Aspects of routing problems in media product distribution

Geir Hasle, Oddvar Kloster, Morten Smedsrud Department of Applied Mathematics, SINTEF ICT, Oslo, Norway

EURO XXIV

24th European Conference on Operational Research

Lisbon, Portugal, July 11-14, 2010

Outline

- Newspaper and media product distribution
- RTD with Distribution Innovation AS and customers
- Cloud computing services for route construction and revision
- The routing problem
- Two solution approaches
- Results
- Conclusions

Technology for a better society

Applied Mathematics

SINTEF

Our vision

Technology for a better society

Our role

We create value through research and innovation, and offer concrete solutions for sustainable development. We bridge the gap between academia and industry ("use-inspired" research).

Our distinctive character

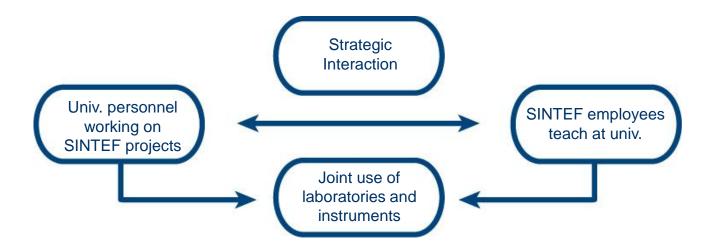
The SINTEF Group is a multi-disciplinary institution with international top level expertise in several different areas of research. We cooperate closely with universities, the authorities and industry, and combine research and business culture.

Our goal

SINTEF aims to become the most acknowledged Research and Technology Organisation in Europe.

Our basic values

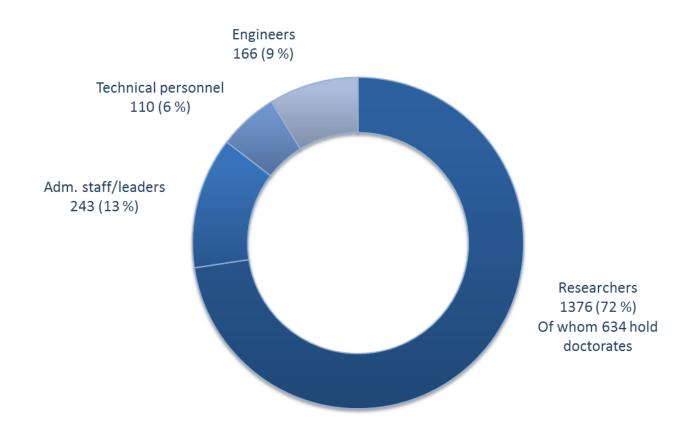
Honesty, Generosity, Courage and Loyalty



Our partners

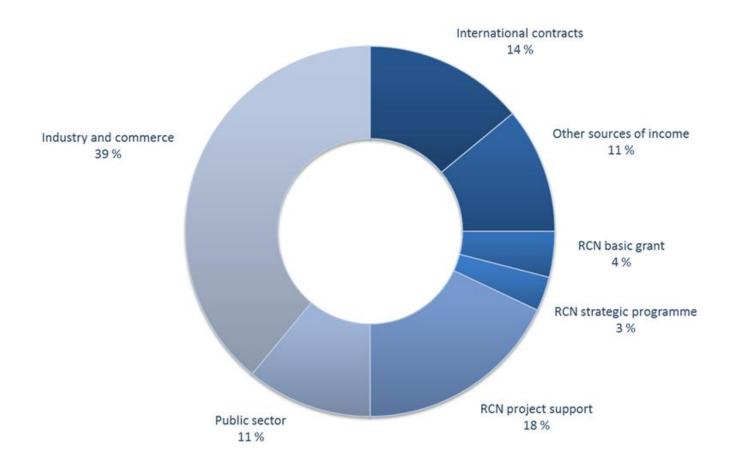
The Norwegian University of Science and Technology, NTNU NTNU is a centre for technological education and research in Norway, with a solid foundation in the natural sciences.

The University of Oslo, UiO


The University of Oslo is Norway's largest and oldest institution of higher education.

