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Motivation

Transportation management

Goal: good solutions computed fast, based on thorough
exploration of search space

Increase in computing power ⇒ existing methods faster or
more exploration

Better algorithms, methodological improvements

Variety of methods for solving VRP

Metaheuristics

Heuristics based on exact methods and hybrid methods

Variants and hybrids of large neighbourhood search

Variable neighbourhood search

Iterated local search
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Motivation cont’d

Parallelism often occurs naturally in the methods

Algorithmic level, metaheuristics

Iteration level, neighbourhood evaluation (generation)

Solution level

Parallel platforms

Traditional supercomputers: Cluster (large number) of CPUs
High level of independence, can perform basically independent
tasks ⇒ Task parallelisation

Parallel methods in optimisation not new, but most focus on
task parallelisation (according to Crainic 2008)

What about the new multi-core CPUs

What about the GPUs
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Moore’s law

The number of transistors that can be placed inexpensively on an
integrated circuit doubles every two years.

1971 (4004),
2300 transistors,
1 x 0.000740 GHz

2004 (Pentium 4
Prescott),
125 000 000
transistors,
1 x 4 GHz

2008 (Core i7 Quad),
731 000 000
transistors,
4 x 3.33 GHz Picture from http://en.wikipedia.org/wiki/Moores law
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What happened?

Increasing frequency hits three major problems (walls): Memory,
ILP, Power density (power/area)

Memory

Memory speeds did not increase as fast as core frequencies
Processor can wait hundreds of clock cycles for
data/instructions from main memory

Wait can be reduced by larger caches and instruction level
parallelism

Instruction level parallelism

Difficult to find enough parallelism in instructions stream of
single process to keep cores busy
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Multi-core

Power density (heat)

Increase in frequency leads to increase in power density

CPU has higher power density than a cooking plate

Using about 80% of frequency halves power consumption

⇒ Use of 2 cores with ∼ 80% of frequency: same power
consumption, ∼ 160% performance

But: Deep pipelines, heavy ILP use and huge caches drain a lot of
power
⇒ no 100 core processor

Acceleration cores

Shallow pipelines, low or no ILP, small or no caches

Power efficient
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Heterogeneous computer

Classical supercomputer consist of many processors, maybe with
dual/quad core
⇒ Consume lot of power, maintenance, expensive

But: Commodity PCs nowadays have multi-core CPUs and one (or
more) GPU (has acceleration cores)
⇒ Cheap, high performance if it can be harnessed

Heterogeneous computer: Tightly coupled system of processing
units with distinct characteristics
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GPU

Background: Computer graphics

Nowadays: General purpose GPU

Massively parallel: 512 cores

High memory bandwidth

Typical speedup: 10-50 (to CPU)

Data parallelism: Typically same
task performed by each core on
different pieces of data

NVIDIA Fermi:

IEEE 754-2008 floating point
standard
Improved double precision
performance (now half of single
precision)

Peak float performance
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Programming GPU

Direct Compute

Part of Microsoft DirectX

Debugger (NVIDIA) on Windows

OpenCL (AMD, NVIDIA)

Extension of C, reminiscent of GLSL

Relatively immature, but improves as we speak

Cuda (NVIDIA)

Large subset of C++, can share code with CPU code

Mature

Debugger on Linux and Windows

SINTEF ICT Local Search for CVRP on GPU 21. June 2010 10/24



Outline Motivation GPU Introduction CVRP & REFs GPU 3-opt Summary

GPU in Science

GPU usage in other Sciences/Industry

PDE / Simulation: Shallow water

Medicine: Automated ultrasound imaging system

Finance: Analyses the entire U.S. equity options market in
real time

GPU in Optimisation

Knapsack
M. Scherger, Two Parallel Algorithms to Solve the 2D Knapsack Problem Using GPUs, 2008
D. M. Quan, and L. T. Yang, Solving 0/1 Knapsack Problem for Light Communication SLA-Based

Workflow Mapping Using CUDA, 2009

Evolutionary algorithms
Harding, S. and W. Banzhaf, Fast Genetic Programming on GPUs, 2007
Langdon, W. and W. Banzhaf, A SIMD Interpreter for Genetic Programming on GPU Graphics Cards, 2008

Neighbourhood evaluation
Janiak, A., W. Janiak, and M. Lichtenstein, Tabu Search on GPU, 2008
Luong, T.V., N. Melab, and E.-G. Talbi, Parallel Local Search on GPU, 2009

⇒ Good point in time to start using it
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Capacitated Vehicle Routing Problem

Given:

A depot and number of customer
nodes

Length/Cost cij between nodes

Capacity of vehicle(s) C

Demand of customers di ≤ C

Wanted: Route(s)

