
A Cryptographic Protocol for Communication in a
Redundant Array of Independent Net-storages

Martin Gilje Jaatun∗ Gansen Zhao†, and Stian Alapnes‡
∗SINTEF ICT, Norway

Email: martin.g.jaatun@sintef.no
†South China Normal University, China

Email: gzhao@scnu.edu.cn
‡Telenor Corporate Development, Norway

Email: stian.alapnes@telenor.com

Abstract—This paper describes a cryptographic protocol for
storing and processing data in a Cloud Computing setting,
where users need not place absolute trust in the various Cloud
Processing providers. This is achieved by distributing data among
various Cloud Storage providers in such a manner that an
individual data item does not divulge useful information about its
owner, and only re-assembling data when it needs to be processed
or returned to the user.

I. INTRODUCTION

When computation and storage are outsourced to the Cloud,
a cloud computing provider currently gets access to all data
belonging to their customers. Due to the longer trust chain
[1], and potentially large physical distances between customers
and providers, customers’ security concerns are in many cases
scaring them away from the Cloud, thus preventing them from
reaping the benefits of Cloud Computing. It is easy to imagine
many consumers being uneasy about what huge corporate
Cloud providers might want to do with their information, and
even if the providers basically are honest, customers may still
be exposed to threats such as insiders at the cloud provider.

The Redundant Array of Independent Net-storages (RAIN)
was introduced by Jaatun et al. [2] as an approach to increased
confidentiality control in cloud computing, by splitting up
information in sufficiently small chunks, and distributing these
among several storage providers, as illustrated in Figure 1.
Furthermore, when data needs to be processed in any way,
this is done in the cloud by re-assembling the minimal amount
of data that is necessary, and then re-distributing the results.
Thus, if the data chunks are small enough, and if it is hard for
anyone but the owner to re-assemble them, confidentiality can
be achieved without encryption, and without having to trust
each individual cloud provider. The original paper [2] left a
lot of open questions, and in the following we will tackle
one specific challenge: How can we devise a protocol that
allows the user to put data in the cloud, without allowing the
individual providers to trace the information back to the user?

II. RELATED WORK ON ANONYMOUS STORAGE

The Free Haven project [3] describes a collaborative dis-
tributed storage system, where participants are allowed to
store (or publish) data by offering to store data for others,

in the same general fashion of peer-to-peer file sharing. The
Free Haven project does not provide a new solution for
the anonymous communications channel, but uses a set of
anonymous remailers as a basis. The Free Haven project makes
no assumptions on the participants being honest, but uses a
reputation system to identify non-cooperative (or dishonest)
nodes.

The OceanStore [4] system is also based on distributed
storage, but is less concerned with ensuring anonymity of the
individual users.

The ShareMind framework [5] [6] offers distributed privacy-
preserving1 computations, based on the principles of secure
multiparty computations. Sharemind seems less focused on
(anonymous) storage than computations; the current prototype
solution is based on distributing data from one source among
three nodes referred to as data miners, and is only secure as
long as the three miners do not collude.

III. PRELIMINARIES

This section will set out limitations for our contribution,
and will detail security assumptions, principals involved and
claims made on behalf of the solution.

A. Limitations

This paper will specifically not discuss many of the open
issues in [2], such as how to deal with small information
chunks that despite their size contain too much sensitive
information, and will also not delve into problems related to
the process of splitting2 the data. For now, we can consider
that the dataset is a random string of bits, which implies that
each chunk of data is equally random, and has no relation with
any other chunk. We can then concentrate on the challenge of
preventing an adversary from tracking each chunk of data.

B. Assumptions

The RAIN solution makes the following security assump-
tions:

1It may be a matter for debate whether the solution rather should have been
referred to as confidentiality-preserving.

2In other work, we will pursue how Rabin’s work on splitting data [7] can
be employed for the larger solution, but that is outside the scope of this paper.



1) We have a file (or dataset) that has been divided into
small chunks

2) A provider will not be able to link two different chunks
of the same dataset, should it gain access to them

3) The cloud service providers can be classified as “Honest
but curious”, i.e., we expect them to carry out the proto-
col faithfully, but they may try to access the information
either through collusion or other means.