University / SINTEF Collaboration in RTD

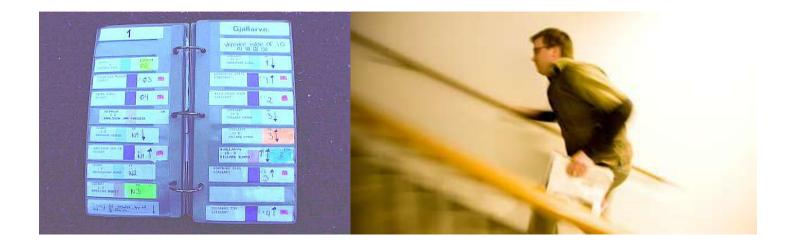
Occupational groups in SINTEF


SINTEF has 2123 employees from 68 countries

Applied Mathematics

.

Gross operating revenue


The SINTEF Group turnover in 2009: NOK 2.8 billion (~ 350 million Euros

.

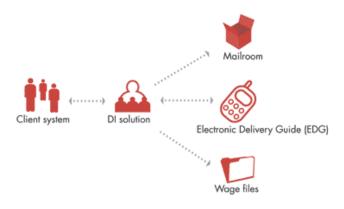
Newspaper distribution

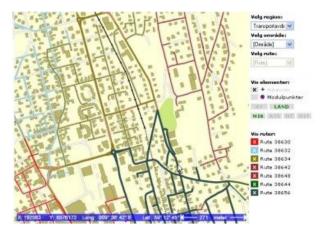
- Subscription newspapers, home delivery
- Decreasing revenues
- Distribution costs > 40% of total costs
- Route revision very costly and time-consuming
- Reduce costs Increase revenues

Reduce costs – Increase revenues

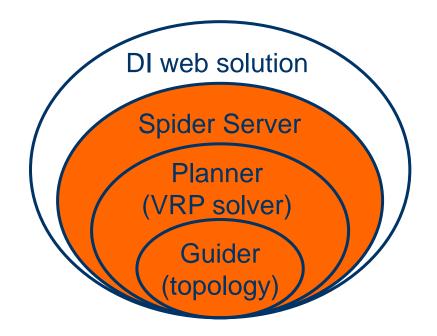
- More efficient carrier routes
- More efficient route revision
- Better utilization of distribution system
- Additional products
- Necessitates better communication, flexibility, dynamics

RTD Collaboration since 1999


- Newspapers and their distribution companies
- PDA/Smartphone based delivery book
- Cloud computing based distribution management system
- Establishment of Distribution Innovation AS <u>http://www.di.no</u>



DI solution


- > 80% of newspaper home deliveries in Norway
- 5.000 carriers download their route every night
- > 1 million deliveries per day
- magazines, books, CDs, flowers, ...
- Finland, Sweden
- Integrated route construction and revision
- Spider VRP solver

System architecture

• •

12

A: PASSPORT - Session1

_	122	0.00	

	6=SLETT, PF10=BLANKER, PF11=RUTEKONS, PF12=TILLEG	
	ISTRIBUSJONSSYSTEM KOSTNADS- OG TIDSBEREGNING	î
Rute: 21509 Utg.: M Ukedag	: O Pr. dato: 221105 Betjenes me	ed: G
Ant.10nn: 265 -Ant. abo	og andre, 0 -Ant. pressede Sone: 3 O/U:	U
265 * 0 = 265 a kr.	23,76 * 0 Spes.abo a kr. 0.00 = kr 62	296,40
Avstandsl0nn: 3,3 km a	kr. 52,80 = kr 1	174,24
Vintertillegg: 5 mnd. a	kr. 291,00 :12 = kr 1	121,25
Sum l0nn	*MIN* = Kr 68	392,17
26,00 % tillegg for feri	epenger og arb.avgift = kr 1	791,96
Sykkelgodtgj.	= Kr	0,00
Transp.godtgj. 3,3 km	x 26,00 dager x kr.: 0,00 = kr	0,00
Transp.strekn. 0,0 km	x 25,00 dager x kr.: 0,00 = kr	0,00
Sum 10nn, sos.kostn. og 1	ransp.godtgj. *MIN* = kr 86	584,13
Kostnad pr. abonnement pr	måned = kr	32,77
1. Klargjøring før start		
2. Avstand 3,3 km a		n.
3. 0 oppg. uten n0kkel a	0,35 = 0,00 min Reell tid 128,13 mi	n.
4. 53 oppg. med n0kkel a	0,50 = 26,50 min Beregn. dagl0nn 248,87	Kr
5. 206 etasjer a	0,35 = 72,10 min Reell dagl0nn 260,42	2 Kr
6. 0 lev. i enebolig a		54 Kr
7. 63 lev. i rekkehus	0,20 = 12,60 min Reell timel0nn 121,5	95 Kr
8. 4 lev. i FK (ute) a		
9. 0 fellesleveringer a		
Totalt		
TB	A2Session1 R 4 C 1 3:22p 22	2/11/0

