
A Multi-dimensional Framework for Characterizing Domain
Specific Languages

Ø. Haugen1,2, P. Mohagheghi1

1 SINTEF ICT, P.O.Box 124 Blindern,N-0314 Oslo, Norway

2 University of Oslo, Dept. of Informatics, P.O. Box 1080 Blindern, N-0316 Oslo, Norway
{oystein.haugen, parastoo.mohagheghi}@sintef.no

Abstract. The paper presents a questionnaire to assess Domain Specific Languages
based on a multi-dimensional framework for characterizing languages. An issue is
whether and how to distinguish between characteristics of domain-specific and general
purpose languages. We discuss how to emphasize dimensions that are particularly
important for domain-specific languages such as being formal, yet transparent as well as
integrable with other languages. We consider hazards and potentials of the approach.

Keywords: DSL, language quality, language assessment.

1 Introduction

When applying Domain Specific Languages (DSLs) instead of General Purpose Languages (GPLs),
the software design process will in fact be divided in two distinct activities, the design of the DSL
and the usage of it.

The ultimate success criterion for a DSL is whether the usage of it produces good products. It is
also possible to harvest empirics from the product design process. But is it possible to give a fruitful
evaluation of the DSL only by assessing the language itself?

This paper is about assessing a language based on a general quality framework through the means
of a structured questionnaire. The idea is that existing languages can be adequately characterized
and that future languages can be guided in the right direction. The advantage over process empirics
is that our questionnaire can be applied at a much earlier stage in the product development. The
questionnaire was originally oriented towards GPL evaluation, especially for object-oriented
languages, and relevance to the evaluation of DSLs is discussed.

Following this introduction we present the multi-dimensional quality framework in Section 2 on
which the questionnaire presented in Section 3 is based. Section 4 discusses DSLs particular
properties that go beyond those of languages in general. Section 5 presents related works, and
Section 6 summarizes.

2 A Framework for Characterizing Languages

We characterize languages first by handling one language at one point in time. Then we add the
complexity of having several languages combined, but still only at one point in time. Finally we
consider language evolution over time.

The concepts in this Section originate in [1].

2.1 Characteristics of One Language at One Point in Time

We define three main dimensions of a language: expressiveness, transparency and formalization.

Language

transparencytransparency

The World expressivenessThe World expressiveness

Formal base

verifiability

Formal base

verifiability

Fig. 1. Language dimensions

Expressiveness.
Expressiveness is not only about whether the language is Turing-compatible or not. We define a set
of categories of expressiveness forming the acronym MAGIC. A given language construct may
serve more than one purpose and fall into more than one of the categories.

We present our categories in the opposite order of the acronym MAGIC for explanatory reasons.

C – Concepts.
What are the basic concepts of the language? Are the basic concepts on a high abstraction level, or
will a designer need several language concepts to define a domain level concept? While Java has
concepts like “class”, “object” and “method”, we find in UML more expressive basic concepts like
“state machine” and “interaction”.

I – Identity
Given an object, how does the language describe what this object is? In a nutshell this category is
about compact modifications of identity to express similarities. Typical I-constructs are inheritance,
overriding and overloading. While overriding may be bound at runtime, overloading can always be
determined at compile time.

G – Generation
Generation is about dynamics. How are new entities created, and eventually destroyed? How are the
relations between the generator and the entities it generates? We also categorize concurrency and
parallel processes with their communication here.

A – Aggregation
Modern systems consist of smaller systems that again consist of even smaller systems. To get our
arms around a system we often organize it in layers, and the layers may consist of sub-layers etc. A
“seamless” language will apply the same language features on every nesting level and there will be
no fixed number of layers.

M – Meta
Our notion of meta is concerned with language constructs within one language that work on the
description of the system while that very system is running. The most common meta-feature is that

of reflection where information of an entity’s definition is made available to the program through
predefined query operations. There are also languages (like LISP) that include constructs to execute
objects that have been created by the very same program. This is generative programming within
one language.

Transparency (or simplicity)

Transparency is about the relation between the language and the humans. How easy is the language
to use and to understand? This question is almost impossible to answer without saying something
about the persons that are supposed to use and/or to understand the language. If you know Java it is
not so difficult to understand C#. This dimension is dependent upon more than the language itself,
but we may give some general advice.