4) We have at our disposal an anonymous sender/receiver
framework for communication in the cloud

5) There are enough simultaneous users to make anonymity
feasible3

6) We have a lightweight authentication mechanism which
can be used to regulate access to a data item

7) The C&C node has a list of “honest” Cloud Processing
providers, and their public keys

8) The C&C node maintains a record of all data IDs
9) The C&C node maintains a record of all nonces gener-

ated by legitimate users and itself, for as long as a data
ID is active

10) The user maintains a log of any outstanding requests
sent to the C&C node, and will reject any unsolicited
responses

11) The C&C node maintains a log of any outstanding
requests sent to cloud processing providers, and will
reject any unsolicited responses

The adversarial model is less powerful than Dolev-Yao, in
that we assume that an adversary can observe all traffic, and
possibly insert traffic, but not in general delete traffic (e.g. does
not carry the message). As already stated, we also assume that
the cloud providers are honest but curious.

C. Principals

Our world consists of the following principals:
• The User
• The C&C cloud service (named after the Command &

Control node in a botnet)
• Multiple cloud storage providers
• One or more4 cloud processing providers
Behind the scenes there are also some additional principals:
• An “IRC” cloud multicast service
• Multiple cloud storage agents
• Multiple cloud processing agents
• Multiple cloud mix-net agents
These are not discussed further in this paper.

D. Claims

• No cloud storage provider can associate any chunk of
data with its owner

3This is a rather fuzzy assumption, but it is clear that if there are only
two parties communicating, an adversary can trivially determine that all data
observed leaving one party will arrive at the second party. This assumption
of “more than a few” users is also used in, e.g., TOR [8]

4In our examples we only show one cloud processing provider, but we
assume that there would be several provides to choose from, in order to avoid
putting all our processing eggs in one basket.

• No cloud storage provider can associate any chunk of
data with another chunk of data from the same dataset

• No cloud processing provider can associate any dataset
with its owner

• No adversary can delete or modify any part of a user’s
dataset

IV. SOLUTION

We present a simplified solution, as illustrated in Figure 1.
We have n Cloud Processing Providers (CP1, . . . , CPn) and
m Cloud Storage Providers (CS1, . . . , CSm). As mentioned,
we assume the existence of an anonymous sender/receiver
framework, and when sending anonymous messages we will
use the notation {destination, . . .}anon. Note that since the
sender is supposed to be anonymous, there is no point in
including the originator address in these messages. In the
following we will examine how data is stored, retrieved and
processed using a request-response protocol in the RAIN.

A. Protocol for Storing Data

We have [9] that D is a piece of data to be split and stored in
a cloud, and an unspecified function splits D into a sequence
H of smaller segments such that H = (h1, h2, ..., hn).

The user U will send the data D and its ID to the C&C
node, encrypted with that node’s public key:

U → C&C : {store− full, auth, IDD, D}KC&C

Here, “auth” is an authentication token used to verify the
user’s rights to the dataset5. If this message is replayed, it will
be ignored; the only way to re-use a data ID is to first delete
the data-set that uses it.

The C&C node performs the split [9] such that H can be
represented as H =< Ds, Rs > where

• Ds = {di|i = 1, ..., n}
• Rs = {< di, di+1 > |i = 1, ..., n− 1}.

Here, Rs specifies how the segments are related to each other;
this knowledge is necessary for reassembly. We need to assign
a unique ID (or pseudonym) to each data item, which we in
the following refer to as IDdi.

The C&C node then distributes H among the cloud
storage providers by assigning their respective identifiers
(CSx, . . . , CSy) to the corresponding di, and sending the
chunks anonymously:

∀i|C&C → CSj : {CSj , store− part, auth, IDdi, di}anon

The C&C node needs to maintain a table mapping which
data items have been sent to which cloud storage service.

