Graphics—Computational Geometry and Object Mod-
elling
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1 Introduction

Methods for conversion between the two main representations of
curves and surfaces in CAGD, namely the parametric and implicit
forms, have been widely investigated within the CAGD commu-
nity. Of these, the parametric form has established itself as the
representation of choice in most CAGD systems due to its intu-
itive geometric nature [Hoffman 1993]. However, the implicit form
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has distinct advantages over the parametric form in solving cer-
tain geometrical problems and thus the possibility to have a dual
representation is, in some circumstances, appealing [Jüttler et al.
2005]. For example, the implicit representation allows us to imme-
diately determine whether a given point lies on the curve or surface.
Although exact formulas can be devised for low degree surfaces,
higher order parametric geometries require computationally expen-
sive algorithms such as recursive subdivision. Implicit representa-
tions are also useful in intersection problems. Notably, ray tracing
of implicitly defined surfaces is much quicker than ray tracing of
parametric surfaces. Despite these advantages, exact implicit rep-
resentations of rational parametric curves and surfaces lead to high
polynomial degrees in the implicit equation. In general, implicit
equations of high degree are not desirable due to often having ex-
traneous branches and singularities that are not necessarily present
in the parametric form. They also exhibit a lack of numerical sta-
bility [Sederberg et al. 1999].

The procedure of converting from the rational parametric to the im-
plicit form of a curve or surface is called implicitization. Traditional
methods using Gröbner bases or resultants, focused solely on exact
implicitization. Exact implicit representations use exact arithmetic,
whereas in CAD and CAGD, the use of floating point arithmetic
is desirable due to performance. Approximate implicitization pro-
vides numerically stable methods to approximate a parametric sur-
face using lower degree implicit equations. In [Dokken 1997], a
method for approximate implicitization was introduced that allows
us to choose the degree of the implicit equation to be defined. The
theory behind this approach to approximate implicitization of ra-
tional parametric manifolds in Rl has been thoroughly developed
in [Dokken 1997; Dokken 2001]. A similar approach known as
weak approximate implicitization was developed in [Dokken and
Thomassen 2006]. The aim of this paper is to present both these
methods, in the special case of approximate implicitization of trian-
gular Bézier surfaces. Although other methods of approximate im-
plicitization exist [Pratt 1987; Taubin 1991; Sederberg et al. 1999;
Wurm and Jüttler 2003], the original and weak methods that we fol-
low provide fast algorithms with a high order of convergence that
are well suited to curves and surfaces defined in a partition of unity
basis [Thomassen 2005].

While approximate implicitization of tensor-product Bézier sur-
faces is a fairly simple extension of approximate implicitization
of 2D rational parametric curves, triangular Bézier surfaces are



somewhat more difficult. They are, however, expressed naturally
in terms of a bivariate Bernstein basis over a triangular domain,
which forms a partition of unity. This allows us to follow the steps
of original approach fairly directly.

Unfortunately, implicitization algorithms tend to be computation-
ally expensive and as such are hindered in CAGD applications. This
paper will highlight some symmetries in the numerical approach to
the algorithm that can be exploited to reduce the computation time,
and thus improve the prospect of dual representations in CAGD.

This paper will be organised as follows. Section 2, will briefly in-
troduce the concepts required to define triangular Bézier surfaces,
and highlight some properties of Bernstein polynomials that are im-
portant for approximate implicitization. Section 3 will present the
procedure for approximate implicitization in the context of Bézier
triangles, both in the original and weak forms. It will highlight
some new observations that significantly reduce the number of com-
putations required in the numerical form of the algorithm. The ac-
curacy and convergence rates of approximate implicitization will
also be stated. Section 4 will describe a simple example of approx-
imate implicitization of a Bézier triangle before concluding with
some examples that are more relevant in practice.

2 Triangular Bézier Surfaces

Triangular Bézier surfaces, also known as Bézier triangles, were
developed by Paul de Casteljau to offer a natural generalization of
Bézier curves to surfaces [Farin 1986]. Although, tensor-product
patches may be more intuitive (and are certainly used more widely
in CAGD), the triangular patches are in some sense a more fun-
damental generalization. In this section we recall the notation of
Bézier triangles and state some simple results about Bernstein poly-
nomials. For a comprehensive review of these concepts we refer the
reader to [Farin 1986; Farin 2002].

