
Safe Reinforcement Learning for
Continuous Spaces through

Lyapunov-Constrained Behavior

Sigurd A. FJERDINGEN a,1, and Erik KYRKJEBØ a

a Dept. of Applied Cybernetics, SINTEF ICT, Norway

Abstract. This paper presents a safe learning strategy for continuous state and
action spaces by utilizing Lyapunov stability properties of the studied systems.
The reinforcement learning algorithm Continous Actor-Critic Learning Automa-
tion (CACLA) is combined with the notion of control Lyapunov functions (CLF) to
limit the learning and exploration behavior to operate inside the stability region of
the system to ensure safe operation at all times. The paper extends previous results
for discrete action sets to take advantage of the more general continuous actions
sets, and show that the continuous method is able to find a comparable solution to
the best discrete action choices while avoiding the need for good heuristic choices
in the design process.

Keywords. Safe learning, reinforcement learning, control Lyapunov function

Introduction

Robots able to improve and learn new behavior over time through interaction with the
real physical world has long been a goal for researchers in cybernetics, computer science
and electronics. Such systems have been identified as a key enabling technology for more
autonomous robot systems in all major application areas; industrial production-, process-
and manufacturing operations, in tackling societal health- and home-care challenges, in
personal robot assistants and in professional service robot systems.

One computational approach to learning from interaction is denoted reinforcement
learning (RL) and addresses the issue of when to do what, i.e. how the current situation
of a system should be mapped to an appropriate behavior or action in order to maximise
a reward received from the environment [1]. A robot that interacts with a stochastic
process (the environment) modelled as a Markov decision process (MDP) will be given
an immediate reward when performing an action. The objective is to discover which
actions yield the most accumulated reward over time, and this is done by experimenting
with the effects of different actions.

A robotic agent that can learn new behavior may come to behave unexpectedly since
exploration is an inherent part of discovering new and possibly better solutions. When a
real robot is acting on and reacting to the physical world, special attention must be paid
to the reliability and safety of behaviors to ensure that no harm may come to the robot
or its environment. Most reinforcement learning algorithms, however, are not concerned
with operational safety bounds during learning and exploration. Only recently have dif-

1Corresponding Author: Sigurd A. Fjerdingen, SINTEF ICT Applied Cybernetics, 7465 Trondheim,

Norway; E-mail: sigurd.fjerdingen@sintef.no.

ferent aspects of safety in relation to robot learning been addressed by researchers [2,3].
Perkins and Barto [4,5] have integrated the notion of Lyapunov stability [6] from the con-
trol literature with a principal reinforcement learning algorithm for discrete action sets,
SARSA(λ) (see e.g. Sutton and Barto [1]), to create a learning algorithm that operates
within the stability bounds of a Lyapunov function.

This paper extends the ideas of Perkins and Barto using only discrete action sets to
the more general case of using both continuous state and action spaces to address the
need of working with actions of a continuous nature in many robot systems. A Lyapunov-
based control design is combined with the Continuous Actor-Critic Learning Automaton
(CACLA) reinforcement learning algorithm [7,8] specifically suited for continuous state
and actions spaces. The resulting controller is applied to the benchmark learning task as
presented by Perkins and Barto [4] of swing-up and balancing of an inverted pendulum
to compare and analyse the results.

The paper is organised as follows. Section 1 gives a quick introduction to reinforce-
ment learning with special attention to algorithms for continuous state and action spaces.
Section 2 introduces Lyapunov functions and relates it to reinforcement learning. The
problem definition and experimental studies conducted in the present work are presented
in Section 3, while Section 4 presents the results of the experimental studies. A discus-
sion and conclusions on the results are given in Section 5.

1. Markov Decision Processes and Reinforcement Learning

A Markov decision process (MDP), which is used to model an agent’s interaction with
the environment in reinforcement learning, can be defined as a tuple (S,A, R,T), where
S is the set of all states on which the MDP evolves, A the set of available actions (A is
in general dependent on S , i.e. A(s) where s ∈ S is the current state), R the reward func-
tion, and T (s,a,s′) ∈ [0,1] the transition probability function. This denotes the proba-
bility of moving from the current state s ∈ S to the resulting state s′ ∈ S by applying
action a ∈ A(s). In reinforcement learning problems, the reward function and transition
probability function are treated as unknowns and thus ordinary dynamic programming
solution approaches do not apply. For more details on Markov decision processes and
reinforcement learning, see e.g. the excellent introductory book by Sutton and Barto [1].