5In the current description, we make no attempt to hide the identity of the
user from the C&C node, so here we could assume that the authentication
is an (as yet unspecified) conventional mechanism authenticating the user to
the C&C provider. However, in the following we will use this authentication
mechanism to control access to individual data items, and in this case the
cloud providers should of course not know the identity of the user or other
actors



Cloud Storage 
Providers

Anonymous 
sender/
receiver 

framework

C&C node

Cloud 
Processing 
Providers

CP1, ..., CPn CS1, ..., CSm

Fig. 1: Simplified RAIN scenario

Furthermore, it is important that the pseudonyms are unique
within a given C&C provider, but created in such a manner
that it cannot be determined that two different pseudonyms
refer to data items from the same file. As mentioned in
Section III-B, we’re assuming that the traffic volume will
contribute to hide which items belong to which datasets, so
although we are effectively broadcasting the mapping tables,
this should not matter: An adversary can tell that the data
item with pseudonym X is stored with cloud storage service
Y, but this information is of little use if there is no way to tie
the pseudonym to a dataset (or user). Furthermore, since we
are assuming an anonymous sender and receiver framework,
the identity of the cloud storage provider is effectively a
pseudonym as well.

B. Retrieving Data

The user may ask the C&C to retrieve a dataset:

U → C&C : {retrieve− full, auth, IDD}KC&C

When asked to retrieve a dataset, the C&C node will need to
ask each storage service to return their respective data items:

∀i|C&C → CSj : {CSj , retrieve− part, IDdi}anon

Note that we do not need to authenticate when retrieving
individual data items in order to fulfil any security claims made
by RAIN.

Each Cloud storage provider6 responds with its piece of the
puzzle:

∀i|CSj → C&C : {CSj , return− part, IDdi, di}anon

The C&C node then re-assembles the data, and either
returns it to the user:

C&C → U : {U, return− full, IDD, D}KU

or sends it off to be processed as explained in the next section.

6It may be debatable whether it makes sense to include the provider ID in
the response, but certainly the C&C node ID cannot be there, as it is supposed
to be anonymous.



C. Processing Data in the Cloud

When the user wants to do something with the data, it will
tell the C&C node:

U → C&C : {process−cnc, operation, auth, IDD, Nu}KC&C

Here, “operation” identifies what should be done, IDD

identifies the dataset, and Nu is a nonce chosen by the user.
The data will first have to be retrieved and re-assembled as

explained above. The C&C node then selects an appropriate
number of cloud processing providers, depending on the type
of data and what is to be done with it. If the data is, e.g.,
a digital image, and the user wants to manipulate it using a
Cloud-based image editor, then the complete data set typically
needs to be sent to a single processing provider.

C&C → CPj :

{{CPj , process− cp, operation,D,KPC , Nc}KCPj
}anon

The data, the nonce chosen by the C&C node, a symmetric
key KPC for encrypting the response, and the rest is encrypted
with the public key of the cloud processing provider, and sent
through the anonymous sender-receiver network.

CPj → C&C : {{result− cnc,Dresult, Nc}KPC
}anon

Note that since the C&C node keeps track of requests to
processing providers, the operations are idempotent; replayed
responses are ignored, and in case of response failures, a new
request will be sent, canceling the former.

The result is returned to the user:

C&C → U : {U, result− user,Dresult, Nu}KU

Again, the user will reject any spurious responses with a
nonce that doesn’t match that of an outstanding request.

If the result is a change in the dataset, it will either have
to be re-stored or delivered to the user, depending on the
user’s wishes. If data items need to be updated or deleted,
the authentication mechanism comes into play again. In any
case, a confirmation is sent to the user, closing the outstanding
request.

An example of an editing operation is shown in Figure 2. In
this case, an image of a rodent (Figure 2a) is to be modified
to become a cat (Figure 2d). This example also highlights
an optimization opportunity; Figure 2b and 2c identify the
modified areas of the image, and on completion only these
parts need to be re-stored. The exact mechanisms of how to
determine which parts have been changed are beyond the scope
of this paper, however.

V. IMPLEMENTATION CONSIDERATIONS

Space does not permit a full implementation specification,
but in the following we will illustrate in a little more detail
how the actual storage and retrieval process may be realized
from the C&C node’s point of view.