2.1 Barycentric Coordinates

In this paper we will make extensive use of barycentric coordinates,
both over triangles and tetrahedra. Barycentric coordinates over
triangles provide a natural domain in which to define the Bézier
triangle, whereas tetrahedral barycentric coordinates will be used to
define the implicit surface. We introduce the notation in the general
form to capture both these circumstances in a common definition.

Barycentric coordinates allow us to express any point x ∈ Rl as

x =
l+1

∑
i=1

βiai,
l+1

∑
i=1

βi = 1,

where ai ∈ Rl are points defining the vertices of a non-degenerate
simplex in Rl .

The conversion between Cartesian coordinates x = (x1, . . . ,xl) and
barycentric coordinates βββ = (β1, . . . ,βl+1) over the simplex with
vertices (a1, . . . ,al+1), is given by the following relation:(

x
1

)
=
(

a1 . . . al+1
1 . . . 1

)
βββ . (1)

If a point lies within the simplex which defines the barycentric co-
ordinate system, the barycentric coordinates of that point are guar-
anteed to be non-negative. This leads to good numerical stability
if all the points in the algorithm are contained within the relevant

simplex. We define the domain Ω to be the triangle formed by a bi-
variate barycentric coordinate system, and Λ to be the tetrahedron
formed by a trivariate barycentric coordinate system. Unless ex-
plicitly stated, all subsequent coordinates in this paper are assumed
to be barycentric.

2.2 Bernstein Polynomials

The notation used when describing Bernstein polynomials and
Bézier triangles is greatly simplified by making use of multi-
indices. These provide a natural way to label the basis functions
and can be related to regular indices by choosing an ordering. For
multi-indices i = (i1, . . . , il+1) and j = ( j1, . . . , jl+1) we have the
following definitions:

• |i|= i1 + · · ·+ il+1,

• i+ j = (i1 + j1, . . . , il+1 + jl+1),

• for barycentric coordinates βββ , define βββ
i = β

i1
1 · · ·β

il+1
l+1 ,

• the multinomial coefficients are defined as(
n
i

)
=

n!
i1!i2! · · · il+1!

,

• the ordering of choice is the lexicographical ordering, de-
scribed by (i1, . . . , il+1) < ( j1, . . . , jl+1) if and only if there
exists an index k such that ik < jk and ir = jr for all r < k.

We now define the Bernstein basis polynomials of degree n as

Bn
i (βββ ) =

(
n
i

)
βββ

i, |i|= n,

where βββ are barycentric coordinates.

In this paper, care must be taken to distinguish between triangular
and tetrahedral Bernstein polynomials as the notation differs only
by the variable they are defined under. A triangular Bernstein poly-
nomial will be defined in the variable s ∈ Ω, whereas a tetrahedral
Bernstein polynomial will be defined for u ∈ Λ. We use the vari-
ables βββ when describing general barycentric coordinates.

We will now state three important properties of Bernstein polyno-
mials that will be used in the implicitization algorithm:

• The Bernstein basis forms a partition of unity. That is

∑
|i|=n

Bn
i (βββ ) = 1, (2)

for all barycentric coordinates βββ .

• There is a simply derived formula for multiplying Bernstein
polynomials of the same form (i.e., triangular or tetrahedral
Bernstein polynomials), which is given as follows:

Bn
i (βββ )Bm

j (βββ ) =

(n
i
)(m

j
)(n+m

i+j
) Bn+m

i+j (βββ ), (3)

with |i+ j|= |i|+ |j|= m+n.

• The integral over any Bernstein basis function of given degree
is constant. In particular, for the Bernstein basis polynomials
over a triangle of unit area [Farouki et al. 2003]:∫

Ω

Bn
i (s) ds =

1
(n+1)(n+2)

. (4)



(a) p1(s) (b) p2(s)

Figure 2: Examples of Bézier triangles p1(s) defined in Section 2.3
and p2(s) defined in Section 4.3. Exact and approximate impliciti-
zations of the latter surface are in Figure 1.