Value functions are central to reinforcement learning, and may be formally defined
as

V π (s)= E

{ ∞
∑

i=0

γ i
drt+i+1 | π,st = s

}

. (1)

This function describes the future cumulative discounted reward an agent expects to re-
ceive from time t and towards infinity by following its current policy π from the cur-
rent state st = s, where rt is the immediately received reward from the environment at
time t and γd ∈ (0,1] is a discount factor that controls the effect of rewards received in
the future. Intuitively, the value function describes how good it is to be in a state. States
with higher values will lead to larger cumulative rewards when following the policy π
mapping from states to actions, i.e. a = π(s).

Whereas the value function V π (s) describes the value of being in a particular state
s following a particular policy π , a corresponding action-value function Qπ (s,a) takes
into account which actions yield the most future cumulative reward for each state, and
is therefore well suited for control problems. An action-value function describes the ex-
pected return starting at time t and state st = s taking action at = a and thereafter fol-
lowing the policy π . Its formal definition is given as

Qπ (s,a)= E

{ ∞
∑

i=0

γ i
drt+i+1 | π,st = s,at = a

}

. (2)

This formulation has been the basis for many RL-algorithms, including SARSA which is
an acronym for State-Action-Reward-State-Action.

SARSA is a well-known on-policy temporal difference-based reinforcement learning
algorithm for control problems. The algorithm tries to estimate the Q-function iteratively
a given policy π . That is, if a policy π , selecting actions a based on the current state
s (a = π(s)), is followed, the algorithm will converge to describing the value of taking
action a in any state s and thereafter follow policy π . Sutton and Barto [1] state the
algorithm as

Q(s,a)= Q(s,a)+α
(

r +γd Q(s′,a′)− Q(s,a)
)

, (3)

where (s,a) is the current state-action pair, (s′,a′) the next, r the numerical reward
received when transitioning from s to s′ using action a, and α ∈ (0,1] is a learning
rate parameter controlling the convergence speed of the algorithm. The type of policy
normally used for this algorithm has some stochastic component, as for instance the ǫ-
greedy policy which simply states that the estimated highest valued action (highest Q-
value) should be chosen with probability 1−ǫ else a random action should be chosen, i.e.
a policy following the Bernoulli distribution. Exploration is here an implicit part of the
policy, as random actions are chosen with probability ǫ for each state. SARSA converges
to an optimal policy for discrete and finite states and actions under the assumptions that
all state-action pairs are visited an infinite number of times and that the policy converges
to a greedy policy, i.e. a policy that always selects the action a with the highest Q-value
for a given state s (for instance by decaying ǫ in an ǫ-greedy policy for each epsiode
conducted).

1.1. Continuous States and Actions

Many traditional reinforcement learning algorithms assume discrete state and action sets,
such as the SARSA algorithm mentioned previously. Some control problems, such as
the one studied in the current work of tuning a continuous parameter of a Lyapunov
control function (see Section 2), are continuous in their nature. Fundamentals concerning
MDPs still hold for continuous spaces, see e.g. van Hasselt [9]; chapter 7. RL algorithms
for continuous state spaces have been extensively studied by researchers in the last two
decades [1,10,11,12,13]. Using parameterized function approximators to represent the
state space has emerged as the method of choice. Commonly used methods include non-
linear approximators such as multilayer perceptrons [9], and linear approximators such
as radial basis function networks (RBFNs) [14] and tile coding [1].

Two differing approaches of handling continuous actions are prominent in RL lit-
erature. A numerical optimization method may be used on the estimated Q-value (e.g.
Newton-Raphson or wire-fitting [15]), or using a special subset of RL algorithms often
denoted as actor-critic methods. In this type of RL algorithm, the estimation of the value
function V (the critic) is separated from the estimation of the policy (the actor). The ap-
proach has been around for some time (see e.g. the 1977 article by Witten [16]), but has
only recently gathered interest when problems using the direct determination approach
became apparent [11].