Although we do not go into specifics here, it is clear that
the actual splitting must depend on the type of document. The
process is illustrated in Fig. 3. A user (or a client running
e.g. in a cloud environment) initiates writing of content to
the system. The user can configure which storage providers
to use for certain file types or content. Part of the config
contains information on how each of the storage providers
can be used, i.e. description on how to access, write and read
content. Typically this can be a proprietary web API. Based
on the selection of storage providers available and the content
type a recipe is generated. The recipe states the size of blocks
the original file is to be split into and a sequence for writing
the blocks to the various storage providers. Based on the recipe
the content is divided in blocks that each is stored at a storage
provider. The recipe is stored, and using the recipe, the content
can be retrieved from the storage providers and assembled. The
fileID is returned to the initiating part.

The retrieval process is illustrated in Fig. 4. A user (or a
client running e.g. in a cloud environment) initiates reading
of content from the system. The recipe is retrieved based on
the fileID. Based on the recipe the file is read from storage
providers and assembled. The assembled file is returned to the
initiating party.

VI. SECURITY ANALYSIS

As can be seen from Table I, pain has been taken to avoid
reusing commands that otherwise might have made it possible
to replay messages from A to B as a message from B to
C. This is according to Principle 1 of Abadi and Needham
[10], and to some extent also Principle 3, since it ensures that
every message will only be handled by the same type of actor
as intended. However, full adherence with Principle 3 may be
difficult to achieve in a setting of anonymous communication.
The explicit naming of commands is also in accordance with
Principle 10, since it allows for unambiguous encoding of each
message.

Since data is sent encrypted from the C&C node to the
Cloud Processing provider, it cannot be observed by an adver-
sary, who cannot determine the symmetric key used to encrypt
the response, and thus cannot do a suppress-replay attack to
replace the result with a bogus result. We are assuming the
C&C node has verified public keys to the providers, which
means only the selected provider sees the data, but as long
as the relationship between user and data is kept secret, it
does not really matter exactly which Cloud Processing provider
handles the data.

By applying the Scyther tool, we find (unsurprisingly) that
the assumption that data and session keys from the C&C node
are kept confidential holds, but unless the public key of the
processing provider has been verified, we cannot assume that
it remains confidential. Since the Scyther tool does not support



(a) Rodent (b) Rodent characteristics

(c) Cat characteristics (d) Cat

Fig. 2: Illustration of editing an image of a rodent to get a cat

Command Explanation
store-full Command from User to C&C to store a complete dataset
store-part Command from C&C to Cloud Storage provider to store a piece of data
retrieve-full Command from User to C&C to retrieve a complete dataset
retrieve-part Command from C&C to Cloud Storage provider to retrieve a piece of data
return-part Cloud Storage provider is returning a piece of data
return-full C&C node is returning a complete dataset to User
process-cnc Command from User to C&C to perform processing operation on a dataset
process-cp Command from C&C to Cloud Processing provider to perform processing operation on

a dataset
result-cnc Cloud Processing provider returning result of processing operation on a dataset to

C&C node
result-user C&C node returning result of processing operation on a dataset to User

TABLE I: Summary of all protocol commands

verifying privacy/anonymity claims, it cannot be used to verify
the full protocol.

Since we assume the presence of the anonymous
sender/receiver framework, we will not attempt to prove any
properties related to this. Also note that we have made no
claims with respect to resource consumption on the cloud
providers. Thus, it may be possible for a malfeasor to waste
the resources of a Cloud Processing provider by replaying
process-cp messages from the C&C node. This could be
countered by having the Cloud Processing provider store all
nonces Nc, and discard all messages with non-fresh nonces,

but since this does not contribute to keeping data and users
anonymous, it has been omitted to avoid forcing the providers
to maintain state information. However, in a possible future
commercial solution, this might be solved as part of a payment
solution.

From a complexity point of view, assuming that there are
in total n pieces of data stored in the cloud, let a malicious
user try to illegally access a file, which has been split into k
pieces and kept in the cloud. The malicious user must first
re-assemble the whole file, taking two steps.

1) Step 1: All k pieces must be retrieved corrected out



Fig. 3: Sequences for splitting content/file into blocks and writing to a set of storage providers

from the n pieces. The probability to retrieve the correct
pieces is as follows.

p1 =
1

Ck
n

=
k!

n ∗ (n− 1) ∗ . . . ∗ (n− k + 1)

2) Step 2: Re-order all the k pieces into the correct order,
given the k pieces. The probability of putting all k pieces
in the right order without any knowledge of the original
data is

p2 =
1

P k
k

=
1

k!