This implies that the integral of any polynomial q(s) defined
in the triangular Bernstein basis is given by:∫

Ω

q(s) ds =
1

(n+1)(n+2) ∑
|i|=n

bi. (5)

2.3 Bézier Triangles

We can now state the definition of a degree n Bézier triangle with
control points (ci)|i|=n in terms of the triangular Bernstein basis as
follows:

p(s) = ∑
|i|=n

ciB
n
i (s). (6)

The control points ci can be defined in any space but we restrict
them to lie in R3 since we are interested in surfaces. We consider
only the points s in the domain Ω so that the entire Bézier triangle
lies within the convex hull of its control points.

Figure 2(a) shows an example of a degenerate quadratic Bézier tri-
angle p1(s), with Cartesian control points

c200 = (1,0,0),
c110 = (0,0,0), c101 = (0,0,0),

c020 = (0,1,0), c011 = (0,0,0), c002 = (0,0,1).

In Section 4 we will see three alternative quadratic implicit approx-
imations of this surface. Notice that the lexicographical ordering
here is given by reading the control points from left to right and top
to bottom.

3 Approximate Implicitization

In this section we outline the approach to approximate implicitiza-
tion presented in [Dokken 1997; Dokken 2001], in the context of
Bézier triangles. Both the original approach and the so-called weak
approach will be described, closely following the procedure given
in [Dokken and Thomassen 2006]. We will also look at a numerical
approach to the algorithm in greater detail.

The exact implicitization of a degree n Bézier triangle may require a
degree as high as n2. It should be noted that if a degree high enough
for an exact implicitization is chosen and the algorithm is executed
using exact arithmetic, then these methods will be exact. Use of
floating point arithmetic will result in small rounding errors.

We begin by stating the formal definition of approximate impliciti-
zation:

An algebraic surface defined by the points u ∈R3 such that q(u) =
0 for some polynomial q, approximates the parametric surface p(s)
within a tolerance of ε if there exists a vector-valued function g(s)
of unit length, and an error function δ (s) such that

q(p(s)+δ (s)g(s)) = 0, (7)

and
max
s∈Ω
|δ (s)|< ε.

We do not attempt to find the functions g(s) and δ (s) directly. In-
stead, we aim to find a polynomial q of chosen degree m that min-
imizes the algebraic distance |q(p(s))| between the parametric and
implicit surfaces. Certainly, if q(p(s)) = 0, then we have an exact
implicitization. In Section 3.5 we will see that this approach is also
justified for approximate implicitization.

The method we use to find the polynomial q, both in the original and
weak approaches is to find the coefficients bi of q when expressed
in the Bernstein basis of chosen degree m :

q(u) = ∑
|i|=m

biB
m
i (u). (8)

The difference between original and weak approximate implicitiza-
tion is the choice of how to minimize the algebraic distance. The
original approach attempts to minimize the pointwise error

max
s∈Ω
|q(p(s))|,

whereas the weak approach minimizes by integration:∫
Ω

(q(p(s)))2 ds.

3.1 The Original Approach

We follow the same steps as in approximate implicitization of
tensor-product Bézier surfaces and Bézier curves, only now using
the triangular Bernstein basis functions. As we will see, the details
differ somewhat in the triangular case.

Since we have chosen q to be of degree m, and p(s) is defined to
be degree n, the expression q(p(s)) will be a polynomial of degree
mn in s. Such a polynomial can be factorized in the Bernstein basis
(Bmn

j )|j|=mn with coefficients di,j. To obtain these coefficients, we
form the following composition of the coordinate functions of p(s)
with each Bernstein basis function Bm

i :

Bm
i (p(s)) = ∑

|j|=mn
di,jB

mn
j (s). (9)

Note that di,j can be calculated explicitly by using (3), the prod-
uct rule for Bernstein bases. An example of how this is done is
presented in Section 4.1.

