Vehicle Routing in Media Product Distribution

Geir Hasle, Oddvar Kloster, Morten Smedsrud Department of Applied Mathematics, SINTEF ICT, Oslo, Norway

4th Nordic Optimization Symposium

Århus, Denmark, October 2, 2010

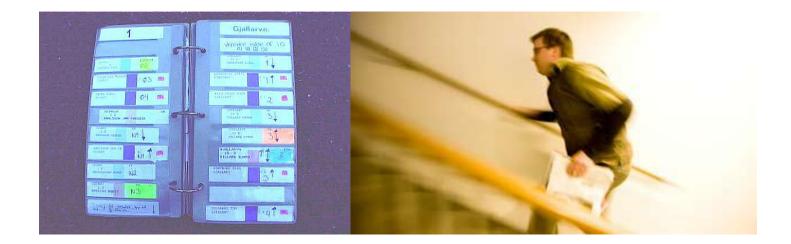
Applied Mathematics

Outline

- Context
- The routing problem
- Results
- Conclusions

.

Technology for a better society



Applied Mathematics

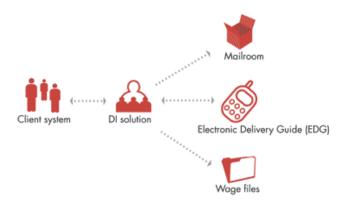
Newspaper distribution

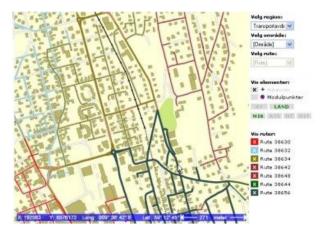
- Subscription newspapers, home delivery
- Decreasing revenues
- Distribution costs > 40% of total costs
- Route revision very costly and time-consuming
- Reduce costs Increase revenues

Reduce costs – Increase revenues

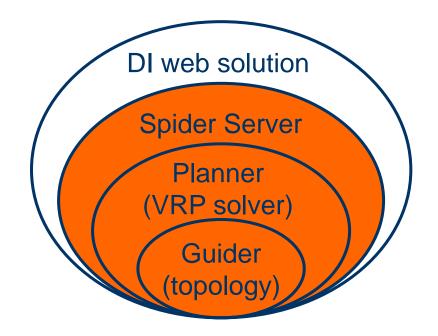
- More efficient carrier routes
- More efficient route revision
- Better utilization of distribution system
- Additional products
- Necessitates better communication, flexibility, dynamics

RTD Collaboration since 1999


- Newspapers and their distribution companies
- PDA/Smartphone based delivery book
- Cloud computing based distribution management system
- Establishment of Distribution Innovation AS <u>http://www.di.no</u>
- The DI solution



DI solution


- > 80% of newspaper home deliveries in Norway
- 5.000 carriers download their route every night
- > 1 million deliveries per day
- magazines, books, CDs, flowers, Danish pastry ...
- Finland, Sweden
- Integrated route construction and revision
- Spider VRP solver

System architecture

A: PASSPORT - Session1

_	122	0.00	

	6=SLETT, PF10=BLANKER, PF11=RUTEKONS, PF12=TILLEG	
	ISTRIBUSJONSSYSTEM KOSTNADS- OG TIDSBEREGNING	î
Rute: 21509 Utg.: M Ukedag	: O Pr. dato: 221105 Betjenes me	ed: G
Ant.10nn: 265 -Ant. abo	og andre, 0 -Ant. pressede Sone: 3 O/U:	U
265 * 0 = 265 a kr.	23,76 * 0 Spes.abo a kr. 0.00 = kr 62	296,40
Avstandsl0nn: 3,3 km a	kr. 52,80 = kr 1	174,24
Vintertillegg: 5 mnd. a	kr. 291,00 :12 = kr 1	121,25
Sum l0nn	*MIN* = Kr 68	392,17
26,00 % tillegg for feri	epenger og arb.avgift = kr 1	791,96
Sykkelgodtgj.	= Kr	0,00
Transp.godtgj. 3,3 km	x 26,00 dager x kr.: 0,00 = kr	0,00
Transp.strekn. 0,0 km	x 25,00 dager x kr.: 0,00 = kr	0,00
Sum 10nn, sos.kostn. og 1	ransp.godtgj. *MIN* = kr 86	584,13
Kostnad pr. abonnement pr	måned = kr	32,77
1. Klargjøring før start		
2. Avstand 3,3 km a		n.
3. 0 oppg. uten n0kkel a	0,35 = 0,00 min Reell tid 128,13 mi	n.
4. 53 oppg. med n0kkel a	0,50 = 26,50 min Beregn. dagl0nn 248,87	Kr
5. 206 etasjer a	0,35 = 72,10 min Reell dagl0nn 260,42	2 Kr
6. 0 lev. i enebolig a		54 Kr
7. 63 lev. i rekkehus	0,20 = 12,60 min Reell timel0nn 121,5	95 Kr
8. 4 lev. i FK (ute) a		
9. 0 fellesleveringer a		
Totalt		
TB	A2Session1 R 4 C 1 3:22p 22	2/11/0