Hence, the probability of re-assembling the file correctly is

p = p1 × p2 =
k!

n ∗ (n− 1) ∗ . . . ∗ (n− k + 1)
× 1

k!

=
1

n ∗ (n− 1) ∗ . . . ∗ (n− k + 1)

Assuming that there is a very large number of pieces in the
cloud and each file is split into small enough chunks, n and k

are both large enough to ensure that the probability p is small
enough to counter attacks.

The cost for an attacker is far from only the computation
complexity of re-assembling the k pieces. Due to the dis-
tributed characteristics of the proposed storage system, the
system contains a very large amount of data and the data are
distributed across various networks. The attacker attempting to
re-assemble a file by brute force will have to have an extremely
large storage space to keep all the retrieved data pieces (both
the correct ones and the wrong ones), and it also has to afford
the cost for the network bandwidth to transfer such an amount
of data across the network.

VII. DISCUSSION

For completeness, we mention that a full solution also needs
to ensure the following assumptions:

1) A provider will not be able to gain any useful informa-
tion from a single chunk of data

2) Outside means must ensure that a single provider does
not receive enough chunks to re-assemble (parts of) the
original data.



Fig. 4: : Sequences for retrieving blocks of content from a set of storage providers and assembling them into the original
content.

As mentioned in Section III-B, the protocol would pre-
sumably be easy to break if there is only one user and one
C&C node - but in that case there also would not be a need for
the system. The popularity of such varied solutions as TOR
[8], Polippix [11], and anonymizer.net seem to indicate that
there will always be a certain minimum of users sufficiently
concerned with privacy and anonymity to actively choose
solutions like RAIN, if they are made available. We have
not formally evaluated thresholds for number of users and/or
amount of data to prevent an adversary (in practical terms)
from reconstructing data; this remains an area for further study.

In periods of low traffic, a possible additional measure may
be to distribute chaff, as advocated by Rivest [12]. Since this
is one of the things we expect the anonymous sender/receiver
framework to handle, we will not discuss it further here.

A. Searching and Indexing
One major unsolved problem with our solution is related

to searching and indexing. Even if it were possible to create
an index to search in, where can we store it? Thus, we
currently have to accept that searching is not possible without
re-constructing each file first.

B. Business model

It’s been said that everybody wants security, but nobody is
willing to pay for it. This means that not only is it difficult
to get funding for security measures in organizations where
security is viewed as a net expense, but most users are also
not willing to put up with the extra inconvenience that added
security mechanisms often imply. Contrasting this with the (at
least currently) free services such as Google Docs [13] that
cloud providers are throwing at customers, it may be hard to
imagine anybody paying money to get the same thing “more
secure”.

However, privacy is evidently an issue for some people,
as the usage statistics of the TOR network can testify [8],
and also experiments in Scandinavia have shown that many
people will choose privacy if it’s made available to them
[11]. In general, it is dangerous to confuse the concepts of
“privacy” and “confidentiality”, but in our case we believe
that the privacy aspects will be the major driver for people
wanting to keep their data confidential.

How to pay for the services anonymously has not been
completely resolved. Most existing solutions such as TOR



[8] and Free Haven [3] are based on volunteer or barter
arrangements, where participants get free use of the service
by supporting parts of it on their own systems. The payment
problem is also the main obstacle for Chaum’s approach [14],
since he assumes the existence of a digital cash system, some-
thing which remains elusive. Still, since the cloud paradigm
is oriented toward pay per use, we believe it will be easier
to solve this in the clouds than in many other situations. One
option for further study would be for users to somehow pay
for other users’ cloud use; this is analogous to the volunteer
or barter concept.

C. Trust

The C&C node will remain as a “single point of trust”
as long as it is realized as part of the cloud. However, we
maintain that even if we still have to trust the C&C node in
the cloud, this in an improvement over handing all our data
over to Google. The C&C node in effect plays the role of a
Trusted Third Party, and generally does not need to have the
enormous resources of the current commercial cloud providers.
Thus, the C&C node could in principle be run by some small
company in the user’s neighbourhood, enabling a traditional
trust relationship.