1.1.1. Continuous Actor-Critic Learning Automaton

Van Hasselt and Wiering [8,9] present one such actor-critic method named CACLA. The
value function is estimated by using the temporal difference errror

δ = r +γd V (s′)− V (s), (4)

where γd is the discount factor, and thus becomes

V (s)= V (s)+αV δ, (5)

where αV ∈ (0,1] is the learning rate of the value function. For continuous state spaces,

the value function may be represented by a linear function approximator V̂θ (s) parame-
terized by a vector θ . Using gradient descent on the mean squared error between the ex-
perienced and currently estimated value function gives an update rule for the parameters
as (see e.g. Sutton and Barto [1] for details)

θ = θ +αV δ∇θ V̂θ (s). (6)

Note here that ∇θ denotes the partial derivatives with respect to the parameter vector θ ,
i.e.

∇θ V̂θ (s)=
[

∂ V̂θ (s)

∂θ1
, . . . ,

∂ V̂θ (s)

∂θN

]

. (7)

A stochastic policy Pr(a|s)= π(a|s; φ) is often employed in actor-critic algorithms
in order to create explorative behaviors, where φ denotes the parameter vector of a func-
tion approximator. In our case the policy is a stochastic policy employing the Gaussian
distribution, given as

π(a|s;µ,σ)= 1√
2πσ

e
−
(a−Ac

φ
(s))2

2σ2 (8)

with mean Ac
φ(s) = µ(s) approximated by a linear function approximator. In practice

this means that it is the currently estimated mean of this Gaussian distribution that is
stored by the function approximator. The parameter σ is used to control the amount of
exploration for the policy. Note here that actor exploration may very well be directed by
other means than Gaussian exploration [9].

The policy function approximator parameters for the CACLA actor, i.e. the parame-
ters for Ac

φ(s), are updated by

φ = φ+απ max(sgn(δ),0)
(

a − Ac
φ(s)

)

∇φ Ac
φ(s), (9)

where απ ∈ (0,1] is the actor learning rate, and sgn(x) denotes the signum function
returning +1 for x > 0, 0 for x = 0 and −1 for x < 0.

CACLA has been compared to the state of the art evolutionary method CMA-ES
(Covariance Matrix Adaptation Evolution Strategy) [17] with favorable results [9], which
again has compared favorably to other reinforcement learning methods such as NAC
(Natural Actor Critic) [18]. This indicates that selecting the CACLA approach as the
RL method of choice for continuous spaces when integrating with Lyapunov control
functions should provide representative results.

The reader is referred to van Hasselt [8,9] for a more detailed description of the CA-
CLA algorithm, and Fjerdingen et al [7] for practical usage and comparisons of CACLA

to general actor-critic algorithms based on gradient descent.

Figure 1. The pendulum environment. An actuater situated at the smallest of the two circles may swing the

pendulum either left or right.

2. Safe Learning using Lyapunov Constraints

Lyapunov functions [6] are a fundamental mathematical tool for analyzing the stability
of dynamical systems in control theory. The Lyapunov function L is a scalar energy-like
function for a system - a generalization of the energy concept for mechanical systems -
that can be determined to be asymptotically stable if the Lyapunov function decreases.
This means that all solutions of the dynamical system starting out near an equilibrium
point will converge to this point. For the pendulum problem as described in Section 3, the
system has two equilibrium points; an asymptotically stable point downwards and an un-
stable equilibrium point upwards where any starting point near the upwards equilibrium
point will make the move away from the point and increase the energy in the system.

The construction of a Control Lyapunov Function (CLF) can be used to test whether
any dynamical system can be made asymptotically stable when subjected to a control in-
put. A CLF is a positive-definite radially unbounded scalar Lyapunov-function L depen-

dent on both states and control inputs that ensures that L̇ < 0. Thus, for any state we can
find an action that reduces the "energy" in the system such that the Lyapunov-function
has negative derivatives along the system trajectories. A safe and reliable reinforcement
learning strategy should thus constrain all action choices to be within the appropriate
control Lyapunov function.

3. Experiments

This section describes the simulation setup used to validate the previously described
algorithm for safe reinforcement learning in continuous spaces. Simulations using the
proposed algorithm are set up using the simulated inverted pendulum task described
by Perkins and Barto [4] and compared to an implementation of the SARSA algorithm
comparable to that of Perkins and Barto. This simulator is used in order to qualitatively
compare results to previously obtained results.