Now, using (8) and (9) we get

q(p(s)) = ∑
|i|=m

biB
m
i (p(s))

= ∑
|i|=m

bi

(
∑
|j|=mn

di,jB
mn
j (s)

)

= ∑
|j|=mn

Bmn
j (s)

(
∑
|i|=m

di,jbi

)
. (10)



Since the matrix D defined by the coefficients (di,j)|i|=m,|j|=mn is
fundamental to the theory of approximate implicitization, we sum-
marize its construction in the following proposition:

Proposition 3.1 The
(m+3

3
)
×
(mn+2

2
)

matrix D for approximate im-
plicitization of triangular Bézier surfaces can be constructed by re-
peated multiplication of the coordinate functions of p(s), according
to the equation (9).

Writing the unknown coefficients (bi)|i|=m and the basis functions
(Bmn

j (s))|j|=mn in vectors b and Bmn(s) respectively, we restate (10)
as

q(p(s)) = Bmn(s)T Db. (11)

We may impose, without loss of generality, the normalization con-
dition ‖b‖= 1. Since the Bernstein basis forms a partition of unity,
using the factorization (11) we get

max
s∈Ω
|q(p(s))| = max

s∈Ω
|Bmn(s)T Db|

≤ max
s∈Ω
‖Bmn(s)‖‖Db‖ ≤ ‖Db‖.

The approximation may well be good outside the region of interest
Ω, but the result used here, that ‖Bmn(s)‖ ≤ 1, is specific only to
the domain Ω. A standard result from linear algebra tells us that
min‖b‖=1 ‖Db‖ = σmin, where σmin is the smallest singular value
of D. So, in particular we have

min
‖b‖=1

max
s∈Ω
|q(p(s))| ≤ σmin. (12)

We can thus minimize the left hand side of the inequality by per-
forming a singular value decomposition (SVD) on the matrix D.
The vector bmin corresponding to the smallest singular value σmin
of D would then give the best candidate for the approximation.

3.2 The Weak Approach

Recall that the weak approach attempts to minimize the algebraic
distance by minimizing the integral

∫
Ω
(q(p(s)))2 ds. Here we ap-

proach this problem using the exact integration formula (4). How-
ever, the weak approach also introduces the possibility to perform
a numerical integration. In Section 3.3 we will discuss this further.

Using the factorization (11) we can perform the integral as follows:∫
Ω

(q(p(s)))2 ds =
∫

Ω

(
Bmn(s)T Db

)2
ds

= bT DT
(∫

Ω

Bmn(s)T Bmn(s) ds
)

Db

= bT DT ADb, (13)

where A is the symmetric matrix defined by (ai,j)|i|=mn,|j|=mn

ai,j =
∫

Ω

Bmn
i (s)Bmn

j (s) ds

=

(mn
i
)(mn

j
)(2mn

i+j
) ∫

Ω

B2mn
i+j (s) ds

=

(mn
i
)(mn

j
)(2mn

i+j
) 1

(2mn+1)(2mn+2)
.

We may define the matrix M by

M = DT AD. (14)

Then, similarly to the original approach, an SVD of M will give
us a candidate for a weak approximate implicitization of p(s). We
again choose the vector corresponding to the smallest singular value
for the best candidate. The construction of M is summarized as
follows:

Proposition 3.2 The
(m+3

3
)
×
(m+3

3
)

matrix M formed in weak ap-
proximate implicitization of triangular Bézier surfaces can be built
by the matrix multiplication DT AD, where the matrix A depends
only on m and n.

Since A is only dependent on the degrees m and n, it could in fact be
pre-calculated, meaning the construction of M is reduced to making
two matrix multiplications.

This method may be particularly useful when combining the
original and weak approximations in order to remove unwanted
branches, as the D matrix must already be calculated. By com-
bining the best approximations from the original and weak forms,
we will obtain another approximation with a high convergence rate.
Since both the approximations will be ‘good’ in the area of inter-
est, but may have different branches, the combination may remove
these unwanted branches.

For a detailed discussion of the relationship between the weak and
original forms of approximate implicitization, we refer the reader
to [Dokken and Thomassen 2006]. Here we simply state the main
results:

|q(p(s))| ≤ 1√
λmin
‖ΣΣΣUDb‖,

and √∫
Ω

(q(p(s)))2 ds≤
√

λmax‖Db‖,

where ΣΣΣ is a diagonal matrix containing the square roots of the
eigenvalues λmin, . . . ,λmax of A, and A = UT (ΣΣΣ2)U.