Distinct syntax
Similar syntax to define different constructs or dissimilar syntax to define similar concepts will be
confusing. This may be compared with watching a soccer match where the two teams have very
similar shirts, or conversely that all players have different shirts.

Structure similarity
It has been shown that if the model is structured similar to the way the running system is organized,
this helps the understanding.

Locality and history independence
Modern systems are big. Therefore it should be possible to locate the significant pieces easily and
these pieces should be well isolated. We call this local reasoning. Just as the reader should not need
to read the whole system to understand a small piece, it should not be necessary to know the whole
history of an object to grasp its future function. The concept of state machines may serve as an
example of locality and history independence.

To understand what will happen in a state machine it is sufficient to know in which state the
machine is and what signal it consumes. This determines the transition. It is not necessary to know
the earlier transitions.

Educational prerequisite
If I try and read a Chinese newspaper I readily accept that I do not understand it. I know that I need
to study Chinese to be able to read it.

The need for education should be clear and well documented. Sometimes knowledge of the
domain is sufficient, while otherwise explicit training may be required.

Formalization (supportability)
Formalization is the relation between the language and a semantic base (semantic model). A
reasonably precise semantics is the prerequisite for a number of desirable properties. Therefore one
may believe that formalization is always a top priority, but experience shows that this is not the
case. By formal definition we often mean a definition given in mathematical or logical terms. We
also accept that a definition of a language given in an executable language such as a programming
language represents formalization. Thus, code generation schemes may represent formalization.

We also have clear evidence that bringing an organization from modeling in a sketchy way to
modeling in a precise way is a considerable mental step [2].

Simple analysis
Any artificial language should have a precise syntax and a reasonably precise set of well-
formedness rules. The well-formedness rules are often described as constraints on the metamodel
and may need special support to check.

Executability
Programming languages are always executable, while modeling languages have a tradition for not
being executable per se. This probably stems from the sketchy tradition of the modeling languages.
Modern DSLs are normally executable and their semantics is given through their code generators.
Executability is defined as the possibility to generate code that can be interpreted as a program by a
computer. However, models may also include information that is not used to generate the program,
for example constructs needed for debugging or analyses. Not all DSLs are executable (e.g., static
structure definition). The main advantage of a model being executable is that the coding phase has
been eliminated meaning more effective design and less error prone implementation.

Model checking
Model checking means to explore the model executions systematically in order to find situations
where certain exploration targets hold. Normally the model ought to be of a specific kind e.g. a set
of communicating state machines. The language may restrict the model such that effective model
checking is possible.

Automated metrics
Complexity metrics may be produced to give an indication to how complicated a specific piece of
software is.

Refinement
Formalization opens up for supporting concepts like refinement. When a model evolves it is useful
to be able to assert that the evolution is consistent in some way. That model evolution conforms to
refinement is one way to define consistent evolution steps.

2.2 Characteristics of Several Languages Combined

We proceed to consider modeling with several languages; e.g., from different views or for different
purposes.

Integrability
We consider the integration of languages that are used to model a system. When assessing one
language it is interesting to explore how well it integrates with other languages to model one
system.

Superlanguage
One approach to integration is to combine several languages into one superlanguage. The advantage
of defining a superlanguage is that we are back to the situation with one language to be assessed.
There are two disadvantages with this approach: a) the superlanguage easily becomes large, and b)
it is easy to create yet another, even more sophisticated modelling language whose notions and
constructs are (partially) not covered by the superlanguage [8].

Common Exchange Language
To exchange information between the sub-models we may define a common exchange format with
its own formal semantics. The advantage of this approach is that the exchange language needs not
define semantics for whatever goes on inside the sub-models, but only for the exchange.

MetaModel Transformations
In this approach, the metamodels are specified, as well as the transformational relationships
between them in a suitable formal language [8]. The advantage is the possibility to combine and
compare languages. The metamodels are used to define a root metamodel. The relationships will
then be transformed as being specialization (introducing more specialized concepts), restriction
(adding constraints) or degeneration (for example removing concepts) of this metamodel.