3.1. Pendulum Problem Definition

The goal for the pendulum task is to swing up and balance a single-link pendulum under
the effects of gravity, using a rotational actuator centered at the fulcrum of the pendulum,
in the least possible time. The pendulum task is visualized in Figure 1, and is governed
by the dynamics equation

θ̈ = sin(θ)+u, (10)

where θ is the angular position of the pendulum using the vertical upright position as ori-
gin and u is the control torque. This equation assumes a pendulum mass of 1 and length
1, gravity of strength 1, and no damping. θ is assumed to stay in the range [−π,π],
since the states are identical for (θ + k2π) for k ∈ {0,±1,±2, . . .}. The problem to op-
timize is to control the pendulum from hanging straight downwards to a near-upright,

near-stationary position in minimum time. Perkins and Barto state this goal formally as
G1 = {(θ, θ̇) | ||(θ, θ̇)||2 ≤ 0.01}. θ = 0 is here defined as the upright position of the
pendulum.

The implemented solver is based on the explicit Runge-Kutta (4,5) formula using
the Dormand-Prince pair (the variable time-step MATLAB ode45 solver) using fixed in-
terrupts for each 0.25 seconds where control inputs may be changed, i.e. a controller fre-
quency of 4 Hz. Note that these discrete controller intervals at the same time make the en-
vironment appear as a deterministic MDP. Control torque is bounded by |umax| ≤ 0.225,
which is too little torque to get the pendulum from a downwards hanging position to G1

in one swing. The learner must therefore learn to swing the pendulum back and forth in
order to gather enough momentum to swing it upright.

3.2. Lyapunov-Constrained Controller

The mechanical energy of the pendulum can be formulated as

M(θ, θ̇)= 1+ cos(θ)+ 1

2
θ̇2. (11)

The total mechanical energy of the pendulum equals 2 when the pendulum is upright and
stationary ((θ, θ̇)= 0). The time derivative of the mechanical energy is then given by

Ṁ(θ, θ̇)= −sin(θ)θ̇ + θ̇ θ̈ = θ̇u. (12)

Perkins and Barto propose a controller based on this equation guaranteed to increase the
mechanical energy of the pendulum at each time step. See Perkins [5] Theorem 6.1 and
Appendix A for a detailed explanation and proof for this controller. The controller is
given formally as [4]

u = MEA(θ, θ̇ ,w)=































sgn(θ̇)w if |θ̇ |> ǫ̇
∨ (0< θ̇ < ǫ̇ ∧ θ /∈ E1)

∨ (−ǫ̇ < θ̇ < 0 ∧ θ /∈ E2)
1
2 sgn(θ̇)w if (0< θ̇ < ǫ̇ ∧ θ ∈ E1)

∨ (−ǫ̇ < θ̇ < 0 ∧ θ ∈ E2)

sgn(θ)w if θ̇ = 0,

(13)

where ǫ̇ ∈ R > 0 is set to 0.1 in the experiments. Perkins and Barto label this algorithm
’Modified Energy Ascent’, and the intuitive difference between this controller and a nor-

mal energy ascent controller is that this controller switches from usingw to 1
2w at the sets

E1 and E2 surrounding equilibrium points where w equals the effects of gravity. These
equilibrium points may result in stagnation of the pendulum, and Perkins and Barto avoid
them by reducing the applied torque by 50%. The sets E1 and E2 are by Perkins and
Barto given as

E1 = [−π +φ− ǫ, −π +φ+ ǫ) ∪ [−φ− ǫ, −φ+ ǫ)
E2 = (φ− ǫ, φ+ ǫ] ∪ (π −φ− ǫ, π −φ+ ǫ] ,

(14)

where ǫ = 1
2 (arcsin(w)− arcsin(1

2w)) and φ = arcsin(w). Perkins and Barto define

a Lyapunov function L(θ, θ̇) = 2 − M(θ, θ̇) and an accompanying goal region G2 =
{(θ, θ̇) | M(θ, θ̇)≥ 2}. The state of the pendulum is now guaranteed to descend on L out-
side of G2, which makes it a Lyapunov function for the system. Applying zero torque af-
ter the pendulum reaches G2 further ensures that the pendulum reaches the goal state G1.
In the experiments the pendulum torque has been set to u = −100 sgn(θ̇)(M(θ, θ̇)− 2)

instead of 0 when the mechanical energy increased above 2 in order to dissipate possible
extra energy due to numerical inaccuracies.