Problem characteristics (1)

- Two-echelon distribution: from printing works to subscriber
- Focus on "last mile" carrier distribution: From drop point to subscriber doorsteps
- Vehicle Routing Problem with idiosyncrasies
- Possibly very large number (thousands) of points
- Aggregation, Node Edge Arc Routing Problem (NEARP)
- Mixture of pedestrian routes and car routes
- Car routes open, pedestrian routes closed
- Service time often large part of total time
- Requires detailed road topologies and accurate travel and service time models
- Topography, keys, …

Problem characteristics (2)

Main objectives

- cost, closely related to # routes, duration of routes
- route balancing (duration)
- "visual beauty"
 - non-overlapping routes
 - compact routes

Constraints

- route duration
- # routes
- topography, keys, ...

Relevant literature

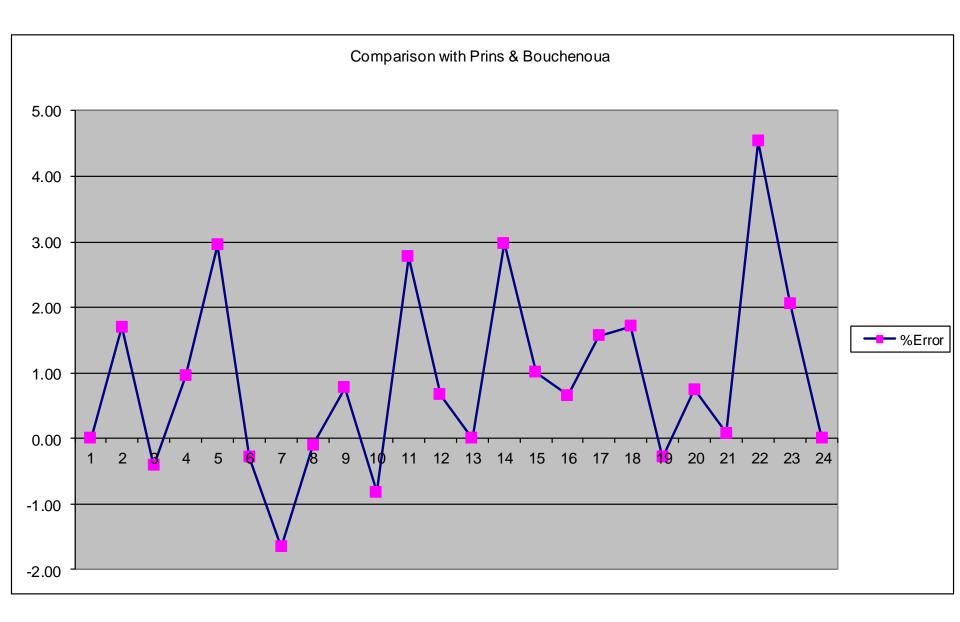
Route balancing

- Tsouros et al. (2006): Routing-Loading Balance Heuristic Algorithms for a Capacitated Vehicle Routing Problem
- Jozefowiez et al. (2007): An evolutionary algorithm for the vehicle routing problem with route balancing
- Pasia et al. (2007): Solving a Bi-objective Vehicle Routing Problem by Pareto-Ant Colony Optimization
- Borgulya (2008): An algorithm for the capacitated vehicle routing problem with route balancing

Visual beauty

- Lu & Dessouky (2005): A new insertion-based construction heuristic for solving the pickup and delivery problem with time windows
- Hao & Miller-Hooks (2006): Interactive Heuristic for Practical Vehicle Routing Problem with Solution Shape Constraints
- Route balancing and visual beauty
 - Kim et al. (2005): Waste collection vehicle routing problem with time windows
 - He et al. (2009): Balanced K-means Algorithm for Partitioning Areas in Large-Scale Vehicle Routing Problem