3.3 Numerical Approximation

As the exact integration in weak approximate implicitization can be
replaced by a numerical integration, the need for an explicit rational
parametric form is removed. Numerical integration only requires
that the surface can be evaluated. This allows, for example, pro-
cedural surfaces to be approximated. Integration using numerical
methods allows for quick building of the M matrix. In addition, we
show that the algorithm exhibits symmetries that further enhance
its efficiency. The results of this section can be easily generalized
to apply to weak approximate implicitization of rational parametric
manifolds in Rl .

In the previous section we constructed M via matrix multiplica-
tions. Perhaps a more natural method to construct M is to perform
the integration using the equation (8). Using this method we obtain
an element-wise formula for M, which we can evaluate by making
use of (3):

mi,j =
∫

Ω

Bm
i (p(s))Bm

j (p(s)) ds (15)

=

(m
i
)(m

j
)(2m

i+j
) ∫

Ω

B2m
i+j(p(s)) ds. (16)

This method eliminates the need to compute D, but we are now re-
quired to evaluate the polynomials B2m

i+j(p(s)) in order to use (5) for
the integration. This is in comparison to evaluating the expressions
Bm

i (p(s)) required to build D. Due to the lower polynomial degrees
involved in the latter, the construction of M by first computing D



and then applying (14), is preferable for the exact integration. How-
ever, equation (16) provides a direct method that would be prefer-
able if using numerical integration, since it avoids the polynomial
multiplication.

Inspecting (15) we clearly see that M is symmetric. However, there
exist other symmetries which allow us to avoid repeated calculation
of the integrals for each element mi,j. Equation (16) shows that there
are in fact only

(2m+3
3
)

unique integrals required. We can thus pre-
calculate these integrals using some chosen numerical integration
method: (∫

Ω

B2m
k (p(s))

)
|k|=2m

. (17)

Exploiting these symmetries results in the required number of inte-
grals being proportional to m3 rather than m6. This result is sum-
marized in the following proposition:

Proposition 3.3 The
(m+3

3
)
×
(m+3

3
)

matrix M formed in weak ap-
proximate implicitization of triangular Bézier surfaces can be built
by precomputing the

(2m+3
3
)

integrals in (17), and multiplying the

relevant integrals with the coefficients
(m

i )(
m
j)

(2m
i+j)

.

Since the degree of the integrand is 2mn, it is vital that the nu-
merical integration techniques used, exhibit numerical stability up
to high polynomial degrees. For example, approximating a cubic
Bézier triangle by a cubic implicit surface, requires the numerical
integration of a bivariate polynomial of degree 18.

3.4 Approximating Rational Bézier Triangles

Rational Bézier triangles give extra flexibility in CAGD and are
in fact required to be able to represent general quadric surfaces
exactly. Although this can be done with rational tensor-product
patches, some degeneracy is necessary, and hence singularities are
introduced. We will show in this section that the algorithm for ap-
proximate implicitization of rational Bézier triangles is only a short
extension of the non-rational version. We first introduce the concept
of rational Bézier triangles, as described in [Farin 2002].

A rational Bézier triangle of degree n is defined similarly to the
non-rational case as follows:

r(s) = ∑
|i|=n

ciR
n
i (s),

where

Rn
i (s) =

wiBn
i (s)

∑|i|=n wiBn
i (s)

=
gi(s)
h(s)

.

The wi denote weights assigned to each control point ci. Note that
the basis (Ri(s))|i|=n defines a partition of unity, so the original ap-
proach to approximate implicitization can be used in a similar way
for rational Bézier triangles. In fact, on forming the expression
q(r(s)), we can factor out the denominator, which allows us to con-
sider only the numerator for an exact implicitization [Thomassen
2005]. Since the numerator is simply a regular Bézier triangle
(albeit with the weights absorbed into the control points), this im-
plies that we can find implicitly defined quadrics from non-rational
Bézier triangles. We show this as follows:

q(r(s)) = ∑
|j|=m

bjB
m
j (r(s))

=
1

(h(s))m ∑
|j|=m

bjB
m
j

(
∑
|i|=n

cigi(s)

)
. (18)

We obtain an exact implicitization if and only if the sum over |i|= n
in (18) is zero; but these are exactly the same conditions for exact
implicitization on non-rational Bézier triangles, allowing us to dis-
regard h(s) in the algorithm. That is, we may perform the implicit-
ization on

∑
|i|=n

cigi(s) = ∑
|i|=n

γγγ iB
n
i (s),

where γγγ i = wici. We may also disregard h for approximate implici-
tizations, however this will come at some expense to the quality of
approximation if the function h has large variations.