Using a SARSA algorithm similar to Perkins and Barto, the learner is allowed to
select between two parameter values for w of the MEA control strategy as illustrated in

their experiment 1 [4]. These two parameter values are either w = umax or w = 1
2 umax.

In this paper we propose to integrate the CACLA algorithm within the Lyapunov
learning framework. Referring to Section 1, the actor part of the algorithm is allowed to
learn the optimal w parameter instead of switching between two discrete levels for the
parameter. The actor is allowed to learn any w ∈ R > 0. This means that values larger
than umax may be output from the MEA function. In our implementation, the output from
the MEA-function is therefore stated as

u = Ŵ(MEA(θ, θ̇ ,w)), (15)

where Ŵ(·) is a function that caps the MEA at umax, i.e.

Ŵ(x)= min(x,umax). (16)

Allowing w > umax has an effect on situations where the MEA-function switches from

sgn(θ̇)w to 1
2 sgn(θ̇)w in that the 1

2 fraction may be compensated for in some respects.

3.3. Specifics of the Implemented RL Algorithms

In the current simulations radial basis function networks (RBFNs) [19] are used as func-
tion approximators. Function approximation is a central part of any RL algorithm suited
for continuous states and actions. RBFNs may be seen as a special kind of connection-
ist structure with three layers; an input layer, a hidden layer using a Gaussian activation
function, and a linear output layer. The output of the network may be stated as

f (x)=
N

∑

i=1

ψiρ(||x− ci ||), (17)

where

ρ(||x− ci ||)= e− 1
σ ||x−c||2 =

∏

j

e
− 1
σ j
(x j −ci j)

2

(18)

is the Gaussian activation function with center vector c, width σ , ψ a tunable weight
parameter, and N the number of activation functions. An advantage of using an RBFN as
opposed to a general multilayer perceptron is that the bilateral Gaussian function makes
the approximations local in nature instead of the global possibilities inherent in a unilat-
eral activation function such as the sigmoid.

For the CACLA algorithm two RBFNs have been used, each with an input space
equal to the pendulum task state space (θ, θ̇). Activation functions are spaced equally
with 1θ = 0.2 and 1θ̇ = 0.2 in the regions θ ∈ [−π,π] and θ̇ ∈ [−3,3]. The learning
rate parameter for the actor is set to απ = 0.1, and for the critic to αV = 0.3. The discount
factor is set to γd = 0.5 and the Gaussian exploration factor σ = 0.225 at trial 0 with a
linear decrease towards 0 at trial 1000. The total number of activation functions for each
RBFN is 1054.

For the SARSA algorithm one RBFN is used to approximate the Q-function where
an extra input dimension needs to be added relative to the actor-critic case, namely the
action dimension. This dimension only contains activation functions along either the
scalar 1 or 2, each number representing one of the two possible actions to take at any

Table 1. End-times for the last trial (trial 1000) on average for the simulations visualized in Figure 2-3.

Experiment End-time average in seconds

SARSA 1 37.99 s

SARSA 2 66.78 s

SARSA 3 20.88 s

SARSA 4 21.41 s

CACLA 20.50 s

time. The learning rate parameter is set to α = 0.3 and the discount factor equal to the
one used for CACLA. An ǫ-greedy exploration is used with ǫ = 0.1 for trial 1 with a
linear decrease towards 0 for trial 1000. The total number of activation functions for the
RBFN is 2108.

Reinforcement is sparse in the experiments, only given implicitly by giving r = −1
for each time-step. This means that the earlier a trial ends, the less total negative reward
the learner will have received. A denser alternative could have been to give rewards based
on the distance from the G1 region, but we elect to keep our experiments in accordance
with Perkins and Barto’s experiments in this respect.