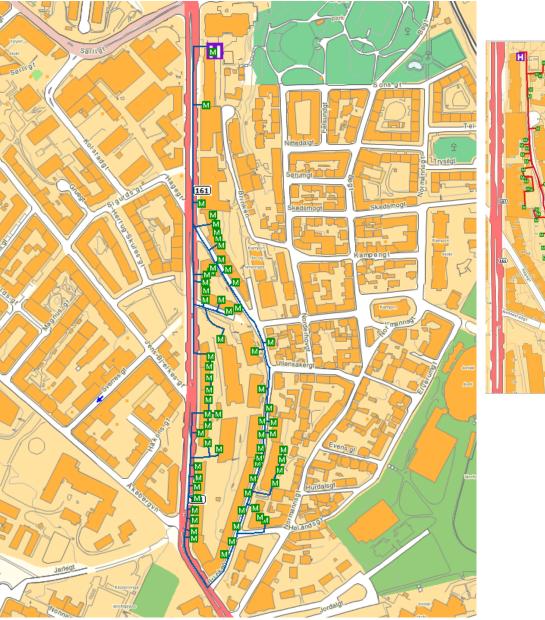
"Standard" approach


- Aggregation of demand based on road topology
 - Nodes, edges, arcs
- Duration-constrained (open) NEARP
- Route balance and visual beauty soft constraints
- Weighted sum of duration objective and penalties
- Spider standard algorithmic approach
 - Extended Savings construction
 - Iterated local search
 - VNS with repertoire of 15 operators
 - Ruin and recreate for diversification
 - Route reduction phases with special objective (if relevant)
 - Good results on C/DVRP, VRPTW, PDPTW, CARP, industry cases

NEARP benchmark

- NEARP Prins & Bouchenoua CBMix (23 instances)
- No lower bounds, no proven optima, only one competitor
- **UB error** 0.94%
- 8 best known solutions (6 new)

🖉 Rutemåltall - Windows Internet Explorer							
C C F http://app.di.no/app/RouteMeasures.do?action=unspecified&menuId=62&selectedPendingId=5534							
<u>File E</u> dit <u>V</u> iew F <u>a</u> v	orites <u>T</u> ools <u>H</u> e	lp	х 🕲 -				
🚖 Favorites 🛛 🚔 🤌	Best of the Web 【	📶 Channel Guide 🥫 Fre	ee Hotmail 🙋 Inte	rnet Explorer News	🥖 Internet Start 💧	🖉 Runit AS 🧧	Web Slice Gallery
🔠 🔻 🏉 Forside - SINT	'EF 🏾 🄏	Alle ansatte - SINTEF	🏉 [_Particip	antList_]	🏉 TRISTAN VII	8	Euro 2010 Lisboi
Distribution Innovation		ddress Reports					
Search Route M	odule Pendir	ng Routemeasur	es Optimizat	tion			
Search Route Module Pending Routemeasures Optimization Ruteutvalg Distribusjon M1-6 ▼ Velg geografi							
Oversikt Produk	-						
	Lev.eff. (lev/min)	Lev.tett. (lev/km)	Omb.tid	Rutelengde (km)	Tidsbuff. (min)	Dekn.grad (%)	d Lev. (ant)
Production (2)	1,4		134 Σ:268	5,8 Σ:11,7	24	20,7	187,6
Optimized (2)	1,77		102 Σ <i>:205</i>	3,4 Σ:6,7		19,1	182,1
Pending (2)	1,77	54,5	102 Σ:205	3,4 Σ:6,7		19,1	182,1


. . . .


.