3.5 Accuracy in Affine Space and Convergence
Rates

The intention of this brief section is to show why approximate im-
plicitization works, and to state a result about the quality of the
approximation. For a more in-depth coverage of these topics see
[Dokken 1997].

Recall the definition of approximate implicitization from the begin-
ning of this section. This definition ensures that the implicit and
parametric curves lie close together in affine space. However, by
minimizing the algebraic distance, as we did in the algorithm, we
cannot necessarily guarantee that the affine error will be small. The
affine and algebraic errors are related by the following Taylor ex-
pansion of (7):

q(p(s))+δ (s)g(s) ·∇q(p(s))+ · · ·= 0.

Suppose we have a polynomial q such that q(p(s)) ≈ 0. Then the
above equation shows that either ∇q(p(s)) or δ (s) must be small.
Certainly, away from singularities, where the gradient ∇q(p(s))
does not vanish, δ (s) will be small, meaning the approximation
in affine space is good. This justifies the approach to approximate
implicitization outlined above, away from singularities. In the re-
gion of singularities, the neighbourhood of the singular point or
curve will attract the approximation to the correct shape; however,
the singularities themselves may be smoothed out. A clear example
of this is the approximation in Figure 1. Here, the approximation
is attracted to the non-singular part of the surface and the singular
curves are ‘smoothed out’. We will consider this example further in
Section 4.3.

We can improve the approximation in affine space by performing
the approximation over a smaller region of the parametric surface.
The convergence rates of approximate implicitization, as the size
of the region to be approximated is reduced, have been investigated
in [Dokken and Thomassen 2003]. Here we state the result most
relevant to this paper; the convergence rate of surfaces in R3. Given
a closed box of diameter h in Ω around a point s0, we have the
convergence rate

O
(

hb
1
6

√
(9+12m3+72m2+132m)c− 1

2

)
. (19)

Here, bxc denotes the integer part of x.

4 Examples of Implicitization of Bézier Tri-
angles

In this section we present examples of approximate implicitization
of triangular Bézier surfaces. We begin with a simple example that
can be calculated by hand, before moving on to more computa-
tionally intensive examples. Our first example will find an implicit
surface that approximates a single quadratic Bézier triangle.



4.1 A First Example

Recall the definition of p1(s), the degenerate quadratic Bézier sur-
face mentioned in Section 2.3 and pictured in Figure 2(a). The
control points also form a tetrahedron over which we can define
the barycentric coordinate system. Using these barycentric coordi-
nates, the patch is described by,

p1(s) = (B2
200(s),B

2
020(s),B

2
002(s),B

2
011(s)+B2

101(s)+B2
110(s)).

(20)
For this example, we choose to approximate p1(s) by a quadratic
implicit surface, in order to keep the matrix D to a manageable
size. However, an exact implicitization in fact requires an implicit
surface of degree four.

A trivariate polynomial of degree two, represented in the tetrahedral
Bernstein basis can be written as follows:

q(u) = ∑
|i|=2

biB
2
i (u),

for barycentric coordinates u.

Now, to construct the 15×10 matrix D, we simply expand the ex-
pression (9), for each of the basis functions (B2

i (u))|i|=2 and write
the resulting coefficients in the columns of D. We use the lexico-
graphical ordering system to relate the entries of the matrix, to the
multi-indices.

The first column in the matrix D contains the coefficients of
B2

2000(p1(s)) which by the definition (20) and the product rule (3)
is equal to (B2

200(s))
2 = B4

400(s). The first column of D is thus the
vector of coefficients that are all zero except for the first:

(1,0,0,0,0,0,0,0,0,0,0,0,0,0,0)T .

