3D Integration of MEMS and IC: Design, technology and simulations

St. Petersburg, Russia, 29 June – 2 July 2009

M.M.V. Taklo, K. Schjølberg-Henriksen, N. Lietaer: SINTEF, Norway A. Elfving: SensoNor, Norway J. Prainsack: Infineon Technologies, Austria J. Weber, M. Klein: Fraunhofer IZM, Germany P. Schneider, S. Reitz: Fraunhofer EAS IIS, Germany

ICT

1

Outline

- 3D integration: Opportunities and trends
- e-CUBES: Tire pressure monitoring system (TPMS)
- Package design including thermo-mechanical modeling
- Technology development
 - Sensor packaging concept
 - Gold stud bump bonding
- Device characterization and testing
- Summary and outlook

MEMS, IC, 3D integration

- MEMS,- what we normally must explain...
- IC,- typically ASICs designed for the MEMS
- 3D integration
 - Vertically stacking
 - Mechanical and electrical interconnections
 - Through silicon/substrate vias (TSVs)

Benefits

- Reduced footprint/size
- Packaged on wafer level
 - Wafer to wafer
 - Chip to wafer
 - Wafer level packaging (WLP)
 - Ready for surface mounting directly after dicing
- Shorter electrical signal lines
 - Improved time response and reduced parasitic capacitances
 - Sensors: Ideal for pixel detectors
 - IC: High bandwidth for microprocessor core to memory communication
- Reduced cost and improved performance

Source: VTI

Hermetically sealed MEMS Sensing element

e-CUBES project

www.ecubes.org

- Miniaturized, autonomous systems for ambient intelligence
- Spring 2006 spring 2009, 17 partners
- 3 demonstrators
 - Health and fitness
 - Aeronautics and space
 - Automotive

Health and fitness

Aeronautic

Automotive

www.ecubes.org

Tire Pressure Monitoring System (TPMS)

TPMS placement: rim \rightarrow tire liner

First: Porsche 959 (1986)

Today:

Future:

Additional sensing

- Road condition
- Tire wear out
- Friction
- Temperature
- Side slip
- Vehicle load
- Improved tracking
- Engine control

TMPS must be smaller

Wireless: 2.4 GHz ISM Power: Battery \rightarrow harvester

Current size: 36 cm³

Future:

Target size: 1 cm³

Package design and thermal simulations

Molded Interconnect Device 11 × 10 mm² PCB

Hot tire over ice: Tire @ 0°C and air 125°C

Simulation results

Hot tire over ice:

Tire @ 0°C and air 125°C

Membrane

∆T<0.1 K (OK)

Thermo-mechanical stresses

- Uniformity required across membrane
 - Influence on piezoresistor values

ICT

Thermal effects on the BAR: Prainsack et al., "Design Issues of BAW employment in 3D integrated Sensor Nodes", DTIP 01-03 April, Rome, Italy, 2009

Silicon devices in the 3D stack

Two ASICs: Transceiver and microcontroller
Two MEMS: Pressure sensor and BAR

Sensor designs

Bulk micro machiningPiezo resistive device

ICT

Wafer level packaging alternatives

- AuSn bonding and vias in silicon wafer
- Direct bonding and vias in glass-silicon compound wafer
- Glass-silicon bonding and glass-silicon compound wafer

Abandoned alternatives

AuSn

- Plating required
 - Both wafers (inlets...)
 - Stand-off height > 10 µm (recess needed)
- Vias in silicon wafers
 - Hollow vias with polysilicon
 - Uncertain sealing of holes

Direct bonding Oxide/metal

- CMP required
 - Both wafers (fragile)
 - Combined oxide/metal CMP
 - Hybrid bonding (bond wave/thermo compression)

Selected alternative

Sensor signal

Daisy chain for tests

- Silicon-glass compound cap wafer and glass inlet wafer (SYMMETRY)
 - Modified bonding process (avoid short circuit despite Si pins)
- Al signal lines (patterned dry due to inlets)
- Au stud bumps (diameter 52 μm, height 30 μm)

PlanOptik

Close up of BAR devices

Tiny devices: 0.8 x 1.3 mm², 200 µm thick No TSVs

Smaller bumps (diameter 47 μm, height 32 μm)

Source: SINTEF

Optimized bonding parameters

Method	Thermocompression	Thermosonic
Bond force (N) (32 bumps)	20 – 30	12 – 20
Bond time per die (s)	10	2
Tool temperature (°C)	200	20
Chuck temperature (°C)	120 – 140	120 – 140

Higher pressure and temperature \leftrightarrow Negative effect of ultra sound?

ICT

.

Au stud bump cross sections

Good

Bad

ICT

- Bump heights: 8 21 µm
- Bump diameters: 60 100 µm

Thermal cycling (- 40°C to + 150°C) and 30 min at 260°C
 No impact on the cross-sections

Au stud bump conduction and strength

Electrical resistance : 0.10 Ω / bump

Sensor devices (Epotek 353ND underfiller)

- Shear strength 56 MPa after bonding
- Increased to 57 MPa after thermal cycling (- 40°C to + 150°C)
- Increased to 60 MPa after 30 min at 260°C
- Fracture within the dies

BAR devices (bonded without underfiller) :

- Shear strength 27.0 ± 2.3 MPa after bonding
- Fracture through the bump or at interface with the AI pad

Successfully bonded stack

Testing and results

Operation for 1 month, transmitting signals every 5 s

- Communication with the TX is functional
- Programming the µC is working
- BAR is running at correct frequency

To be verified: sensor communication

Finally packaged device: 0.998 cm³

Earlier presentations of the TPMS demo

- Taklo et al., "Technologies enabling 3D stacking of MEMS", IEEE workshop on 3D Sys-tem Integration, München, Oct 01-02, 2007
- Taklo et al., "MEMS Sensor/IC Integration for Miniaturized TPMS (e-CUBES)". Oral pres-entation at SEMATECH meeting "Manufacturing and reliability challenges for 3D ICs using TSVs", San Diego, California, sep 25-26, 2008
- Taklo et al., "3D MEMS and IC Integration", MRS fall meeting (Symposium E: Materials and Technologies for 3-D Integration), Boston-MA, des 01-05, 2008
- Lietaer, N., Taklo, M.M.V., Klumpp, A., Ramm, P., "3D Integration Technologies For Miniaturized Tire Pressure Monitor System (TPMS)", oral presentation at IMAPS 5th Inter-national Conference and Exhibition on Device packaging, Scottsdale, Arizona, 10-12 March 2009.
- Taklo et al., "3D stacked MEMS and ICs in a miniaturized sensor node", DTIP 01-03 April, Rome, Italy, 2009
- K. Schjølberg-Henriksen, et al., "Miniaturised sensor node for tire pressure monitoring (e-CUBES)", in Advanced Microsystems for Automotive Applications - Smart systems for safety, sustainability, and comfort, edited by G. Meyer, J. Valldorf, W. Gessner, Springer, Berlin, pp. 313-332, Berlin, pp. 313-332, 5-6 May 2009

Summary and outlook

Functional 3D integrated version of a miniaturized TPMS demonstrated

Several 3D integration technologies for MEMS emerge

Further challenges for the real product

- Reliability to be verified
- Power demand
 - Energy harvester
- Shape must better fit the inner liner of a tire

Acknowledgements

Colleagues of the e-CUBES project

Supported by the European Commission under support-no. IST-026461 e-CUBES

Vincent McTaggart, Kulicke and Soffa Industrial (KNS)
 For providing the bumping service

Gerhard Hillmann, Datacon Technology GmbH

For providing the chip to wafer bonding service and process development