Traceability
When we describe systems where the sub-systems are made in different languages, it is practical to
keep close control over associations between entities in one sub-model with entities in another. One
object in the real system is represented by separate objects in the different sub-models.

Examples are requirement objects that turn into design objects or database records represented
both in the tele-protocol and the SQL database schema.

2.3 Characteristics of Language Evolution over Time

The languages are more stable than the models that are instantiated from them, but languages still
evolve. Just as models must be updated to cater for new requirements, so must languages.

Maintainability
How is the language maintained? Is there a group of people or institutions that take that
responsibility? How will changes be propagated in the community? There are organizational as well
as technical issues related to maintenance, and we are not only talking about bug-fixes. We must
consider improvements and versioning as well.

Extendability
Adding new features to a language is not the same as language extendability. When a language is
extended, another language appears, but the original still remains. Hopefully there is a relation
between the original and the extended similar to what we have in class inheritance. When the
original language is maintained the extended language should be maintained automatically together
with the original.

An example of language extension mechanisms is the profiling mechanism in UML which takes
UML 2 as starting point and the profiles may extend classes of the UML metamodel to create a
profile-specific metamodel.

Scalability
Scalability is the ability to work well with small models as well as big and gigantic models. This is
an ability that becomes increasingly important as time passes. A language normally evolves from
being small with few concepts that work very well on toy examples. If the examples are convincing
enough, the language becomes popular and is being used for more purposes and for bigger systems.
This always results in establishing the need for more structuring constructs. If these extensions are
successful the language is used for even bigger systems and for an even wider range of systems.

3 The Questionnaire

The following schema is a questionnaire that can be used to assess a given language. Each question
represents a dimension and the min and max characteristics indicates a range of values. The
assessor will give a value between 0 (min) and 10 (max) and up to 3 extra points for features that go
beyond what the max value characteristic covers. The evaluators should prior to the individual

assessments define weights to every question representing the relative importance of the dimension
in the domain in question.

Question Min Max

One Language at One
time

Expressiveness
Concepts

1. Expressing structure Flat language, no referencing, no
hierarchies

Hierarchies, nesting, referencing

2. Units of behavior One main program only Many different units of behavior
with value parameters

3. Templates and type
parameters

No higher order concepts Templates and type parameters

4. Communication No communication primitives Different kinds of comm. primitives
for synchronous as well as
asynchronous.

Identity
5. Inheritance Inheritance cannot be expressed Multiple inheritance
6. Overriding No overriding Overriding of all pattern concepts

(classes, methods, etc.) bound at
runtime

7. Overloading No overloading other than for
normal arithmetic

User defined overloading of all
methods / operations

8. Identity modifiers No other Other identity modifiers exists
Generation

9. Entity / behavior
creation

No dynamic creation Dynamic creation of methods,
objects etc.

10. Entity destruction No destruction Automatic destruction (garbage
collection)

11. Concurrency Sequential process only Fully independent concurrent
processes

12. Arbitration No arbitration Concepts of priority as well as
synchronization exist

Aggregation
13. Namespace
(nesting)

One namespace Multiple, nested namespaces

14. Levels of system One level Unlimited number of levels. Each
level is uniform with the former.

Meta-concepts
15. Reflection No reflection Fully equipped with reflective

mechanisms
16. Interpretation of
objects

Objects cannot be seen as
programs

Objects may be interpreted as
executable

Transparency
17. Syntax Counterintuitive syntax Different things are described

differently. Similar things similarly.
Intuitive symbols.

18. Descriptions vs.
runtime

Running system bears no
resemblance to model

Running system has a structure
similar to that of the description

19. Locality Reasoning always need the Understanding can be achieved for

Question Min Max
whole model small units at the time

20. History dependence Execution can be understood
only if the whole history is
known

Situation can be understood with a
minimum of knowledge of earlier
execution.

21. Educational
prerequisite

Unclear what knowledge is
needed

Well defined educational
requirements. Otherwise intuitive.