Similarly, the second column is calculated by expanding
B2

1100(p1(s)) giving

(0,0,0,
1
3
,0,0,0,0,0,0,0,0,0,0,0)T .

Continuing in this way we get the matrix,

D =



1 0 0 0 0 0 0 0 0 0
0 0 0 1 0 0 0 0 0 0
0 0 0 1 0 0 0 0 0 0
0 1

3 0 0 0 0 0 0 0 2
3

0 0 1
3 0 0 0 0 0 0 2

3
0 0 0 1

3 0 0 0 0 0 2
3

0 0 0 0 0 0 1 0 0 0
0 0 0 0 0 0 0 0 1 0
0 0 0 0 0 0 1

3 0 0 2
3

0 0 0 0 0 0 0 0 1
3

2
3

0 0 0 0 1 0 0 0 0 0
0 0 0 0 0 0 1 0 0 0
0 0 0 0 0 1

3 0 0 0 2
3

0 0 0 0 0 0 0 0 1 0
0 0 0 0 0 0 0 1 0 0



.

The correct and accurate construction of this matrix can be con-
firmed by checking that the rows sum to 1 (see Theorem 4.3 in
[Dokken 2001]). As we have proceeded using exact methods, we
expect no errors here.

We now perform an SVD on this matrix, and choose the vector
b corresponding to the smallest singular value σmin. The singular
values of D are

(1.70471,1.45296,1.45296,1.38925,1.00000,

1.00000,1.00000,0.33333,0.33333,0.22984),

and the normalized vector corresponding to σmin = 0.22984 is

borig = (0.00000,−0.57062,−0.57062,−0.01616,0.00000,

−0.57062,−0.01616,0.00000,−0.01616,0.14966).

This vector defines a candidate for an approximate implicitization
of p1(s).

The approach of weak approximate implicitization is equally well
suited to this example. As stated previously, property (5) allows us
to integrate Bernstein polynomials by summing the coefficients of
the Bernstein basis and dividing by a constant factor. For simplicity,
we proceed here using the element-wise definition of M, (16):

mi,j =

(2
i
)(2

j
)( 4

i+j
) ∫

Ω

B4
i+j(p1(s)) ds.

For example, the first entry for i = j = (2,0,0,0), is calcualted by
making the integration∫

Ω

B4
4000(p1(s)) =

∫
Ω

(B200)4 =
∫

Ω

B8
800.

This is a degree eight Bernstein polynomial with first coefficient
equal to one and all other coefficients equal to zero. The first value
of the matrix is thus m1,1 = 1/90. The other values of the matrix
can be computed similarly to get

M =
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.

The accuracy of the construction of this matrix can be confirmed
by checking that the elements sum to 1

2 (see Theorem 2 in [Dokken
and Thomassen 2006]).

Again, performing an SVD on this matrix and choosing the vector
corresponding to the smallest singular value will define an implicit
equation that is a candidate for approximation:

bweak = (0.03985,0.56837,0.56837,−0.09313,0.03985,

0.56837,−0.09313,0.03985,−0.09313,−0.00859).

Although this simple example has no extraneous branches, in order
to illustrate the possibility of modelling the shape of the approxi-
mation, we include a combined approximation. This is obtained by
summing the coefficients of the original and weak approximations
and renormalizing:

bcomb = (0.11496,−0.00652,−0.00652,−0.31523,0.11496,

−0.00652,−0.31523,0.11496,−0.31523,0.81371).

Figure 3 shows the algebraic distance between the parametric and
approximate implicit surfaces. The three approximations exhibit
different behaviour with regard to where the surfaces intersect and
the positions of the maximum error. This illustrates the possibil-
ity of modelling the surfaces to obtain certain characteristics. Al-
ternative approximations could also be formed by taking different



Original Weak Combined

Figure 3: Colour maps showing the algebraic approximation errors qb(p1(s)) over the domain Ω bounded by the triangle. Note that the white
parts correspond to intersection curves between the implicit and parametric surfaces.

combinations of the two surfaces, by combining approximations
corresponding to other singular values in the SVD, or by adding
constraints to the algebraic equation.