🍯 Rutemåltall - Wi	🗇 Rutemåltall - Windows Internet Explorer						
🔆 🕑 🗢 🚺 htt	p:// app.di.no /app/Rou	uteMeasures.do?action	=unspecified&menu	Id=628selectedPendin	gId=5534		
<u>File E</u> dit <u>V</u> iew Fa	avorites <u>T</u> ools <u>H</u> e	lp	× 🐑 -				
🚖 Favorites 🛛 👍 複	🖲 Best of the Web 🚦	📶 Channel Guide 🥫	Free Hotmail 🧧 I	nternet Explorer News	🥖 Internet Start	🦲 Runit AS 🥫 W	eb Slice Gallery 🝷
🔡 🔻 🏉 Forside - SI	NTEF 🥖	Alle ansatte - SINTEF	: 🏉 [_Parti	icipantList_]	🏉 TRISTAN VII	🏉 Eu	uro 2010 Lisbon
	Distribution Innovation Routes Address Reports						
Search Route	Module Pendi	ng Routemeas	ures Optimiz	zation			
Ruteutvalg		1					
Distribusjon	M1-6 💙]					
Velg geografi							
Rutesøk							
Region	-Velg-		~				
Område	-Velg-		*				
Forfall	03 Oslo S	5yd - RNO#1218:	Gr.(3) -2(💙				
Velg måltall / ti	dsmodus						
Måltall	LE L	T OM RL	TB D% L	EV A OM A RL			
Tidsmodus	Snitt M	an Tirs Ons	Tors Fre L	ør Søn			
ndonioddo	Since					Søk	
						SØK	
Oversikt Prod	uksjon Forfall						
Rute	Lev.eff. (lev/min)	Lev.tett. (lev/km)	Omb.tid	Rutelengde (km)	Tidsbuff.	Dekn.grad (%)	Lev. (ant)
Gjennomsnitt	1,77	54,5	102	3,4	()	19,1	182,1
* <u>00001</u>	1,6	57,1	103	2,9		16,6	165,2
★ <u>00002</u>	1,93		102	3,8		21,6	199
A 00002	1,55	51,0	102	5,6		21,0	

. . . .

. .

Industrial instances

- Improvements in total duration of 2%-25%
- Duration balance and visual attractiveness typically ok
- In some cases
 - routes not well balanced
 - routes not visually appealing
- Observations
 - tuning of weights for soft constraints difficult
 - alternative penalty definitions did not solve the problem
 - some (inter tour) neighborhood operators tend to destroy secondary objectives / soft constraints

New approach (1)

Main idea: create a solution with the desired structure

- duration balance
- visually appealing (compactness, non-overlapping)
- Simplicity
- Speed
- New construction heuristic: Clusterer
- Continuation with "standard" machinery

New approach (2)

- Estimate # routes needed (minimum could be given by user)
- Solve balanced capacitated (duration) clustering problem
 - Modified k-means algorithm, adaptive cluster weights
 - Fast TSP solver to find duration of each cluster (2-opt, relocate)
- restart with 1 route less if #routes to be minimized
- After-burner: Intra-tour optimization

3-opt

Further iterative improvement

Experimental results

Only preliminary investigation on industrial, "bad" cases

- Results very promising
 - good balance
 - visually appealing
 - similar cost (total duration)
 - faster

.

Parallel / heterogeneous computing

Need for parallel algorithms

- speed vs. quality
- instance robustness
- larger size problems
- Different levels of granularity
 - solution
 - iteration
 - algorithm
 - cooperating solvers
 - Modern commodity computers
 - clock frequency reduced due to technological limits
 - Moore's law still valid: multiple cores
 - Graphics Processing Units: massive data parallelism

Cloud computing

- Central services, accessibility through web
- Less investment in hardware and software
- Central updates
- Possible security issues
- Automated routing services
 - demand unknown
 - need for elastic computational resources
 - parallel computation

Conclusions

- Newspapers have economical challenges
- New technology enables lower costs and higher revenues
- Construction / revision of home delivery routes very complex
 - Iarge size
 - multiple criteria
 - idiosyncratic constraints
- Spider standard approach typically gives good results
- Bad results on some industrial instances (balance, "beauty")
- New approach based on balanced clustering is promising
- More experimental studies and new benchmarks needed
 - comparison with literature on VRPRB
 - standard definition(s) of VRP with visual beauty, benchmarks
- Future directions:
 - Decomposition and aggregation methods
 - Parallel and cooperative search

Aspects of routing problems in media product distribution

Geir Hasle, Oddvar Kloster, Morten Smedsrud Department of Applied Mathematics, SINTEF ICT, Oslo, Norway

EURO XXIV

24th European Conference on Operational Research

Lisbon, Portugal, July 11-14, 2010