Problem characteristics (1)

- Two-echelon distribution: from printing works to subscriber
- Focus on "last mile" carrier distribution: From drop point to subscriber doorsteps
- Node-based VRP with idiosyncrasies
- Possibly very large number (many thousands) of points
- Aggregation -> CARP on a mixed graph (Node Edge Arc Routing Problem (NEARP))
- Mixture of pedestrian routes and car routes
- Car routes open, pedestrian routes closed (in Sweden: the opposite ...)
- Service time often large part of total time
- Retardation and acceleration
- Alternative pickup points
- Requires detailed road topologies and accurate travel and service time models
- Meandering ("zigzagging") not allowed for cars (in Norway, they do not care ...)
- Topography, keys, …

Problem characteristics (2)

Main objectives

- cost, closely related to # routes, duration of routes
- route balancing (duration)
- "visual beauty"
 - non-overlapping routes
 - compact routes

Constraints

- route duration
- # routes
- meandering, topography, keys, ...

Relevant literature

Multi-objective VRP

■ Jozefowiez et al (2008) Multi-objective VRP. Survey, some 70 references

Route balancing

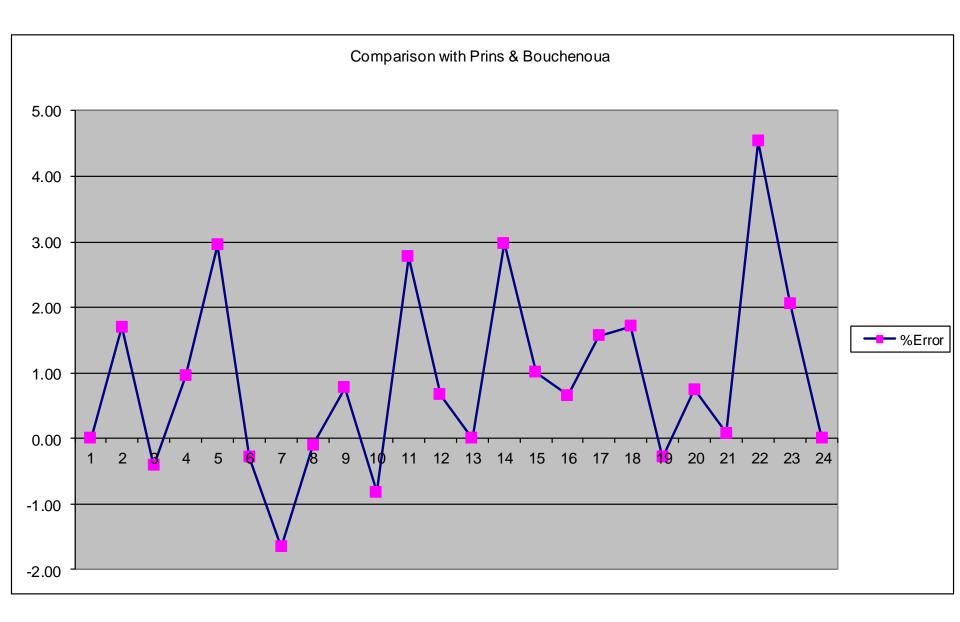
- Tsouros et al. (2006): Routing-Loading Balance Heuristic Algorithms for a Capacitated Vehicle Routing Problem
- Jozefowiez et al. (2007): An evolutionary algorithm for the vehicle routing problem with route balancing
- Pasia et al. (2007): Solving a Bi-objective Vehicle Routing Problem by Pareto-Ant Colony Optimization
- Borgulya (2008): An algorithm for the capacitated vehicle routing problem with route balancing

Visual beauty

- Lu & Dessouky (2005): A new insertion-based construction heuristic for solving the pickup and delivery problem with time windows
- Hao & Miller-Hooks (2006): Interactive Heuristic for Practical Vehicle Routing Problem with Solution Shape Constraints
- Matis (2008) DSS for the street routing problem
- Route balancing and visual beauty
 - Kim et al. (2005): Waste collection vehicle routing problem with time windows
 - He et al. (2009): Balanced K-means Algorithm for Partitioning Areas in Large-Scale Vehicle Routing Problem

.