When constructing this example we ensured that the corners of the
Bézier triangle were reused as vertices in the tetrahedral barycen-
tric coordinate system, with the remaining fourth vertex positioned
symmetrically with respect to these three points. This symmetry
is reflected in the intersection curves between the triangular Bézier
surfaces and the approximations in Figure 3. In this example, the
original approximate implicitization intersects the corners of the tri-
angular Bézier surface; however, the interpolation is special to this
case. It is easy to construct examples with the same collocation
of surface corners and tetrahedral vertices where the approximate
implicit generated by the original approach does not intersect the
corners of the triangular Bézier surface.

4.2 Approximation of Several Patches with One Im-
plicit Surface

In many circumstances it may be desirable to approximate several
surface patches simultaneously, by a single implicit surface. This is
possible using either the original or weak methods [Dokken 1997;
Dokken and Thomassen 2006].

Suppose we have several parametric surfaces p1(s), . . . ,pr(s). To
find an implicit surface that approximates all these surfaces we may
proceed as before to build matrices Di corresponding to the indi-
vidual manifolds pi(s). However, before performing the SVD, we
stack the matrices to define

D =

(D1

...
Dr

)
.

Using the weak form we build matrices Mi corresponding to the
manifolds pi(s), but instead of stacking, we sum the matrices to
form

M =
r

∑
i=1

Mi.

Performing an SVD on M then defines the weak approximation.

In fact, we are not restricted to approximating surfaces of the same
type. There is also the possibility to simultaneously approximate
points, curves and surfaces with different parametric forms. To

Degree m 1 2 3 4
σmin of p1(s) 1.0 0.22984 0.047868 0.0
σmin of p2(s) 1.0 0.62773 0.31596 0.0

Table 1. Difference in the smallest singular values of D for a Bézier
triangle with singularities (p2(s)) and without singularities (p1(s)).

exemplify this we approximate a surface defined by two rational
tensor-product Bézier patches describing a half-cylinder, and two
rational Bézier triangles describing a quarter-sphere, as pictured in
Figure 4(a). The quadratic, cubic and quartic approximations dis-
played in Figure 4 demonstrate some interesting properties of im-
plicit representations. The quadratic approximation, which is in fact
described by an ellipsoid, is clearly quite different from the para-
metric surface and, for most purposes, would not be a sufficient ap-
proximation. The cubic approximation is visually what we expect
to see, and does indeed provide a close approximation. When we
increase the degree to four, as expected, we obtain an exact implicit
representation, though this is defined by the product of two polyno-
mials which describe the cylindrical and spherical parts separately.
Consequently, when visualizing the surface we see extra branches
that are not present in the parametric representation.

4.3 Approximate Implicitization of Surfaces with
Singularities

A simple example of a quadratic Bézier triangle p2(s) that exhibits
singularities is constructed by taking the three corner control points
to be at the Cartesian origin (0,0,0), and the three central control
points to be at (1,0,0), (0,1,0) and (0,0,1). This is pictured in Figure
2(b). An exact quartic implicitization and an approximate cubic im-
plicitization of p2(s) are pictured in Figure 1. We will now compare
the approximations of this example with the example from Section
4.1, to see how the singular surface suffers from worse approxima-
tions. Table 1 lists the singular values for implicit approximations
up to degree four, obtained by the original method. Both of the
surfaces require degree four for an exact implicitization. However,
the singular values of p1(s) are much smaller for the quadratic and
cubic approximations, indicating better approximations.



(a) parametric form (b) quadratic approximation (c) cubic approximation (d) quartic approximation

Figure 4: Implicit approximations of the surface described in Section 4.2. Note that the quartic approximation, which is an exact implicitiza-
tion up to rounding error, is defined by the product of two polynomials and hence extra branches are present.

5 Conclusion

This paper described how the original and weak methods of ap-
proximate implicitization can be applied to triangular Bézier sur-
faces. It presented examples which exhibit properties of the various
approaches to approximate implicitization. It also highlighted ways
in which to improve the efficiency of the algorithm in the numerical
case, by exploiting symmetries in the calculations.
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JÜTTLER, B., CHALMOVIANSKÝ, P., SHALABY, M., AND
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