22. Efficiency Not important It should be time-efficient to create
or update a model

Formalization
23. Static analysis Not even syntax analysis

possible
Syntax rules are well-defined and so
are the well-formedness rules

24. Executability Not executable Executable
25. Dynamic analysis No analysis of execution

possible
Model checking possible with
effective means

26. Metrics Metrics impossible Metrics can be compiled to show
complexity measures

27. Formal semantics No mathematic formalisms Logical foundation that can support
analysis of refinement

28. Completeness Language only to be used for
sketching

Language to give a complete
representation of the system

Multiple Languages
29. Integrability No features for integration with

other languages
Superlanguage, common exchange
format or metamodel relationships

30. Traceability No inter-language references Inter-language references are
primitives of the language

Languages over time
31. Standardization No central standardizing body Standards body in place with rules

and principles
32. Propagation of
changes

New versions of the language do
not occur

New versions are automatically
propagated to all registered platforms

33. Tools No language-specific tools Language-specific tools are available
within a few months of new
language release

34. Compatibility Compatibility is not an issue Backward compatibility is ensured or
automatic migration is made
available

35. Deprecation Deleted concepts is not an issue Deprecated concepts are handled
explicitly

36. Extension Language is not extendable Language has well defined means to
extend itself as language

37. Restriction Language restriction is not an
issue

Language restriction can be
expressed

38. Scalability Only applicable for small
models

Syntax has means to keep overview
when model increases

39. Degradability Execution degrades sharply and
discontinuously

Execution degradation is well
predictable and linear

4 What is Specific for Domain Specific Modeling languages?

One issue is how to distinguish DSLs from GPLs. Can the particulars of DSLs be captured with
more weight on some dimensions?

DSLs are typically small, highly focused languages used to model clearly identifiable systems.
An important criterion is domain-appropriateness: A DSL must be powerful enough to capture the
major domain concepts and should match the mental representation of the domain. We try and
cover this in the questionnaire by the questions on transparency (#17-22).

DSLs are typically used for prediction or simulation, as well as code generation and execution.
Thus the language should be formal and accurate, which we cover by the questions on formalization
(#23-28).

There may be several DSLs when developing a complex system. Thus there is a need for
integration between these languages. Round-trip engineering where changes in the generated code
are reverse-engineered back to the model is dependent upon traceability. These aspects are covered
by questions #29 and 30.

Any DSL with a diagrammatical syntax should have proper layout, allowing easy distinction
between concepts while similar concepts should have similar layout. It should be possible to hide
details and expose them on demand. Question #17 covers this.

Finally creating a DSL should be cost-effective or costs should not exceed the advantages of
defining a DSL rather than using a GPL. This is not easy to evaluate merely from the language
itself, but the bottom line is whether the DSL has increased productivity for developers, or has
reduced maintenance costs by improving quality of software and providing models that are easier to
understand, correct and evolve.

5 Related Work

Krogstie describe a quality framework for evaluating modeling languages in general in [3], which is
based on earlier work described for example in [4]. The framework covers concepts such as domain
appropriateness (powerful enough to describe the domain), participant language knowledge
appropriateness (correspond as much as possible to the way that individuals perceive reality and
based on experiences with languages used for the relevant types of modeling), knowledge
externalizability appropriateness (there are no statements in the explicit knowledge of the
participant that cannot be expressed in the language), comprehensibility appropriateness (e.g., each
language’s phenomenon should be easily distinguishable and the number of phenomena should be
reasonable) and technical actor interpretation appropriateness (the language lend itself to
automatic reasoning. This requires formality (i.e., both formal syntax and semantics).

Grossman et al. have evaluated UML using a set of criteria [5] such as having right data
(necessary constructs and their semantics. [6] adds completeness, which is capturing all concepts),
and accuracy of concepts. All the criteria are also relevant for DSLs, while we can add some other
criteria from other literature that is more relevant for DSLs from [6]:

• Inherence: the concepts should be straight to the point and focus on essential aspects only,
• Consistency: the concepts must not conflict with each other in representation of (abstraction

from) aspects of the real world,
• Clarity; i.e. a designer must be able to comprehend the concepts and rules, as well as be able

to apply them in models without spending too much time and effort (subjective!).
Paige et al. also identify some principles in the design of modeling languages in general, where

the most important one is simplicity; i.e. no unnecessary complexity, including being small. Some
other principles are uniqueness or orthogonality of features, consistency (language features
cooperate to meet language design goals), reversibility (changes in one stage can be reflected back
to earlier stages), scalability (large and small systems can be modeled) and space economy (concise
models are produced) [7]. Some of the principles may be of more importance for DSLs such as

space economy. The FRISCO project report of 1998 by Falkenberg et al. discusses three properties
of modeling languages important for defining meta-model transformations (relations of languages
to each other); i.e. expressiveness (to what degree a given modelling language is capable of
denoting the models of any number and kinds of application domains), arbitrariness (the degrees of
freedom one has when modelling one and the same application domain, and suitability (to what
degree a given modelling language is generally applicable, or specifically tailored for the particular
task of modelling a specific kind of application domain).