Each customer is visited once

Each route visits depot

Minimal length/cost

Capacity feasible
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Model

Used model based on paper ”A Unified Modeling and Solution
Framework for Vehicle Routing and Local Search-based
Metaheuristics” by Stefan Irnich, INFORMS JOURNAL ON
COMPUTING, Vol. 20, No. 2, Spring 2008, pp. 270-287

Solution represented as a giant tour

d d d

Use of classical resource extension functions to model capacity
constraint
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Simple method: Local search with 3-opt move

Initial solution

Star solution: A single route
to each customer

3-opt move

Remove 3 connections/edges ⇒ 4 segments

Reconnect in all possible ways ⇒ 7 possibilities
1− 3− 2− 4, 1− 3− 2̄− 4, 1− 3̄− 2− 4, 1− 3̄− 2̄− 4,

1− 2− 3̄− 4, 1− 2̄− 3− 4, 1− 2̄− 3̄− 4

⇒ Nearly (7/6)(n − 1)(n − 2)(n − 3) moves
(n: number of nodes in solution)
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Classical Resource extension function

Resource constraints modeled by resource consumption

Resource: cost, time, load, distance, . . .

Resource vector t ∈ Rn

Each node has a associated resource interval [ai ,bi ]

Change of resource consumption from i to j : f ij : Rn → Rn

A path is feasible if for each node i there exists a resource
vector Ti ∈ [ai ,bi ] s.th.

f i ,i+1(Ti ) ≤ Ti+1

Classical REF:
f ij(T) = T + tij or f ij(T) = max(aj ,T + tij)

CVRP (capacity): Classical REF with
ai = 0, bi = C ,
tij = dj for j a customer, tij = −C for j depot
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Segment - Hierarchy

Why classical REF? Simple, can build segment hierarchy

0 1 2 3 4 5 6 · · · 31 32

[0-3] [3-6] [30-32]

[0-9] [27-32]

Tour

[0-32]

Aggregation:
[3-6] contains: 3→ 5, 3→ 6 and 4→ 6 and inverse
[0-9] contains: 0→ 6, 0→ 9 and 3→ 9 and inverse
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Segment - Hierarchy cont’d

Why segment hierarchy? Gives constant time feasibility check

Example: Exchange two nodes, e.g. 5 and 20:

path up to first: 0→ 4: 0→ 3, 3→ 4
reconnect first: 4→ 20:

20→ 6:
path to second: 6→ 19: 6→ 9, 9→ 18, 18→ 19

reconnect second: 19→ 5:
5→ 21:

path to end: 21→ 32: 21→ 27, 27→ 32

Maximum number of segments in one path: 2l-1 (l: depth of
hierarchy)
How to do feasablity check with segments, see paper(s) by
Irnich
Effort to create hierarchy: O(n2l/(2l−1))
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Parallel local search

Why parallelize local search

Local search is an essential part of more advanced strategies
such as metaheuristics

Embarrassingly parallel: Moves independent from each other

⇒ Potential for significant speed up
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What we do on the GPU

Transfer of data GPU ↔ CPU slow ⇒ try to minimize/avoid it

On GPU

Once:

Create neighbourhood

Each iteration:

Create hierarchy
Evaluation of capacity constraint and length objective for each
move
Choosing best move

Neighbourhood and hierarchy live whole time on GPU, no
transfer

Transfer once: constraint & objective data

Transfer per iteration: move, solution (for now)
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Does it pay?
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nodes in solution

Early timing, only gives indication:

CPU code is not optimized

GPU code is not optimized

GPU is fast is known, real task: Efficient usage of GPU hardware
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Why optimize GPU code

Example reduction, taken from NVIDIA CUDA SDK whitepaper
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Local Search with 3opt - Results

Problem Our Best #It. Time(s) Nbh size

P-n16-k8 473.782 451.335 7 0.109 28420
P-n20-k2 233.995 217.416 18 0.327 59052
P-n23-k8 560.598 531.174 13 0.281 92708
E-n30-k3 508.139 535.797 31 1.013 215992
B-n35-k5 1403.96 956.294 32 1.432 350812
P-n40-k5 506.039 461.726 37 2.290 532532
F-n45-k4 727.746 723.541 43 3.598 768152
B-n50-k7 745.160 744.228 44 4.890 1064672
A-n60-k9 1407.09 1355.800 56 10.731 1868412
P-n70-k10 915.380 829.933 60 18.301 2999752
A-n80-k10 1833.49 1766.500 75 34.391 4514692
E-n101-k8 990.737 828.737 97 90.523 9193800
M-n151-k12 1124.44 1043.410 144 475.321 31185700
M-n200-k16 1402.67 1499.780 190 1585.751 72998772
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Summary & Future Work

Summary

Your office PC is a heterogeneous computer

Proper algorithms can harness CPU+GPU power

Early results in local search for CVRP promising

Future Work

Optimise code

Larger solutions: memory, number of tasks

More advanced strategies such as metaheuristics

Keep CPU and GPU busy
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Thank you for your attention!
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