4. Results

Figure 2 visualizes the result from four different experiments, each with different choices
of the two possible actions to choose from (different values for w). SARSA simulation
3 (Figure 2(c) uses the same action values as used by Perkins and Barto in their work).
Using the CACLA approach instead, the algorithm is allowed to choose any parameter
value greater than zero as opposed to one of two discrete values. Figure 3 displays results
from this experiment. Each experiment contains 1000 trials, and has been run 20 times
to gather statistics. The figures show end-time results including exploration; only trial
1000 does not include any explorative behavior. Table 1 summarizes the final end-times
for all five simulations. Figure 4 shows a comparison between one run of trial 1000 for
the CACLA simulation and the SARSA simulation 3.

5. Conclusions

Results from Table 1 indicate that the optimal end-time of the discrete SARSA algorithm
is heavily dependent on the choice of action values. Simulation 3 and 4 have apparently
implemented better selection choices than simulation 1 and 2. This is also expected, as
limiting the choice of actions to take should severely affect the possible optimal solution.
The CACLA approach seems to find a comparable solution to the best action choices of
the SARSA method, but without the need to make heuristic choices as to the action values
to use. A common downside to RL algorithms aimed at continuous action spaces is that
they are expected to converge at a considerably slower rate than a discrete counterpart
employing a correct heuristic discretization. Figure 3 partly confirms the assumption
of slower convergence (trial 1-400), but at the same time results from Table 1 oppose
the assumption as the algorithm converges to a soltion comparable to the best SARSA

solutions. Normally we would expect a significant amount of extra trials to converge
to similar results since the problem of finding optimal solutions in continuous spaces
is more complex than that of finding an optimal solution when only two choices are
proposed. Looking at the parameter choices w for both algorithms, however, we see

200 400 600 800 1000
15

20

25

30

35

40

45

50

55

60

65

70

75

80

Trial number

T
im

e
 t

o
 g

o
a
l
(m

in
,m

e
a
n
,m

a
x
)

Discrete 10%/100% u
max

(a) SARSA experiment 1:w= {x ·umax | x = 0.1,1.0}.

200 400 600 800 1000
15

20

25

30

35

40

45

50

55

60

65

70

75

80

Trial number

T
im

e
 t

o
 g

o
a
l
(m

in
,m

e
a
n
,m

a
x
)

Discrete 10%/50% u
max

(b) SARSA experiment 2:w= {x ·umax | x = 0.1,0.5}.

200 400 600 800 1000
15

20

25

30

35

40

45

50

55

60

65

70

75

80

Trial number

T
im

e
 t
o
 g

o
a
l
(m

in
,m

e
a
n
,m

a
x
)

Discrete 50%/100% u
max

(c) SARSA experiment 3:w= {x ·umax | x = 0.5,1.0}.

200 400 600 800 1000
15

20

25

30

35

40

45

50

55

60

65

70

75

80

Trial number

T
im

e
 t
o
 g

o
a
l
(m

in
,m

e
a
n
,m

a
x
)

Discrete 90%/100% u
max

(d) SARSA experiment 4:w= {x ·umax | x = 0.9,1.0}.

Figure 2. Simulations using the discrete SARSA algorithm using different selection possiblities for the w pa-

rameter, i.e. limiting the action set to different values. Experimentation is handled through ǫ-greedy exploration

using a start parameter of 0.1, and linearly decreasing towards 0 indexed by the trial number. The figures show

the minimum, mean, and maximum time to goal.

that the CACLA approach uses w > umax a lot of the time, as shown in Figure 4. The
MEA-algorithm proposed by Perkins and Barto contains a switch from full torque to half
torque to avoid certain problematic areas, as previously discussed. The CACLA method
is allowed to counteract the suboptimality of this heuristic switch in order to get a more
optimal solution at a faster rate. This is not possible to discover using heursitics-based
discretization of the action space limited by w = x, x ∈ (0, umax].

This paper has presented a safe reinforcement learning method for continuous state
and action spaces through the use of control Lyapunov functions. Perkins and Barto’s
results are extended to continuous action spaces by employing the state-of-the-art rein-
forcement learning algorithm CACLA. A potential issue of dealing with transients occur-
ing due to changing of the controller parameters at run-time, which may or may not lead
to unstability, has not been addressed and remains a task for further research.

References

[1] R. S. Sutton and A. G. Barto. Reinforcement Learning: An Introduction. Adaptive Computation and
Machine Learning. The MIT Press, London, England, 1998.

[2] P. Geibel and F. Wysotzki. Risk-sensitive reinforcement learning applied to control under constraints.
Journal of Artificial Intelligence Research, 24:81–108, 2005.