"Standard" Spider approach


- Aggregation of demand based on road topology
 - Nodes, edges, arcs
- Duration-constrained (open) NEARP
- Route balance and visual beauty soft constraints
- Weighted sum of duration objective and penalties
- Spider standard algorithmic approach
 - Extended Savings construction
 - Iterated local search
 - VNS with repertoire of 15 operators
 - Ruin and recreate for diversification
 - Route reduction phases with special objective (if relevant)
 - Good results on C/DVRP, VRPTW, PDPTW, CARP, industry cases

NEARP benchmark

- NEARP Prins & Bouchenoua CBMix (23 instances)
- No lower bounds, no proven optima, only one competitor
- **UB error** 0.94%
- 8 best known solutions (6 new)

Industrial instances

- Improvements in total duration of 2%-25%
- Duration balance and visual beauty typically ok
- In some cases
 - routes not well balanced
 - routes not visually appealing
- Observations
 - tuning of weights for soft constraints in a scalarized objective difficult (no surprise ...)
 - alternative penalty definitions did not solve the problem
 - some (inter tour) LS neighborhood operators tend to destroy secondary objectives / soft constraints

Alternative approaches

Real multi-criterion formulation

- user interaction
- response time
- Targeted heuristics

.

Addressing route balance

Minimize difference in route length

- Jozefowiez et al. 2007: Multi-objective evolutionary algorithm
- Pasia et al. 2007: Pareto ant colony optimization
- Borgulya 2008: Multi-objective evolutionary algorithm
- Minimize difference in workload
 - Kim et al. 2005: Capacitated clustering, SA
 - Tsouros et al. 2006: Greedy heuristics

Addressing "visual beauty"

Two major aspects

- Route compactness
- Overlap/crossings between routes
- Different approaches
 - Kim et al. 2005: Capacitated clustering, SA
 - Lu & Dessouky 2005: Crossing length percentage, insertion heuristics
 - Hao & Miller-Hooks 2006: Two measures, heuristics, user interaction
 - clustering distance
 - # "unhappy" customers (not assigned to route with closest centroid)

New approach (1)

Main idea: create a solution with the desired structure

- duration balance
- visually appealing (compactness, non-overlapping)
- Simple
- Fast
- New construction heuristic: "Clusterer"
- Continuation with "standard" machinery

New approach (2)

- Estimate # routes needed (minimum could be given by user)
- Solve balanced capacitated (duration) clustering problem
 - Modified k-means algorithm, adaptive cluster weights
 - Fast TSP solver to find duration of each cluster (2-opt, relocate)
- restart with 1 route less if # routes to be minimized
- After-burner: Intra-tour optimization (3-opt)
- Possibly: Further iterative improvement
 - constraints on deterioration of balance and visual beauty

Experimental results

Preliminary investigation on industrial, "bad" cases

- Results much better with new approach
 - only construction and (intra-tour) 3-opt
 - good balance
 - visually appealing
 - similar cost (total duration)
 - faster
- Still a few bad cases

.

Even more beautiful with our new clustering method

Before After V + prma rtho /bric

Further work

Stabilize Clusterer, test industrial cases
Effects of further iterative improvement

Benchmarks from the literature
Generalize clustering distance, time
Cost of soft constraints

Conclusions

- Construction / revision of home delivery routes very complex
 - Iarge size
 - multiple criteria
 - idiosyncratic constraints
- Route balance and "visual beauty" very important
- Spider standard approach typically gives good results
- Bad results on some industrial instances (balance, "beauty")
- New approach based on balanced capacitated clustering constructor is promising
- More experimental studies and new benchmarks needed
 - comparison with literature on VRPRB
 - standard definition(s) of VRP with visual beauty, benchmarks

Vehicle Routing in Media Product Distribution

Geir Hasle, Oddvar Kloster, Morten Smedsrud Department of Applied Mathematics, SINTEF ICT, Oslo, Norway

4th Nordic Optimization Symposium

Århus, Denmark, October 2, 2010

Parallel and heterogeneous computing

Need for parallel algorithms

- speed vs. quality
- instance robustness
- larger size problems
- multi-criterion optimization
- Different levels of granularity
 - solution
 - iteration
 - algorithm
 - cooperating solvers
- Modern commodity computers
 - clock frequency reduced due to technological limits
 - Moore's law still valid: multiple cores
 - Graphics Processing Units: massive data parallelism

Cloud computing

- Central services, accessibility through web
- Less investment in hardware and software
- Central updates
- Possible security issues
- Automated routing services
 - demand unknown
 - need for elastic computational resources
 - parallel computation