For modeling languages, selecting language goals also depends on the purpose of modeling, such
as communication, code generation, simulation, or performance analysis.

What distinguishes our approach from the above mentioned approaches is that we aim to
operationalize the criteria through our questionnaire so that a concrete and quantitative assessment
is possible.

6 Conclusion and Future Work

We have presented a questionnaire for assessing DSLs based on a multi-dimensional quality
framework such that the assessment can be done only by assessing the language itself.

Most of our dimensions are based on experience and on state-of-the-art theory, and some of the
dimensions are directly intuitive. Still there is a need for empirics of applying the assessment
method on real and semi-real examples.

An alternative proposed for evaluating languages is collecting some metrics from the language’s
metamodel such as the number of concepts and relations as a measure of a language’s complexity
[9]. On the other, a more complex metamodel may actually facilitate the task of modeling and
cannot per se be used as an indication of a language’s suitability for a specific task. Comparing such
metrics needs proper baseline data and involves human judgment.

Our method cumulates assessment points from each dimension. This will mean that languages
with many features will get a high score. The risk is that simplicity will disappear in all the
language constructs that add to the score. The evaluators may compensate for this by carefully
emphasizing the transparency dimension in the weight definition.

Another problematic issue is that the dimensions are probably not orthogonal and again this must
be compensated by the weight definition.

Finally we have no way to assert that our set of dimensions is complete or even that the
dimensions span the full “quality space”. We believe that our future exploration of the method by
applying it to a number of existing and emerging languages will make shortcomings visible. The
questionnaire will be used in the design of DSLs in a European research project to collect language
requirements.

Acknowledgments. This paper has been sponsored by EU FP6 project MODELPLEX
(MODELling solution for comPLEX software systems) (Contract no. 034081).

References

1. Haugen, Ø.: Practitioners' Verification of SDL Systems. Institute for Informatics. Oslo,
University of Oslo: Dr. Scient. Thesis. 290 p (1997)

2. Haugen, Ø., R. Bræk, et al.. The SISU project. In SDL '93 Using Objects. Proceedings of the
Sixth SDL Forum, Darmstadt, Germany, North Holland (1993)

3. Krogstie, J.: Evaluating UML Using a Generic Quality Framework. Chapter in UML and the
Unified Process, Idea Group Publishing, 1-22 (2003)

4. Lindland, O.I., Sindre, G., Sølvberg, A.: Understanding Quality in Conceptual Modeling. IEEE
Software, Vol. 11, No. 2, 42-49 (1994)

5. Grossman, M., Aronson, J.E., McCarthy, R.V.: Does UML Make the Grade? Insights from the
Software Development Community. Information and Software Technology 47, 383-397 (2005)

6. Teewu, W.B., van den Berg, H.: On the Quality of Conceptual Models. In Proc. ER'97 Workshop
on Behavioral Models and Design Transformations: Issues and Opportunities in Conceptual
Modeling (1997)

7. Paige, R.F., Ostroff, J.S., Brooke, P.J.: Principles for Modeling Language Design. Information
and Software Technology 42, 665-675 (2000)

8. Falkenberg, E.D., Hesse, W., Lindgreen, P., Nilsson, B.E., Han Oei, J.L., Rolland, C., Stamper,
R.K., Van Assche, F.J.M., Verrijn Stuart, A.A., Voss, K.: A Framework of Information Systems
Concepts. The FRISCO Report (Web edition), ISBN 3-901882-01-4 (1998)

9. Rossi, M., Brinkkemper, S.: Complexity Metrics for System Development Methods and
Techniques”, Information Systems 21(2), 209-227 (1996)