200 400 600 800 1000
15

20

25

30

35

40

45

50

55

60

65

70

75

80

Trial number

T
im

e
 t

o
 g

o
a
l
(m

in
,m

e
a
n
,m

a
x
)

Continuous

Figure 3. Simulations using the continuous CACLA

algorithm. The w parameter is here only limited by

w = x, x > 0. The pendulum torque is still limited

by u = y, y ∈ umin,umax.

start end
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

Time

w
 p

a
ra

m
e

te
r

CACLA

SARSA (3)

Figure 4. w parameter for CACLA (solid line) and

SARSA simulation 3 (dotted line) during one run of

the last trial.

[3] A. Hans, D. Schneegass, A. M. Schäfer, and S. Udluft. Safe exploration for reinforcement learning. In
ESANN’2008 proceedings, European Symposium on Artificial Neural Networks, pages 143–148, 2008.

[4] T. J. Perkins and A. G. Barto. Lyapunov design for safe reinforcement learning. Journal of machine
learning research, 3:803–832, 2002.

[5] T. J. Perkins. Lyapunov Methods for Safe Intelligent Agent Design. PhD thesis, University of Mas-
sachusetts, Amherst, 2002.

[6] H. K. Khalil. Nonlinear Systems. Prentice Hall, New Jersey, 3rd edition, 2002.
[7] S. A. Fjerdingen, E. Kyrkjebø, and A. A. Transeth. Auv pipeline following using reinforcement learning.

In Proceedings for the joint conference of ISR 2010 and ROBOTIK 2010, pages 310–317. VDE Verlag
GmbH, 2010.

[8] H. van Hasselt and M. A. Wiering. Reinforcement learning in continuous action spaces. In Proceedings
of the 2007 IEEE symposium on approximate dynamic programming and reinforcement learning, pages
272–279, 2007.

[9] H. van Hasselt. Insights in Reinforcement Learning. PhD thesis, Dutch Research School for Information
and Knowledge Systems, 2011.

[10] L. Baird. Residual algorithms: Reinforcement learning with function approximation. In Proceedings of
the International Conference on Machine Learning. Morgan Kaufmann Publishers Inc., 1995.

[11] R. S. Sutton, D. McAllester, S. Singh, and Y. Mansour. Policy gradient methods for reinforcement
learning with function approximation. In S. A. Solla, T. K. Leen, and K. R. Muller, editors, Advances
in neural information processing systems, volume 12 of Advances in neural information processing
systems, pages 1057–1063. MIT Press, 2000.

[12] S. Thrun and A. Schwartz. Issues in using function approximation for reinforcement learning. In
Proceedings of the 1993 Connectionist Models Summer School, 1993.

[13] J. N. Tsitsiklis and B. van Roy. An analysis of temporal-difference learning with function approximation.
IEEE Transactions on Automatic Control, 42(5):674–690, 1997.

[14] X.-S. Wang, Y. H. Cheng, and W. Sun. Q learning based on self-organizing fuzzy radial basis function
network. In J. Wang, Z. Yi, J. M. Zurada, B. L. Lu, and H. J. Yin, editors, Advances in neural networks,
volume 3971 of Lecture notes in computer science, pages 607–615. Springer-verlag Berlin, 2006.

[15] C. Gaskett, D. Wettergreen, and A. Zelinsky. Reinforcement learning applied to the control of an au-
tonomous underwater vehicle. In Proceedings of the Australian conference on robotics and automation,
1999.

[16] I. H. Witten. An adaptive optimal controller for discrete-time markov environments. Information and
Control, 34(4):286–295, 1977.

[17] V. Heidrich-Meisner and Christian Igel. Similarities and differences between policy gradient meth-
ods and evolution strategies. In Proceedings of the european symposium on artificial neural networks
ESANN2008, 2008.

[18] S. Bhatnagar, R. S. Sutton, M. Ghavamzadeh, and M. Lee. Incremental natural actor-critic algorithms.
In Advances in Neural Information Processing Systems 20, pages 105–112. MIT Press, Cambridge, MA,
2008.

[19] J. Park and J. W. Sandberg. Universal approximation using radial-basis-function networks. Neural
Computation, 3(2):246–257, 1991.