VIII. CONCLUSIONS

This paper has presented a cryptographic protocol for im-
proved confidentiality when storing and processing data in the
cloud. The solution is based on the rather large assumption of
having an anonymous sender/receiver framework in place, the
specification of which is left for further work.

An obvious area of further work is to create a proof-
of-concept prototype, and this will be our next step. Other
opportunities for further work include the design of a payment
solution that would enable users to pay anonymously for
RAIN service, and solutions for avoiding having to trust a
C&C node in the Cloud, which could finally deliver on the
promise of deliverance from trust. We have also not attempted
to specify the authentication mechanism that would prevent
unauthorized modification or deletion of information; further
study is required to determine if an existing mechanism would
suffice, or if a new mechanism is called for.

ACKNOWLEDGMENTS

This work has been supported by the Telenor-SINTEF
research agreement.

REFERENCES

[1] K. Bernsmed, M. G. Jaatun, P. H. Meland, and A. Undheim, “Security
SLAs for Federated Cloud Services,” in Proceedings of the Sixth
International Conference on Availability, Reliability and Security (AReS
2011), 2011.

[2] M. G. Jaatun, Å. A. Nyre, S. Alapnes, and G. Zhao, “A Farewell to Trust:
An Approach to Confidentiality Control in the Cloud,” in Proceedings
of the 2nd International Conference on Wireless Communications,
Vehicular Technology, Information Theory and Aerospace & Electronic
Systems Technology (Wireless Vitae Chennai 2011), 2011.

[3] R. Dingledine, M. J. Freedman, and D. Molnar, “The free haven project:
Distributed anonymous storage service,” in Proceedings of the Workshop
on Design Issues in Anonymity and Unobservability, 2000.

[4] S. Rhea, P. Eaton, D. Geels, H. Weatherspoon, B. Zhao, and J. Kubi-
atowicz, “Pond: the OceanStore Prototype,” in Proceedings of the 2nd
USENIX Conference on File and Storage Technologies (FAST ’03), 2003.

[5] D. Bogdanov, S. Laur, and J. Willemson, “Sharemind: a framework
for fast privacy-preserving computations,” Cryptology ePrint Archive,
Report 2008/289, 2008, http://eprint.iacr.org/.

[6] “Cybernetica news blog - sharemind,” 2008,
http://research.cyber.ee/sharemind/, visited: Sept. 9, 2010. [Online].
Available: http://research.cyber.ee/sharemind/

[7] M. Rabin, “Efficient dispersal of information for security, load balancing,
and fault tolerance,” Journal of the ACM (JACM), vol. 36, no. 2, pp.
335–348, 1989.

[8] R. Dingledine, N. Mathewson, and P. Syverson, “Tor: The second-
generation onion router,” in Proceedings of the 13th conference on
USENIX Security Symposium-Volume 13. USENIX Association, 2004,
pp. 21–21.

[9] G. Zhao, M. G. Jaatun, A. Vasilakos, Å. A. Nyre, S. Alapnes, Q. Ye,
and Y. Tang, “Deliverance from Trust through a Redundant Array of
Independent Net-storages in Cloud Computing,” in Proceedings of IEEE
Infocom, 2011.

[10] M. Abadi and R. Needham, “Prudent engineering practice for cryp-
tographic protocols,” Software Engineering, IEEE Transactions on,
vol. 22, no. 1, pp. 6–15, 1996.

[11] N. E. Larsen, “Privacy in the polippix project,” in D 7.3 PRISE Confer-
ence Proceedings: ”Towards privacy enhancing security technologies -
the next steps”, 2009, pp. 143–149.

[12] R. Rivest, “Chaffing and winnowing: Confidentiality without encryp-
tion,” CryptoBytes (RSA laboratories), vol. 4, no. 1, pp. 12–17, 1998.

[13] Google, “Google Docs - Online documents, spreadsheets, presentations,
surveys, file storage and more,” 2011, http://docs.google.com.

[14] D. Chaum, “The dining cryptographers problem: Unconditional
sender and recipient untraceability,” Journal of Cryptology,
vol. 1, pp. 65–75, 1988, 10.1007/BF00206326. [Online]. Available:
http://dx.doi.org/10.1007/BF00206326


